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Abstract

This paper focuses on accelerating strategies in a Column Generation (CG) algorithm. In order
to decrease the total number of generated columns and then, master problems resolution time, pric-
ing problems solutions are made of task-disjoint columns. This can be achieved by diversification
methods. Another way to improve CG computing time is to use reoptimization approaches to solve
efficiently the pricing problems. We show in this work that diversification approaches are more effi-
cient when applied on the first iterations to build efficiently a good approximation of pricing problems
convex hull and that reoptimization methods are more efficient when applied on the last iterations
when the dual variables are close. We combine a diversification technique and a reoptimization pro-
cedure in a CG scheme to improve the global resolution time. This study is validated on the Vehicle
Routing Problem with Time Windows (VRPTW), defined on acyclic networks.

Keywords: Diversification; Reoptimization; Column generation; Vehicle routing problem with time
windows.

1 Introduction

A well known strategy to reduce the number of iterations in CG, is to return to the Master Problem
(MP) many negative marginal cost columns at each iteration (minimization problem case). Generally,
this intensification typically overloads the MP, while the final optimal base contains a very restricted
subset of all the generated columns. Diversification methods which consist of computing complementary
columns at each iteration of CG, permit to decrease the number of generated columns by characterizing
quickly a good approximation of the Pricing Problem’s (PP) convex hull. This approach is then more
efficient on the first iterations [6, 8].

Another way to improve the CG algorithm is to solve efficiently the PPs, known to be very greedy on
computing time in many applications. We interest for this purpose to reoptimization techniques, which
consist of using some informations about the PP’s resolution at an iteration k, for solving efficiently the
PP at iteration k4 1 [7, 8].

This work focuses on the combination of diversification and reoptimization techniques in CG. We
apply here a diversification method on the first iterations, and a reoptimization procedure on the last
ones. The relevance of this approach is demonstrated by computational experiments on Solomon and on
randomly generated instances of the Acyclic VRPTW (AVRPTW).



2 Vehicle routing problem with time windows

The VRPTW ([2], [3], [5]) involves the design of a set of minimum cost routes, originating and terminating
at a central depot, and visiting each costumer once, for a fleet of identical vehicles. The oriented network
used by vehicles is defined by G = (V, .A), where V is the set of nodes composed of the set of costumers
N, a source s’ and a destination '’ representing exit and entrance to the depot respectively, and A the
set of arcs connecting the customers and the depot. With each arc (i,j) € A is associated a positive
duration ¢;; and a cost ¢;;. Each vehicle has a given capacity ) and each customer i has a demand d;,
i € N. For each customer 4, the start of the service must be within a given time window [a;, b;]. A vehicle
can wait in case of early arrival. The VRPTW can be formulated as a set partitioning problem, its linear
relaxation is called the master problem and given as follows :

(MPVRPTW) min ZT‘ER Cr A\, ZT‘GR OirAr = 1,Vi € ./\f, A > 0,Vr € R,

where R is the set of all feasible paths, i.e. paths going from ’s’ to 't’ and satisfying capacity and time
windows restrictions, ¢, is the cost of path r and d;,. is 1 if path r visits node ¢ and 0 otherwise. The PP
is equivalent to a Shortest Path Problem with Time Windows and Capacity Constraints (SPPTWCC)
and formulated as follows:

min 37 e a(cij — mi)wi
JeN Tsj =D jen Tjt =1 .
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(SPPTW) 2 jen & 2ienugsy T < Q@
x5 € {0,1}, V(i,j) € A
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T €N, VjieN

where z;;, (¢,7) € A are binary flow variables taking the value 1 when arc (7, j) is used by a vehicle,
T;,i € N are time variables associated with the starting of the service at node i, and ; is the dual
variable associated with the i-th constraint of the MP. The standard approach to solve the SPPTW in
practice is based on the dynamic programming method and has a pseudo-polynomial complexity. The
principle is to associate with each possible partial path a label indicating the cumulated cost, time and
demand, and to eliminate labels with the help of dominance rules. We consider here a label correcting
algorithm, where nodes are repeatedly treated and their labels extended [4]. Solving the SPPTW with a
dynamic programming approach is closely related to solving multi-objective shortest path problems, the
aim is to generate efficient paths (i.e., Pareto optimal paths).

