Problemi dello zaino e di bin packing

Laura Galli
Dipartimento di Informatica
Largo B. Pontecorvo 3, 56127 Pisa
laura.galli@unipi.it
http://www.di.unipi.it/~galli

2 Dicembre 2014
Ricerca Operativa 2
Laurea Magistrale in Ingegneria Gestionale
Università di Pisa
A.A. 2014/15

Problema dello zaino (knapsack problem)

Problema

Dati: un contenitore di capacità C, n oggetti di valore v_1, \ldots, v_n e peso p_1, \ldots, p_n . Quali oggetti inserisco nel contenitore, rispettando la sua capacità, in modo da massimizzare il valore totale?

Teorema

Questo problema è NP-hard.

Esempio

Investire 100 mila euro. Scegliere tra 9 investimenti possibili:

Investimento	1	2	3	4	5	6	7	8	9
Ricavo atteso	50	65	35	16	18	45	45	40	25
(migliaia di euro)									
Costo	40	50	25	10	10	40	35	30	20
(migliaia di euro)									

Modello

Variabili:
$$x_j = \begin{cases} 1 & \text{se oggetto } j \text{ viene inserito,} \\ 0 & \text{altrimenti.} \end{cases}$$

$$\max \sum_{j=1}^{n} v_j x_j$$

$$\sum_{j=1}^{n} p_j x_j \le C$$

$$x_i \in \{0, 1\} \quad \forall \ j = 1, \dots, n$$

Metodo Branch and Bound

Metodi *greedy* per trovare una soluzione ammissibile.

Metodo 1

Esamino gli oggetti in ordine di valore decrescente.

Ogni oggetto viene inserito purché sia rispettato il vincolo di capacità.

Oggetto	1	2	3	4	5	6	7	8	9	
Valore	50	65	35	16	18	55	45	40	25	
Peso	31	39	26	21	25	28	29	27	23	C = 100

$$x_2 = 1$$
, $x_6 = 1$, $x_1 = 1$, $x_7 = 0$, $x_8 = 0$, $x_3 = 0$, $x_9 = 0$, $x_5 = 0$, $x_4 = 0$. Quindi $v_1(P) = 170$.

Metodo Branch and Bound

Metodo 2

Esamino gli oggetti in ordine di peso crescente.

Ogni oggetto viene inserito purché sia rispettato il vincolo di capacità.

Oggetto	1	2	3	4	5	6	7	8	9	
Valore	50	65	35	16	18	55	45	40	25	
Peso	31	39	26	21	25	28	29	27	23	C = 100

$$x_4 = 1$$
, $x_9 = 1$, $x_5 = 1$, $x_3 = 1$, $x_8 = 0$, $x_6 = 0$, $x_7 = 0$, $x_1 = 0$, $x_2 = 0$. Quindi $v_I(P) = 94$.

Metodo Branch and Bound

Metodo 3

Esamino gli oggetti in ordine di rendimento decrescente (rendimento=valore/peso).

Ogni oggetto viene inserito purché sia rispettato il vincolo di capacità.

Oggetto	1	2	3	4	5	6	7	8	9	
Valore	50	65	35	16	18	55	45	40	25	
Peso	31	39	26	21	25	28	29	27	23	C = 100

$$x_6 = 1$$
, $x_2 = 1$, $x_1 = 1$, $x_7 = 0$, $x_8 = 0$, $x_3 = 0$, $x_9 = 0$, $x_4 = 0$, $x_5 = 0$. Quindi $v_1(P) = 170$.

Metodo Branch and Bound

Teorema

Supponiamo che le variabili siano in ordine di rendimento decrescente.

