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Abstract

The minimum evolution criterion is one of the most important criteria of molecular phylogenetic
estimation. It states that the phylogeny of a given set of molecular data (taxa) is the one whose sum
of edge weights is minimal. Finding the phylogeny that satisfies the minimum evolution criterion
involves solving an optimization problem, called the Minimum Evolution Problem (MEP), whose
versions are generallyNP-Hard. The most recent version of MEP is the Balanced Minimum Evolution
problem (BME), which is based on Pauplin’s edge weight estimation model [16]. In [1] we presented
an algorithm for solving BME based on non-isomorphic enumeration of the phylogenies relative to
a given set of taxa. The computational analysis reported in [2] shown the quality of the solution
provided using a short amount of computing time. Furthermore, it highlighted that a Local Search
can improve the solution quality and the need of increasing the dimension of the instance solved
by a a parallel approach. The focus of this paper is therefore to report about the extension of our
algorithm in order to include a Local Search method and the results obtained by a parallel version
of the whole algorithm.
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Introduction

Molecular phylogenetics studies the hierarchical evolutionary relationships among organisms (also called
taxa) by means of molecular data (e.g., DNA or protein sequences). These relationships are typically
described by means of weighted trees, or phylogenies, whose leaves represent taxa, internal vertices the
intermediate ancestors, edges the evolutionary relationships between pairs of organisms, and edge weights
a measure of the dissimilarity between pairs of taxa [10].

Molecular phylogenetics provides several criteria for selecting one phylogeny from among plausible
alternatives [5]. Usually, such criteria can be expressed in terms of objective functions, and the phylogenies
that optimize them are referred to as optimal [5]. Each criterion adopts a set of assumptions whose ability
to describe the real evolutionary process determines the gap between the real and the true phylogeny,
i.e., the phylogeny that one would obtain under the same set of assumptions if all the molecular data
from the (set of) taxa were available [10]. If the optimal phylogeny approaches the true phylogeny as the
amount of molecular data analyzed increases, then the corresponding criterion is said to be statistically
consistent [11].
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One of the most important criteria is the minimum evolution criterion [13, 17, 18]. It states that, given
a set Γ of n taxa and the corresponding n× n symmetric matrix D = {dij} of evolutionary distances [7],
the optimal phylogeny for Γ is the one whose sum of edge weights, estimated from the corresponding
evolutionary distances, is minimal [13]. Finding the phylogeny that satisfies the minimum evolution
criterion involves the solution of the Minimum Evolution Problem (MEP), whose versions are generally
NP-Hard (see [5]). MEP can be stated, in its most general form, as follows.
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Figure 1: An example of a phylogenetic graph.

Consider a connected, unweighted, undirected graph G = (V, E), hereafter called phylogenetic graph
(see Figure 1), where V = Ve∪Vi is the set of vertices. Ve is the set of n leaves representing the n taxa in
Γ, and Vi the set of (n− 2) internal vertices representing the common ancestors. By analogy, E = Ee ∪Ei
is the set of 3

2 (n − 1)(n − 2) edges, where Ee is the set of external edges, i.e., the set of edges with one
extreme being a leaf, and Ei is the set of internal edges, i.e., the set of edges with both extremes being
internal vertices. Then a phylogeny of the set Γ is any spanning tree T of G such that each internal vertex
has degree three, and each leaf has degree one.

A phylogeny T of a set of taxa Γ is said labeled if there exists a bijection function from the set of
leaves of T to the set of taxa Γ, and unlabeled otherwise. Figure 2 shows an example of a labeled and an
unlabeled phylogeny relative to four taxa.
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Figure 2: An example of a labeled (a) and an unlabeled (b) phylogeny relative to four taxa.

Given two unlabeled phylogenies T1 and T2 relative to the set of taxa Γ, we say that T1 and T2 are
isomorphic if there exists a bijection g from the set of vertices of T1 to the set of vertices of T2 such that
a pair of vertices u and w are adjacent in T1 if and only if g(u) and g(w) are adjacent in T2.

