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?Institute of Telecommunications, Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland

†Department of Electrical and Information Technology, Lund University
Box 118, 221 00 Lund, Sweden

Abstract

The paper addresses an optimization problem related to flow and link capacity design in resilient two-layer networks.
The considered problem assumes that each link established in the upper layer is supported by a single path in the lower
layer, and that traffic demands are protected by path diversification in the upper layer. Two mixed-integer programming for-
mulations of this problem are presented and discussed. Since direct resolving of these formulations requires pre-selection
of “good” candidate paths in the upper layer, the paper presents an alternative approach which is based on decomposing
the resolution process into two phases, resolved iteratively. The first phase subproblem is related to designing lower layer
path-flows that provide the capacities for the (logical) links of the upper layer. The second phase is designing the flow
patterns in the upper layer protected through path diversification. In this phase we take into account multiple failures of the
logical links (so called shared risk link groups) that result from single failures of the lower layer links. The effectiveness
of the proposed two-phase method is illustrated with numerical examples.
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1 Introduction
A multi-layer network requires a complex network model with a layered structure of resources, operated according to layer-
depended network protocols [6]. Resources of a layered network form a hierarchical structure with each layer constituting
a proper network in itself. The paper addresses optimization of traffic flows within a two-layer IP-over-WDM network.
In the considered network model the lower layer corresponds to a WDM network composed of the WDM cross-connects
interconnected by WDM links (called optical links, as they are realized on optical cables). The upper layer corresponds to
an IP network composed of the IP routers interconnected by IP links (called logical links), see [1]. In such an architecture,
the IP links are established by means of the lower layer WDM paths, composed of the optical links.

The paper addresses an optimization problem related to flow and link capacity design in the resilient two-layer IP-over-
WDM networks. We consider a particular version of the problem where each link established in the upper layer is supported
by a single path in the lower layer, and where the traffic demands are protected by path diversification in the upper layer.
The assumed objective is to minimize the total dimensioning cost of the optical links. Since in our model each IP link is
supported by one (unique) path in the WDM layer, the unit dimensioning cost for a given realization of a particular upper
layer link is calculated as the length of its unique supporting path—the sum of the unit capacity costs of the optical links
composing the considered path. Thus, for a given set of traffic requirements (demands) the considered problem consists in
determining: (i) a set of IP layer path flows (IP path flows), (ii) the resulting capacities of the IP links, (iii) their realizations
by means of single path flows (WDM path flows) in the WDM layer, and (iv) the resulting capacities of the optical links
for which the total dimensioning cost is minimized.

As WDM constitutes a physical layer, the WDM optical links (a WDM link can be treated as a set of optical cables)
are subject to failures. We make a typical (and realistic) assumption that during a failure exactly one of the optical links
becomes unavailable (for example, as a result of a cable cut), and all the IP links supported by paths traversing the affected
optical link become unavailable too. Therefore, a failure of a single optical link may cause unavailability of several IP
links, and this is seen, in practice, as a multiple link failure in the upper layer. In the literature such a failure model is called
shared risk resource group (see [8]).
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Suppose that the upper-layer flows assigned to a specific traffic demand can be bifurcated and diversified (recall that
the non-bifurcated flow assumption refers only to the lower layer). Diversification of the flows constitutes a means for
protecting traffic in the IP-over-WDM network against failures of the optical cables in the WDM layer. We refer to such a
protection mechanism as path diversity (see [2, 6]).

In the two-layer network model the set of lower layer nodes is typically different than the set of the upper layer nodes,
and in fact the former is a proper superset of the latter. When all the node sites comprise both WDM and IP devices, the
two-layer network design problems can in most cases (also in our case) be reduced to an equivalent one-layer optimization
problem. The reduction consists in establishing one-to-one equivalence among the IP links and WDM links (each IP link
is supported by a path composed of a single WDM link). Still, when only a subset of the sites comprise both WDM
cross-connects and IP routers, such a reduction is not feasible—this case is studied in the balance of the paper.

The paper is organized as follows. In Section 2 we formulate the considered problem as two mixed-integer programs
(MIPs). Since both formulations require identifying all possible paths in the upper layer, resolving these using general MIP
solvers is inefficient. Hence, in Section 3 we present a dedicated method based on decomposing the resolution process into
two iteratively invoked phases. The numerical results illustrating the efficiency of the method are presented and discussed
in Section 4. The paper is summarized in Section 5.