The main goal of our study is to evaluate the impact of two accelerating techniques of the column
generation algorithm. Our study focuses on a particular version of the vehicle routing problem with
time windows, based on acyclic networks, nevertheless many routing problems in practice are modeled
by acyclic networks, particularly when the width of time windows is lower than the intertask time. It is
the case in rail transportation problems for example.

Vehicle routing problem with time windows test instances

We consider in our experimentations two different types of AVRPTW instances. Some Solomon test
problems from which we can extract acyclic networks (C101_25 (25 nodes), C'101_50 (50 nodes), C'101
(100 nodes), C1-2_1 (200 nodes)), and 10 AVRPTW instances uniformly randomly generated for each
size: Ggo (100 nodes), Gao (120 nodes), G40 (140 nodes) and Gigo (160 nodes).
3 Diversification in a column generation algorithm

It is well known that the intensification allows to decrease the number of iteration of CG. Experimentations
on AVRPTW instances described in section 2, reveal two interesting phenomena. The average percentage



of suboptimal columns in the final optimal base is higher than 93% and 99% of the generated columns
do not belong to the final optimal base.

To avoid the fast and useless increase of MPs size, we classically restrict to the generation of the k& best
solutions, k is a parameter expressed in % in what follows. We call this procedure k% _Intensified Column
Generation (k%_ICG). Intensified Column Generation (ICG) correspond to k = 100. Experimentations
on the AVRPTW [6] showed that in average, the number of columns increases when k increases, whereas
the number of iterations and the global resolution time decrease. Even if the add of columns with good
reduced cost decreases the global number of generated columns, it increases considerably the number of
iterations and is not enough to improve the global computing time. Instead of select columns based on
the reduced cost criterion, we interest in what follows to columns structure based criterion.

3.1 Suboptimal columns characteristics

The previous experimental results show that suboptimal columns of best reduced cost are neighbor
compared to the optimal column obtained, i.e. they covered almost the same tasks. We expose bellow
the 20-th columns of best reduced cost, generated for a Solomon test instance of 25 costumers. The first
column represent the path’s cost and the others, the sequence of path’s nodes.

ITERATION 1

-1140.52 i0 i3 i7 i8 i10 i1l i9 i6 i4 i2 il i26
-1133.41 i0 i3 i7 i8 i10 i1l i9 i6 i23 i22 i21 i26
-1103.58 i0 i3 i7 i8 i10 i1l i9 i6 i23 i22 il i26
-1086.77 i0 i3 i7 i19 i10 i1l i9 i6 i23 i22 i21 i26
-1056.95 i0 i3 i7 i19 i10 i1l i9 i6 i23 i22 il i26
-1043.13 i0 i3 i7 i8 i10 i1l i9 i6 i4 il i26
-1040.59 i0 i3 i7 i8 i10 i1l i9 i6 i4 i2 i26
-1036.05 i0 i3 i7 i8 i10 i1l i9 i23 i22 i21 i26
-1033.44 i0 i3 i7 i8 i10 i1l i9 i6 i23 i22 i26
-1031.38 i0 i3 i7 i8 i10 i1l i9 i6 i4 i22 i26
-999.81 i0 i3 i7 i8 i10 i1l i9 i6 i12 i22 i26
-996.493 i0 i3 i7 i19 i10 i1l i9 i6 i4 il i26
-993.954 i0 i3 i7 i19 i10 i1l i9 i6 i4 i2 i26
-989.421 i0 i3 i7 i19 i10 i11 i9 i23 i22 i21 i26
-986.806 i0 i3 i7 i19 i10 i1l i9 i6 i23 i22 i26
-984.749 i0 i3 i7 i19 i10 i1l i9 i6 i4 i22 i26
-946.696 i0 i3 i7 i8 i10 i1l i9 i6 i4 i26