Sia
$$h$$
 l'indice tale che $\sum_{j=1}^h p_j \leq C$ e $\sum_{j=1}^{h+1} p_j > C$.

$$\max \sum_{j=1}^{n} v_j x_j$$
$$\sum_{j=1}^{n} p_j x_j \le C$$

Allora il rilassamento continuo $\left\{\begin{array}{l} \max \sum\limits_{j=1}^n v_j\,x_j \\ \sum\limits_{j=1}^n p_j\,x_j \leq C \\ 0 \leq x_j \leq 1 \end{array}\right. \text{ ha come soluzione ottima}$

$$\bar{x}_1 = 1, \ldots, \ \bar{x}_h = 1, \ \bar{x}_{h+1} = \frac{C - \sum\limits_{j=1}^h p_j}{p_{h+1}}, \ \bar{x}_{h+2} = 0, \ldots, \ \bar{x}_n = 0$$

e valore ottimo
$$v_1 + \cdots + v_h + \frac{v_{h+1}}{p_{h+1}} \left(C - \sum_{j=1}^h p_j \right)$$
.

Metodo Branch and Bound

Esempio

Risolviamo con il Branch and Bound il seguente problema:

$$\left\{ \begin{array}{l} \max \ 10\,x_1 + 13\,x_2 + 18\,x_3 + 24\,x_4 \\ 2\,x_1 + 3\,x_2 + 4\,x_3 + 6\,x_4 \leq 7 \\ x_j \in \{0,1\} \end{array} \right.$$

Disponiamo le variabili in ordine di rendimento decrescente:

variabili	1	3	2	4
rendimenti	5	4.5	4.33	4

Applicando il terzo algoritmo greedy otteniamo la soluzione ammissibile (1,0,1,0)e quindi $v_I(P) = 28$.

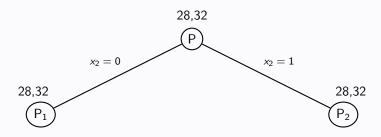
L'ottimo del rilassamento continuo è $(1, \frac{1}{3}, 1, 0)$, quindi $v_S(P) = 32$.

In ogni nodo aperto istanziamo la variabile frazionaria nella soluzione ottima del rilassamento e visitiamo l'albero in ampiezza.

Bin packing Zaino a variabili binarie Zaino a variabili intere

Metodo Branch and Bound

Esempio

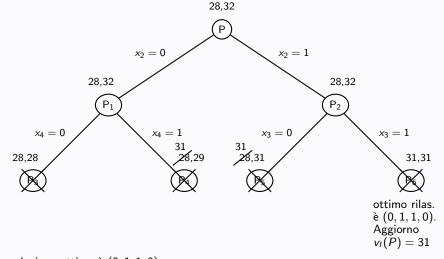


L'ottimo del rilassamento di P_1 è $(1,0,1,\frac{1}{6})$, non amm., $v_S(P_1)=32>28$, pertanto il nodo P_1 rimane aperto.

L'ottimo del rilassamento di P_2 è $(1, 1, \frac{1}{2}, 0)$, non amm., $v_S(P_2) = 32 > 28$, pertanto anche P₂ rimane aperto.

Dal nodo P_1 istanziamo la variabile x_4 , mentre dal nodo P_2 istanziamo x_3 .

Metodo Branch and Bound



La soluzione ottima è (0, 1, 1, 0).

Rilassamento Lagrangiano

Dato il problema dello zaino

$$\begin{cases}
\max \sum_{j=1}^{n} v_j x_j \\
\sum_{j=1}^{n} p_j x_j \le C \\
x_j \in \{0, 1\}
\end{cases}$$
(P)

il rilassamento lagrangiano è:

$$\begin{cases}
\max \sum_{j=1}^{n} v_j x_j + \lambda \left(C - \sum_{j=1}^{n} p_j x_j\right) = \\
= \sum_{j=1}^{n} \left(v_j - \lambda p_j\right) x_j + C\lambda \\
x_j \in \{0, 1\}
\end{cases}$$
(RL_{\lambda})

Il valore ottimo di (RL_{λ}) è uguale al valore ottimo del suo rilassamento continuo. Quindi il valore ottimo del duale lagrangiano di (P) coincide con il valore ottimo del rilassamento continuo di (P).