2 Problem formulation
Let V and W (with V ⊂ W) be the sets of the IP and WDM nodes, and let E and F be the sets of the upper- and lower
layer links, respectively. Then, the two network graphs are defined as G(V, E) – the upper layer graph, andH(W,F) – the
lower layer graph. Demands d ∈ D are represented by the pairs of the upper layer nodes. Each demand d ∈ D requires
demand volume (bandwidth) hd between its end nodes which is realized by means of flows assigned to the candidate paths
from set Pd; all the paths in Pd which traverse link e ∈ E are denoted by Ped (Ped ⊆ Pd). In the considered model, each
IP link is supported by one WDM path. For link e ∈ E such a unique path is selected from the set of predefined candidate
WDM paths Qe. The set Qfe (Qfe ⊆ Qe) denotes the set of all paths in Qe containing the lower layer link f ∈ F .

It is assumed that the lower layer links are subject to failures, and only one lower layer link can fail at a time. As not
necessarily all links are subject to failures, the set of all failures (referred to as failure states), denoted by S , is in fact a
subset of the set of optical links F . Hence, S ⊆ F and each failure state s ∈ S corresponds to a failure of a link f ∈ F ;
this link will be denoted by f(s).

In the considered problem the state-dependent variables xdps express the (upper layer) flow of demand d ∈ D assigned
to path p ∈ Pd in state s ∈ S . Variable xdp0 determines the maximum of xdps over all s ∈ S; these variables are used
to specify the variable ye (e ∈ E) expressing the load (capacity) of the upper layer link e ∈ E . The link flows ye, e ∈ E
specify the requirement imposed on the lower layer paths. For each upper layer link e ∈ E such a link flow is realized by
a non-bifurcated lower layer flow specified by path flows variables zeq, q ∈ Qe. Since the flow realizing link e must be
non-bifurcated, it is additionally characterized by binary variables ueq where ueq = 1 identifies the path q ∈ Qe selected to
realize flow of link ye. The capacity of each lower layer link f ∈ F is denoted by variable Yf ; the cost of realizing one unit
of capacity on link f is denoted by ξf . Then, binary variables wes, e ∈ E , called the upper layer link failure coefficients,
determine the set of the upper layer links affected by failure state s ∈ S. Finally, the upper layer path failure coefficients
are represented by binary variables rdps which determine whether the IP path p ∈ Pd is affected by failure s ∈ S (due to
unavailability of the WDM link f(s) used to realize the links of path p). The objective of the optimization problem is to
minimize the total capacity cost of the lower layer links. Its MIP formulation is as follows:

minimize
∑
f∈F ξfYf (1a)∑

p∈Pd
xdps ≥ hd d ∈ D, s ∈ S (1b)

xdps ≤ xdp0 d ∈ D, p ∈ Pd, s ∈ S (1c)
xdps ≤ (1− rdps)hd d ∈ D, p ∈ Pd, s ∈ S (1d)∑
d∈D

∑
p∈Ped

xdp0 ≤ ye e ∈ E (1e)∑
q∈Qe

zeq = ye e ∈ E (1f)∑
q∈Qe

ueq ≤ 1 e ∈ E (1g)
zeq ≤Mueq e ∈ E , q ∈ Qe (1h)∑
e∈E

∑
q∈Qfe

zeq ≤ Yf f ∈ F (1i)
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∑
q∈Qf(s)e

ueq ≤ wes e ∈ E , s ∈ S (1j)

wes ≤ rdps e ∈ E , d ∈ D, p ∈ Ped, s ∈ S. (1k)

The above formulation assumes non-negativity of all the continuous variables. The three constraints (1b)–(1d) assure that
at least hd amount of bandwidth is allocated to demand d in each state s ∈ S , according to the path diversity protection
mechanism. Constraint (1e) is a conventional capacity constraint determining the values of the IP link flows ye. Con-
straint (1f) assures that the flow ye of each IP link e ∈ E is supported by the WDM path flows which are non-bifurcated
due to constraints (1g) and (1h) (where M is a large constant). Constraint (1i) is a capacity constraint for an optical link.
Constraint (1k) makes sure that rdps = 1 when at least one link of path p ∈ Pd, d ∈ D is affected by failure s ∈ S. The
fact that link e ∈ E is affected by failure s is expressed as wes = 1, and this is assured by constraint (1j) (wes = 1 is forced
when the link which fails in state s, i.e., link f(s), is in the unique path supporting link e).

