1

RICERCA OPERATIVA (a.a. 2008/09)

1) Il fondo di investimento G&V ha a disposizione W Euro, che desidera investire utilizzando n titoli azionari disponibili. Sia c_i il costo di acquisto di un'azione del titolo i e sia inoltre r_i una stima del rendimento futuro di ciascuna azione del titolo i (un rendimento negativo denota una perdita). G&V intende formare un portafoglio, stabilendo su quali titoli investire, e quante azioni acquistare per ogni titolo selezionato. Nel caso vengano acquistate azioni del titolo i, i regolamenti finanziari in vigore impongono che il numero di azioni acquistate sia compreso tra una soglia minima l_i ed una soglia massima u_i .

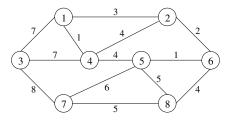
Per misurare il rischio legato alla propria strategia di investimento, G&V decide di basarsi sui rendimenti unitari effettivi di ogni titolo in m periodi temporali passati: per ogni titolo i e per ogni periodo t è noto il rendimento unitario r_i^t del titolo i nel periodo t, e si può così valutare il rendimento critico di un portafoglio, vale a dire il minimo tra i rendimenti che il portafoglio avrebbe realizzato in ciascuno dei periodi passati.

Aiutate G&V a scegliere il proprio investimento, formulando in termini di PLI il problema di formare un portafoglio che soddisfi i vincoli relativi al numero delle azioni acquistabili, che garantisca un rendimento futuro (stimato) pari almeno al 7% di W, e che massimizzi il rendimento critico.

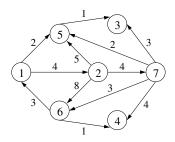
2) Si consideri il seguente problema di P.L.:

Data la soluzione ammissibile $\bar{x}=(1,2)$, si verifichi per via algebrica se le direzioni $\xi_1=(-1,-1)$ e $\xi_2=(-2,1)$ siano ammissibili per \bar{x} e/o di crescita. Nel caso di direzioni ammissibili, si fornisca anche il massimo passo di spostamento lungo la direzione, motivando la risposta (si ricordi che, data una soluzione ammissibile \bar{x} , la direzione ξ è ammissibile per \bar{x} se e solo se è possibile effettuare un passo di spostamento $\lambda > 0$ lungo ξ a partire da \bar{x} mantenendo l'ammissibilità).

3) Si applichi l'algoritmo di Kruskal per determinare un albero di copertura di costo minimo sul grafo in figura. Per ogni iterazione si indichino: l'arco in esame; quale fra le operazioni di inserzione e cancellazione viene applicata; nel primo caso mostrare un taglio, nel secondo fornire il ciclo individuato dall'algoritmo. Al termine fornire l'albero di copertura di costo minimo $T = (N, A_T)$. Tale soluzione ottima è unica? Giustificare la risposta.



4) Si individui un albero dei cammini minimi di radice 2 sul grafo in figura, utilizzando l'algoritmo più appropriato dal punto di vista della complessità computazionale e giustificando la scelta effettuata. Per ogni iterazione si forniscano il nodo selezionato u, i vettori dei predecessori e delle etichette, l'insieme dei nodi candidati Q. Al termine si disegni l'albero dei cammini minimi individuato. La soluzione trovata è unica? Giustificare la risposta.



2

5) Si consideri il seguente problema di PL:

Utilizzando gli scarti complementari, si verifichi se la soluzione $\bar{x} = (1,2)$ è ottima per il problema. Giustificare la risposta.

6) Si consideri il seguente problema di P.L.:

Si applichi l'algoritmo del Simplesso Duale, per via algebrica, a partire dalla base $B = \{2, 3\}$. Per ogni iterazione si indichino: la base, la matrice di base e la sua inversa, la coppia di soluzioni di base, l'indice entrante k, il vettore η_B , il passo $\bar{\theta}$ e l'indice uscente k, giustificando le risposte.