Cover

Definizione

Un insieme $S \subseteq \{1, ..., n\}$ è una *cover* se $\sum_{i \in S} p_i > C$. Una cover S è minimale se $S \setminus \{j\}$ NON è una cover per ogni $j \in S$.

Teorema

1. Se S è una cover, allora

$$\sum_{j \in S} x_j \le |S| - 1$$

è una DV.

- 2. Se S_1 , S_2 sono due cover e $S_1 \subset S_2$, allora la DV generata da S_1 domina quella generata da S_2 .
- **3.** Se S è una cover e $E(S) = S \cup \{j : p_i \ge p_i \text{ per ogni } i \in S\}$, allora

$$\sum_{j \in E(S)} x_j \le |S| - 1$$

è una DV che domina quella generata da S.

Cover

Esempio

$$\left\{\begin{array}{l} \max \ 5x_1+3x_2+8x_3+2x_4+3x_5+7x_6+6x_7\\ 11x_1+6x_2+6x_3+5x_4+5x_5+4x_6+x_7\leq 19\\ x_j\in\{0,1\} \end{array}\right.$$

Alcune DV generate da cover minimali:

$$\begin{array}{lll} S = \{1, 2, 3\} & \rightarrow & x_1 + x_2 + x_3 \leq 2 \\ S = \{1, 2, 6\} & \rightarrow & x_1 + x_2 + x_6 \leq 2 \\ S = \{1, 5, 6\} & \rightarrow & x_1 + x_5 + x_6 \leq 2 \\ S = \{3, 4, 5, 6\} & \rightarrow & x_3 + x_4 + x_5 + x_6 \leq 3 \end{array}$$

Dalla cover $S = \{3, 4, 5, 6\}$ si ricava $E(S) = \{1, 2, 3, 4, 5, 6\}$, quindi

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 3$$

è una DV che domina $x_3 + x_4 + x_5 + x_6 \le 3$.

Problema dello zaino a variabili intere

Problema

Dati: *n* tipi di oggetti, ognuno di valore v_i peso p_i ; un contenitore di capacità C. Quanti oggetti di ogni tipo devo inserire nel contenitore in modo da massimizzare il valore totale?

Modello

Variabili: x_i = numero (intero) di oggetti di tipo j inseriti nel contenitore Modello:

$$\max \sum_{j=1}^{n} v_j x_j$$

$$\sum_{j=1}^{n} p_j x_j \le C$$

$$x_j \in \mathbb{N} \quad \forall j = 1, \dots, n$$

Metodo Branch and Bound

Metodi greedy per trovare una soluzione ammissibile.

Metodo 1

Esamino gli oggetti in ordine di valore decrescente.

Inserisco ogni oggetto nella massima quantità possibile, purché sia rispettato il vincolo di capacità.

Oggetto	1	2	3	4	5	6	7	8	9	
Valore	50	65	35	16	18	55	45	40	25	
Peso	31	39	26	21	25	28	29	27	23	C = 100

$$x_2 = 2$$
, $x_6 = 0$, $x_1 = 0$, $x_7 = 0$, $x_8 = 0$, $x_3 = 0$, $x_9 = 0$, $x_5 = 0$, $x_4 = 1$. Quindi $v_I(P) = 146$.

Metodo Branch and Bound

Metodo 2

Esamino gli oggetti in ordine di peso crescente.

Inserisco ogni oggetto nella massima quantità possibile, purché sia rispettato il vincolo di capacità.

Oggetto	1	2	3	4	5	6	7	8	9	
Valore	50	65	35	16	18	55	45	40	25	
Peso	31	39	26	21	25	28	29	27	23	C = 100

$$x_4 = 4$$
, $x_9 = 0$, $x_5 = 0$, $x_3 = 0$, $x_8 = 0$, $x_6 = 0$, $x_7 = 0$, $x_1 = 0$, $x_2 = 0$. Quindi $v_1(P) = 64$.