Formulation (1) is the so called link-path formulation based on path flows. It requires that the sets of candidate paths (in
both layers) are given in advance. This poses a severe problem when we wish to take into account all possible paths because
the number of paths in a graph grows exponentially with the number of nodes. To partially alleviate this issue we notice
that formulation (1) can be transformed to a node-link formulation for the lower layer. Such a node-link formulation takes
(implicitly) all possible paths into account so that predefinition of the candidate paths for the lower layer is not necessary.

Let f ∈ δ+(v) and f ∈ δ−(v) be the sets of links outgoing from, and incoming to node v ∈ W , and let ∆ve be a constant
equal to 1 if v is the starting node of e, to -1 if v is terminating node of e (and 0, otherwise). Let zfe (f ∈ F , e ∈ E) be
a variable specifying the flow realizing upper layer link e on the lower layer link f . Besides, we define binary variables
ufe which are called realizations of the upper layer links and determine whether link f is traversed by the path selected to
establish link e. The modified formulation is as follows:

minimize
∑
f∈F ξfYf (2a)

(1b) - (1e), (1k)∑
f∈δ+(v)zfe −

∑
f∈δ−(v)zfe = ∆veye v ∈ V, e ∈ E (2b)∑

f∈δ+(v)ufe ≤ 1 v ∈ V, e ∈ E (2c)
zfe ≤Mufe e ∈ E , f ∈ F (2d)∑
e∈Ezfe ≤ Yf f ∈ F (2e)

uf(s)e = wes e ∈ E , s ∈ S. (2f)

Constraint (2b) expresses the flow conservation law characteristic for the node-link notation. The non-bifurcated routing of
the link flows ye in the lower layer is assured by binary variables ufe and constraint (2c). Due to (2d) only the flows of the
selected links can be positive (M is in this case the maximal capacity of an IP link). Finally, (2e) is the capacity constraint
for the lower layer links, and (2f) is a counterpart of (1j).

As demonstrated in [9], the network optimization problems related to the path diversity protection assuming multiple-
link failures are NP-hard. Therefore, as discussed in [4], they cannot be formulated as linear programs using the compact
node-link notation, and must use the non-compact link-path notation, as in formulation (1).

3 Resolution approach
MIP formulations (1) and (2) represent an NP-hard problem. Therefore, it is not surprising that available MIP opti-
mization solvers are able to resolve them only for small network instances. Hence, we have developed a method which
decomposes the resolution process into two subsequently invoked phases. The proposed method allows to identify the set
of the necessary candidate paths in the upper layer using the column generation technique (see [6]), and to design the IP
links realizations by resolving an appropriate MIP of the size significantly smaller than the size of (1).

The proposed approach assumes that realizations (i.e., paths in the lower layer) of the upper layer links are known
during the first phase. The implication of this assumption is two-fold. First, it means that the values of variables rdps are
fixed and given, and second, that the unit costs of the upper layer links are also fixed and given. Hence, we can solve the
upper layer optimization problem through the path generation technique described in [5]. The resulting problem, denoted
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by M, is as follows.

minimize
∑
e∈E ζeye (3a)∑

p∈Pd
rdpsxdp0 ≥ hd d ∈ D, s ∈ S (3b)∑

d∈D
∑
p∈Ped

xdp0 = ye e ∈ E , (3c)

where ζe is the unit capacity cost of the upper layer link e ∈ E resulting from the assumed realization of e in the lower
layer: ζe is calculated as the sum of ξf along the path selected to realize link e. Problem M is referred to as the master
problem in the context of path generation. Below we describe the path generation algorithm for (for details see [5]).