-944.56 i0 i3 i7 110 i11 i9 i6 i4 il i26

-942.02 i0 i3 i7 i10 i1l i9 i6 i4 i2 i26

-937.487 i0 i3 i7 i10 i1l i9 i23 i22 i21 i26

In the PP’s feasible solutions space, these columns are close compared to the PP’s optimal solution, so,
they can not improve the MP’s feasible convex hull approximation. In the dual space, cuts corresponding
to close columns are redundant for the current dual function approximation.

Thus, the addition of very close columns can be useless. The ICG needs to generate less columns,
but good ones, for improving significantly the MP’s convex hull approximation (and the dual function
approximation). For this purpose, instead of selecting columns according to the reduced cost criterion, we
interest in column’s structure criterion. We look for complementary columns (i.e. columns don’t having
joint nodes) characteristics.

It is known that the add of complementary columns (resp. orthogonal cuts) to the MP permits to
widen its convex hull (resp. the dual function) approximation [1, 9]. It is showed in [6] that this approach
is more efficient on the first iterations when it is necessary to compute quickly a good primal (or dual)
solution. On the last iterations of CG, the MP’s convex hull is well approached and it is preferable in
this case to generate columns to complete the current basis in order to obtain an optimal solution.

3.2 Diversification by resolution procedure and experimentations

Diversification procedures consist of inserting at each iteration of CG, a set of complementary columns
to the MP. We consider here the CG with Diversification by Resolution (CGDR) [6], which consists at
each iteration of CG to solve a sequence of SPPTWCC, each one providing a path. After solving the [-th
problem for a set of nodes A, the nodes S' belonging to the optimal solution obtained are removed from
N to form a set of nodes N1 = A"\ S! which will be used for the (I + 1)-th problem.

We applied this procedure on AVRPTW instances described in section 2. Diversification by resolution

U(MPZ)(XJI(D%P%U > ¢, where v(M P¥) is the MP’s value at iteration

is applied on the first iterations, when



k. The intensification is used on the other iterations. All results reported in table 3 for each randomly
generated class size are average values over 10 test instances.

Solomon’s C101_25 C'101_50 C'101 C1.2_1

instances nblt nbC GRT nD nbl nbC GRT nD nblt nbC GRT nD nblt nbC GRT nD
20%-ICG 51 153 4,37 0 127 647 73,17 0 170 2 008 15,27 0 286 10 768 438,67 0
50%-I1CG 30 201 2,87 0 61 823 32,77 0 105 2 154 9,67 0 250 11 020 197,17 0
ICG 24 246 2,17 0 55 1003 31,77 [¢] 63 2 724 5,0’ 0 163 11 460 150,9’ 0
CGDR 35 251 3,0” 3 83 956 51,8” 4 75 2 646 2,1’ 2 114 10 141 102,2’ 5
Generated G100 G120 G140 G160

instances nblt nbC GRT nD nblt nbC GRT nD nblt nbC GRT nD nblt nbC GRT nD
20%-ICG 69 6 263 10,3’ 0 99 7 864 32,3’ 0 97 10 169 43,5’ 0 72 10 409 18,0’ 0
50%-ICG 36 11 406 9,8’ 0 48 13 663 31,2’ 0 49 18 800 40,1’ 0 42 17 980 20,0 0
ICG 27 16 960 12,5’ 0 26 19 013 39,17 0 25 25 259 35,5’ [¢] 27 23 864 20,4’ 0
CGDR 40 2 589 5,2’ 22 50 2 579 17,5’ 28 55 5 370 15,4’ 37 48 1 298 6,8’ 31

nblt: global number of iterations.

nbC: number of generated columns.