Metodo Branch and Bound

Metodo 3

Esamino gli oggetti in ordine di rendimento decrescente.

Inserisco ogni oggetto nella massima quantità possibile, purché sia rispettato il vincolo di capacità.

Oggetto	1	2	3	4	5	6	7	8	9	
Valore	50	65	35	16	18	55	45	40	25	
Peso	31	39	26	21	25	28	29	27	23	C = 100

$$x_6 = 3$$
, $x_2 = 0$, $x_1 = 0$, $x_7 = 0$, $x_8 = 0$, $x_3 = 0$, $x_9 = 0$, $x_4 = 0$, $x_5 = 0$. Quindi $v_I(P) = 165$.

Metodo Branch and Bound

Calcoliamo una $v_S(P)$ risolvendo il rilassamento continuo.

Teorema

Se $\max_i \{ \frac{v_i}{p_j} \} = \frac{v_r}{p_r}$, allora il rilassamento continuo

$$\begin{cases}
\max \sum_{j=1}^{n} v_j x_j \\
\sum_{j=1}^{n} p_j x_j \le C \\
x \ge 0
\end{cases}$$

ha come soluzione ottima

$$\bar{x}_1 = 0, \ldots, \ \bar{x}_{r-1} = 0, \ \bar{x}_r = \frac{C}{p_r}, \ \bar{x}_{r+1} = 0, \ldots, \ \bar{x}_n = 0$$

e valore ottimo $C v_r/p_r$.

Metodo Branch and Bound

Esempio

Consideriamo il problema:

$$\begin{cases}
 \text{max } 4 x_1 + 20 x_2 + 27 x_3 + 26 x_4 \\
 4 x_1 + 19 x_2 + 16 x_3 + 14 x_4 \le 32
\end{cases}$$
(P)

Disponiamo le variabili in ordine di rendimento decrescente:

variabili	4	3	2	1
rendimenti	1.85	1.68	1.05	1

Il terzo algoritmo greedy trova la soluzione (1,0,0,2) con $v_l(P)=56$.

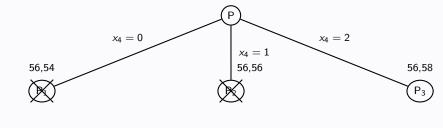
La soluzione ottima del rilassamento continuo è $(0,0,0,\frac{32}{14})$, quindi $v_S(P)=59$.

Metodo Branch and Bound

Esempio (segue)

Istanziamo la variabile x4 (frazionaria nell'ottimo del rilassamento continuo di P) e facciamo un branch non binario in modo che anche i sottoproblemi siano problemi di zaino:

56,59



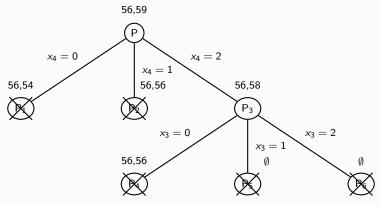
La soluzione ottima del rilassamento continuo di P_1 è (0,0,2,0), quindi $v_S(P_1) = 54 < 56 = v_I(P)$ e chiudiamo P_1 . La soluzione ottima del rilassamento continuo di $P_2 \in (0, 0, \frac{9}{8}, 1)$, quindi $v_S(P_2) = 56 = v_I(P)$ e chiudiamo anche P_2 . La soluzione ottima del rilassamento continuo di P₃ è $(0,0,\frac{1}{4},2)$, quindi $v_5(P_3) = 58 > 56 = v_1(P)$, pertanto P_3 rimane aperto.

Bin packing Zaino a variabili binarie Zaino a variabili intere

Metodo Branch and Bound

Esempio (segue)

Dal nodo P_3 istanziamo la variabile x_3 :



L'ottimo del rilassamento di P₄ è $(0, \frac{4}{19}, 0, 2)$: $v_S(P_4) = 56 = v_I(P)$. P₅ e P₆ non contengono soluzioni ammissibili, quindi si possono chiudere. Pertanto la soluzione ottima è (1, 0, 0, 2) con valore 56.