Denote T as the set of all the possible (2n− 5)!! phylogenies of Γ (where n!! is the double factorial of
n) [10]. Then, MEP consists in solving the following optimization problem [5]:

Problem 1. The Minimum Evolution Problem (MEP)

min
(T,w)

L(T,w)

s.t. f(D, T,w) = 0

T ∈ T ,w ∈ <(2n−3)
0+

where f(D, T,w) is a function correlating the distance matrix D with the phylogeny T and w is the
(2n − 3)-vector of edge weights associated to T , and L(T,w) is the length of T , i.e., the sum of the
associated edge weights. Defining the function f(D, T,w) means specifying an edge weight estimation
model, i.e., a model to compute edge weights provided the knowledge of D and T [5]. Thus, a version of
MEP is completely characterized by specifying the functions L(T,w) and f(D, T,w).
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Several versions of MEP are known in literature [5]: the most recent one was proposed by Pauplin [16]
and it is known as the Balanced Minimum Evolution (BME) problem [8, 9]. Pauplin’s edge weight
estimation model makes the expression of the length of a phylogeny independent by its edge weights, and
leads to the following optimization problem [5]:

Problem 2. The Balanced Minimum Evolution Problem (BME)

min
T∈T

L(T,w) = L(T ) =
n∑
i=1

n∑
j=1

2−τijdij (1)

where τij are the edges belonging to the path between taxa i and j in T . In other words, BME consists
in finding a spanning tree T in the phylogenetic graph G such that: (i) each leaf is a taxon, (ii) each
internal vertex has degree tree, and (iii) the length function (1) is minimal. At present, deciding the
complexity of BME is an open problem.

In [1, 2] we presented an algorithm for solving BME based on non-isomorphic enumeration of the
phylogenies relative to a given set of taxa. The computational analysis reported in [2] shown the quality
of the solution provided using a short amount of computing time. Furthermore, it highlighted that a
Local Search can improve the solution quality and the need of increasing the dimension of the instance
solved by a parallel approach. The focus of this paper is therefore to report about the improvement of
our algorithm obtained including a Local Search method and developing a parallel version of the whole
algorithm.

The BMEsolver algorithm [1, 2]

For a fixed cyclic permutation π̂ all isomorphic phylogenies share the same values {τij}, i.e., they identify
solutions having the same length. It is worth noting that, given n taxa (say n ≥ 10), over the 99.9% of
the (2n − 5)!! phylogenies are isomorphic. Hence, a possible way to reduce the solution space of BME
consists of generating only unlabeled non-isomorphic phylogenies and, for each of them, proceeding with
finding the best possible assignment of the taxa to the leaves. The major difficulties of this approach lie
on both the enumeration procedure, which is nontrivial to implement efficiently, and the solution of the
assignment problem, which is a NP−Hard problem [6].

Several authors [12, 14, 19] studied the combinatorial properties of the function (1) highlighting the
relationship between BME and the TSP. Specifically, they proved that the length of the optimal solution
of BME is equal to half-time the length of the shortest Hamiltonian circuit in GΓ. In other words, the
shortest Hamiltonian circuit in GΓ identifies a way in which the taxa are ordered in the optimal phylogeny.
The algorithm proposed in [1, 2] can be described as follows. Given an instance I of BME, denote T ∗
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Figure 3: Example: a taxa assignment (a) and a clockwise rotation (b).

and minval as the best phylogeny of I and the optimal length of T ∗, respectively. Our algorithm starts
solving TSP on GΓ; the solution C so obtained identifies the taxa order in T ∗. The algorithm proceeds
by enumerating all the possible non-isomorphic phylogenies by using a modified version of the algorithm
in [3].

For each non-isomorphic phylogeny T , the algorithm assigns to each leaf a taxa as shown in Figure 3(a);
subsequently, the algorithm computes the length of the resulting phylogeny and the eventual minimum is

3



Figure 4: Best solution with 20 taxa computed by BMEsolver.

stored. Since the TSP solution only identifies an order of appearance of taxa in T ∗ but not their relative
assignment to the leaves of T ∗, in the subsequent (n−1) steps the algorithm performs a clockwise rotation
of taxa assignment to leaves of the phylogeny (see Figure 3(b)). When all the possible non-isomorphic
phylogenies have been enumerated, the algorithm ends returning the best phylogeny found. A solution
example is depicted in Figure 4. The pseudo-code of our algorithm is shown in Figure 5.