GRT: global resolution time ((’) minutes and (”) seconds).
nD: number of iterations with diversification.

e = 0.001.

Table 1: Generation of complementary solutions

Table 1 shows that diversification permits to decrease the number of computed columns without
increasing considerably the number of iterations (compared to 20%_ICG and 50%_ICG). We generate with
CGDR in average 61%, 69% and 79% of columns generated by ICG, 50%_ICG and 20%_ICG procedures
respectively, this decreases MPs size and their resolution time. Diversification reduces the ICG resolution
time by 39%.

4 A reoptimization technique in CG
Consider the following problems:
(P) : {maxcx, xe€XCN'} and (P'):{maxcdz, x€ X CN"}

where ¢, ¢’ € R",n € N. Reoptimization consists of studying possibilities of an efficient resolution of (P’)
using some informations about the resolution of (P).

In the CG process, only some PP’s objective coefficients change, due to the update of MP’s dual
solutions. So, reoptimization in this case can be used. The principle is to retain some informations from
the PP’s resolution at an iteration k, to be used at iteration k + 1, for accelerating the PP’s resolution.

We denote by SJ’-“ the set of efficient labels of node j € V at iteration k of CG. The set 5]’-“ permits to
build a Pareto frontier ’Pj’-g representing a lower bound on the cost of all feasible labels at node j.

Master problem’s resolution at iteration k + 1, gives new dual variables values. Labels in Sj’? are still
feasible at this iteration but their cost change, they define a primal function representing an upper bound
on costs of labels in EJ]-“H as function of time. Then, the Pareto optimal frontier computed at iteration k
allows to define a primal function at iteration k + 1. To compute the set EJI.CH, it is enough to calculate
all labels dominating those in Ej’? .

Labels computed at iteration k + 1 belong to the space between the primal function and 73;.““7 called
treatment zones. We reduce then the space search of efficient labels, the number of labels computed and
the dominance procedure time. The smaller are the treatment zones, the smaller is the space search of
new efficient labels and more reoptimization is efficient.

It is frequently observed in a CG process, that MP’s values evolve slightly on the last iterations, this
phenomenon is called the long tail effect, so, the dual variables are also close, and the change of arcs
costs is weak. The treatment zones on these iterations can be small and reoptimization is more efficient.



We tested thi h on AVRPTW inst ICG is used until the i lity YMP)°—v(MP)FT
e teste 1S approac on mstances. 1S used unti e lnequal y U(MP)I"’

¢ is satisfied, next, the reoptimization technique is used. We call this procedure CG with Reoptimization
(GCReopt).

Solomon’s C'101-25 C101-50 C'101 C1-2_1

instances GRT nbLb TtR/TtG GRT nbLb TtR/TtG GRT nbLb TtR/TtG GRT nbLb TtR/TtG
ICG 2,17 9 112 0/24 31,77 86 073 0/55 5,0’ 384 810 0/63 150.,9’ 4262 215 0/163
GCReoptP 1,27 3 968 18/24 29,07 18 178 48/55 2,1’ 118 292 52/63 76.8’ 1148 708 114/163
Generated G100 G120 G140 G160

instances GRT nbLb TtR/TtG GRT nbLb TtR/TtG GRT nbLb TtR/TtG GRT nbLb TtR/TtG
ICG 12,5’ 446 080 0/27 39,17 5 841 413 0/26 35,5’ 454 729 0/25 20,4’ 475 701 0/27
GCReoptP 8,9’ 315 241 8/27 21,2’ 611 876 9/26 21,1’ 405 266 7/25 17,3 423 800 4/27

GRT: global resolution time ((’) minutes and (”) seconds).
nbLb: number of treated labels.

ItG: global number of iterations.

ItR: number of iterations with reoptimization.

e = 0.001.