Problema del Bin packing

Problema

Dati: n oggetti di peso p_1, \ldots, p_n e m contenitori ognuno di capacità C.

Trovare il minimo numero di contenitori in cui inserire tutti gli oggetti.

Teorema

Questo problema è NP-hard.

Modello

$$\text{Variabili: } x_{ij} = \begin{cases} 1 & \text{se oggetto } j \text{ inserito contenitore } i, \\ 0 & \text{altrimenti,} \end{cases} y_i = \begin{cases} 1 & \text{se } i \text{ \`e usato,} \\ 0 & \text{altrimenti.} \end{cases}$$

$$\min \sum_{i=1}^{m} y_i$$

$$\sum_{i=1}^{m} x_{ij} = 1 \quad \forall j = 1, \dots, n$$
(1)

$$\sum_{j=1}^{n} p_j x_{ij} \leq C y_i \quad \forall i = 1, \dots, m$$

$$x_{ij} \in \{0, 1\} \qquad \forall i, j$$

$$y_i \in \{0, 1\} \qquad \forall i$$

- (1): ogni oggetto è inserito in un solo contenitore.
- (2): capacità contenitori.

Metodi euristici

Per calcolare una $v_S(P)$ descriviamo 3 algoritmi greedy.

Algoritmo Next-Fit Decreasing (NFD)

Esamina gli oggetti in ordine di peso decrescente.

Il primo contenitore è il contenitore corrente.

Se possibile, assegna un oggetto al contenitore corrente;

altrimenti assegnalo ad un nuovo contenitore, che diventa quello corrente.

j	1	2	3	4	5	6	7	8	9	
p_{j}	70	60	50	33	33	33	11	7	3	C = 100

Contenitori	Oggetti	Capacità residua
1	1	30
2	2	40
3	3 4	50 17
4	56789	67 34 23 16 13

Metodi euristici

Algoritmo First-Fit Decreasing (FFD)

Esamina gli oggetti in ordine di peso decrescente.

Assegna ogni oggetto al primo contenitore usato che può contenerlo.

Se nessuno di essi può contenerlo, assegna l'oggetto ad un nuovo contenitore.

j	1	2	3	4	5	6	7	8	9	
pj	70	60	50	33	33	33	11	7	3	C = 100

Contenitori	Oggetti	Capacità residua
1	1789	30 19 12 9
2	2 4	40 7
3	3 5	50 17
4	6	67

Metodi euristici

Algoritmo Best-Fit Decreasing (BFD)

Esamina gli oggetti in ordine di peso decrescente.

Tra tutti i contenitori usati che possono contenere un oggetto, scegli quello con la minima capacità residua.

Se nessuno di essi può contenerlo, assegna l'oggetto ad un nuovo contenitore.

j	1	2	3	4	5	6	7	8	9	
pj	70	60	50	33	33	33	11	7	3	C = 100

Contenitori	Oggetti	Capacità residua
1	1	30
2	2 4 8	40 7 0
3	3579	50 17 6 3
4	6	67

Rilassamento continuo

Teorema

Il rilassamento continuo di (P):

$$\begin{cases} \min \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{ij} = 1 \quad \forall j = 1, \dots, n \\ \sum_{i=1}^{n} p_{j} x_{ij} \leq C y_{i} \quad \forall i = 1, \dots, n \\ 0 \leq x_{ij} \leq 1 \quad \forall i, j \\ 0 \leq y_{i} \leq 1 \quad \forall i \end{cases}$$
(RC)

ha come soluzione ottima $x_{ij} = \begin{cases} 1 & \text{se } i = j, \\ 0 & \text{se } i \neq j, \end{cases}$ $y_i = \frac{p_i}{C}$ per ogni i.

Quindi $L_1 = \left\lceil \sum_{i=1}^n p_i / C \right\rceil$ è una $v_l(P)$.