procedure BMESolver(Γ: set of taxa, D: distance matrix)
C ←SolveTSP(Γ,D);
T ∗ =NULL; minval =∞;
for Any possible non-isomorphic phylogeny T do

for any pair of unassigned leaves i and j in T do Compute τij ;
TC ←AssignLeaves(C,T )
if minval ≥ L(TC) then minval = L(TC); T ∗ = TC end if
for Any clockwise shift R of C on T do
TR ←AssignLeaves(R,T )
if minval ≥ L(TR) then minval = L(TR); T ∗ = TR end if

end for
end for
return T ∗ and minval

end-procedure

Figure 5: BMESolver pseudo-code.

Parallel Algorithm and Local Search

A limitation to the computational capability of BMESolver is due to the increasing number of unlabeled
trees: we have 11020, 565734 and 2841632 different trees having 20, 25 and 27 taxa determining a total
running time of about 6, 620 and 1500 seconds, respectively. Moreover, real applications need to address
instances having more than 27 taxa [4].

In order to reduce the running time needed to compute a solution for a larger number of taxa, we
developed a parallel algorithm which is based on a simple communication model among k + 2 processes
depicted in Figure 6. Process 0 enumerates the unlabeled phylogenies. Then it assigns the last enumerated
phylogeny to the first available BMEsolver process. Each BMEsolver (the ones having process id in
[1, . . . , k]) waits for a new phylogeny. When it receives a new phylogeny, it computes the best taxa
assignment and the value (1). At the end of its computation, the process sends the solution computed
to process k + 1 which collects all the computed solutions in order to extract the best one.
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Figure 6: Description of the parallel algorithm.

We tested the sequential and parallel version of BMEsolver on a machine having 2 Dual Core AMD
Opteron 275 2.2 GHz with 3 Gb of main memory running under Linux operating system. On the same
instances reported in Table 1, preliminary computational results show an average linear speed-up: the
running time decreases from 626.015 seconds required for the sequential version of BMEsolver to the
105.185 seconds required for the parallel version setting k = 6.

We now consider a 2-opt Local Search (LS) consisting in the swap of two taxa in all possible ways,
at each iteration. Let T ∗ be the phylogeny computed by BMESolver giving the best BME value L(T ∗).
Table 1 compares L(T ∗) with the following values: L1(T ∗), obtained after 1 LS iteration starting from
T ∗, and L1(T ′), computed after 1 LS iteration applied to each phylogeny T ′ 6= T ∗. Finally, Table 1
reports the number tmin of phylogenies T ′ improving T ∗.

taxa 25

L(T ∗) L1(T ∗) gap L1(T ′) gap tmin

01 2868.430542 2844.117065 0.85% 2814.289917 1.89% 18
02 3447.088867 3412.391602 1.01% 3341.882202 3.05% 47
03 3263.754700 3258.775391 0.15% 3254.036194 0.30% 4
04 3266.178436 3264.205292 0.06% 3256.033661 0.31% 2
05 3084.504700 3084.504700 0.00% - - 0
06 3181.696167 3181.696167 0.00% 3147.139465 1.09% 11
07 3601.660278 3601.660278 0.00% - - 0
08 2981.984192 2981.984192 0.00% 2955.996826 0.87% 2
09 2999.072113 2999.072113 0.00% 2992.837128 0.21% 1
10 3363.253296 3363.253296 0.00% 3351.924805 0.34% 3

Avg. gaps 0.21% 1.01%

Table 1: Instances with 25 taxa, total number of phylogenies 565734, results from [2].

The reported results show that a Local Search may improve the quality of the solutions computed by
BMESolver. The peculiar form of the objective function (1) makes its evaluation a non-easy task, however
a complex data structure such as the EPT matrix [15] may turn out helpful. We also add a short-term
memory tool to allow a more accurate exploration of the solution space.

Finally, we observe that the linear speed-up gained by the parallel algorithm can be also employed to
allow a more deep exploration of the solution space starting from the solution computed by the original
BMESolver. Therefore, a Local Search improvement method can be added to each one of the k BMESolver
depicted in Figure 6.
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