Table 2: Reoptimization in a CG algorithm

Experimental results reported on table 2 show that in average, GCReopt decrease the number of
computed labels by 53% compared to ICG. This is due to the use at each iteration of efficient labels
computed at the previous iteration, allowing the construction of primal functions which restrict the space
search of new efficient labels. Pricing problems resolution time is then significantly decreased. The
average gain of computing time obtained on the global resolution time of the ICG algorithm is 36%. We
observe that the gain obtained by the GCReopt on the ICG global computing time is not as important
as the gain on the number of treated labels, this is due to the overcost of primal functions construction.

5 Diversification and reoptimization in a CG algorithm

In the CG algorithm we can distinguish two important phases. The first one, is the begin of the process,
where the MP is poor in informations. Many methods in literature propose techniques to enrich the MP
(start the CG with a pool of columns generated heuristically or with a good dual solution ...). We in-
terest here on using complementary solutions to provide good informations for the MP by characterizing
efficiently a good approximation of its convex hull. The second one is the end of the process, where we
frequently observe a weak evolution of MPs values. On the last iterations the dual variables values are
neighbor, so, reoptimization methods can be efficient to reduce the resolution time of the PP.

We showed that the ICG is improved by using diversification or reoptimization techniques. We aim to

study the impact of their combination on CG performances. We use diversification on the first iterations
until the inequality v(Mpz)k(;Iv ;@{P)k_l >= ¢ is satisfied and reoptimization on the other iterations. We
call this procedure Column Generation with Diversification and Reoptimization (CGDReopt). Table 3
presents a comparative study between ICG, CGDR, CGReopt and CGDReopt procedures, by experi-

mentations on the test instances described in section 2.

instance C10125 | C101.50 | C101 | C12.1 | G_100 | G120 | G_140 | G_-160
ICG 2,17 31,77 5,0’ 150,9’ 12,5’ 39,1’ 35,5’ 20,4’
CGDR 1,7 20,8 | 2,10 | 102,2 52 | 175 | 154 6,8
CGReopt 1,27 29,0” 2,17 76,8’ 8,9’ 21,2 21,17 17,3
CGDReopt 1,3” 23,57 2,00 71,6’ 4,3’ 10,6’ 15,6’ 10,4’
e = 0.001

Table 3: Combination of diversification and reoptimization in CG

The ICG procedure computing time is improved on one hand by using diversification on the first iter-
ations where the gain obtained is in average 48% and on another hand by using reoptimization on the last
iterations, this decrease the ICG resolution time by 34% in average. The gain on the global computing



time is related to the number of iterations made with diversification and reoptimization respectively.

As expected, the use of both these two methods decreases significantly the resolution time of the ICG
procedure, the average gain obtained on computing time is respectively.

For our experimentations, the compromise between the cost of treatment of the accelerating procedure
(the computation of complementary columns for CGDR and the construction of primal functions in
CGReopt) and the gain on the global resolution time (gain on the number of generated column in CGDR
and the gain on the number of treated labels for CGReopt) is better for the CGDR procedure than
CGReopt.

6 Conclusion

Diversification methods give a very interesting gain on the global number of generated columns in GC by
building a good approximation of PP feasible domain. It reduces the MP’s size and the global resolution
time. These approaches are more interesting when used on the first iterations where the PP’s convex hull
approximation is poor.

Reoptimization approaches are used successfully to improve PP’s resolution time in CG. We present
a reoptimization algorithm in CG for the resolution of AVRPTW. The principle is to use efficient labels
computed at an iteration k to construct a primal function for reducing the space search of new efficient
labels at iteration k + 1. This reduces the number of treated labels and dominance time.

We combine in this work these two alternatives in CG by applying a diversification method on the first
iterations and a reoptimization procedure on the last ones. Experimental results on AVRPTW instances
show that the gain on computing time obtained by this combination is much more important than that
obtained by the two approaches used independently.
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