Consider the master problem with fixed sets of candidate paths Pd, d ∈ D. Let (λsd)
∗ (d ∈ D, s ∈ S) be optimal

dual variables corresponding to constraints (3b), and let Λ∗d =
∑
s∈S(λsd)

∗ (d ∈ D). At each iteration we are interested in
finding, for each demand d ∈ D, a shortest path p with respect to the generalized length 〈p〉 =

∑
e∈p ξe +

∑
s∈S̄p

(λsd)
∗

(where S̄p is the set of all states s ∈ S in which path p fails). If this length is smaller than Λ∗d then the path is added to Pd
since we can expect that this will improve the current optimal solution of the master problem. The iterations stop when for
no demand such a path exists—then the sets of candidate paths contain all necessary paths that assure the optimality of the
master problem with respect to all possible paths. While the pricing problem stated above (i.e., shortest path generation)
is solvable in polynomial time (using, for example, the Dijkstra algorithm) in the case of single-link failures, it becomes
difficult in the case of multiple-link failures. Then, however, the pricing problem can be approached in a way described
in [7]. The basic idea is to compute the dual length 〈p〉 =

∑
e∈p ξe +

∑
s∈S̄p

(λsd)
∗ of each path p. The efficiency of the

procedure is improved by skipping the paths for which some domination rules as proposed in [7] can be applied.. The
set of all the non-dominated paths can be generated by means of a label-setting algorithm for shortest-path problems with
resource constraints (SPPRC) [3], where the resources are the failure states.

As an extension of the SPPRC algorithm, we have also introduced path length limitation—an important contribution
to the reduction of the size of the set of non-dominated paths (introduced for another problem in [2]). The extension
is based on the observation that excessively long paths are useless as they cannot improve the current solution, or the
solutions they represent are known to be worse than some already known solutions. For example, a simple path length
restriction may be expressed as follows:

∑
e∈p ξe < Λ∗d. Also, the knowledge about some path p′ representing a feasible

solution can help to tighten the path length restriction. In such a case we are only interested in finding a path p satisfying∑
e∈p ξe <

∑
e∈p′ ξe +

∑
s∈S̄p′

(λsd)
∗. Applying path length limitation results in significant reduction of the pricing time.

The proposed two-phase method for resolving the considered problem is given as Algorithm 1.

Algorithm 1 The decomposed iterative procedure

Step 1. For each upper layer link e ∈ E find its cheapest realization, i.e., a lower layer path cheapest with respect to the
lower layer unit link costs ξf . Denote the resulting upper layer link failure coefficient vector by w0, and calculate
the upper link unit capacity costs ζe, e ∈ E .

Step 2. Resolve problem M using path generation for the fixed vector w = w0, and denote the obtained upper link load
vector by y0.

Step 3. Resolve problem R for the fixed vector y = y0, and denote the resulting upper layer link failure coefficient vector
by w0. If the the cost

∑
e∈Eye(

∑
f∈F ξfufe) has not decreased, stop. Otherwise, calculate the upper link unit

capacity costs ζe, e ∈ E and go to Step 2.

The subproblem of the second phase (Step 3 of Algorithm 3), denoted by R, is an optimization problem of identifying
the realization of the given upper layer links, i.e., the appropriate lower layer paths. Derivation of problem R is a bit
complicated. Let us start with a simplified version of problem R used in Step 1. It is specified by constraints (2b) (with
ye ≡ 1), (2c), (2f), and by the following objective function:

minimize
∑
e∈E

∑
f∈Fξfufe (4)

(of course this problem can be solved by the shortest-path algorithm, for example by the Dijkstra algorithm). The resulting
vector of the upper link realizations u = (ufe : f ∈ F , e ∈ E) defines the unit link costs ζe, e ∈ E and the link
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failure coefficients w = (wes : e ∈ E , s ∈ S) which in turn determine new values of the path failure coefficients
r = (rdps : d ∈ D, p ∈ Pd, s ∈ S) for the next iteration of the first phase (Step 2) of the method, i.e., for problem (3).

Note that the above version of problem R does not depend on the output of problem M and therefore will stop not lead
to any iterations. Because of that we redefine problem R.

Now, observe that problem M can equivalently be formulated as a system of constraints (1b)–(1e) with objective
function (3a). Regarding the dual associated with this formulation, let λ = (λdps : d ∈ D, p ∈ Pd, s ∈ S),
β = (βdps : d ∈ D, p ∈ Pd, s ∈ S), γ = (γdps : d ∈ D, p ∈ Pd, s ∈ S), and π = (πe : e ∈ E) be
the vectors of Lagrangean multipliers associated with constraints (1b), (1c), (1d), and (1e), respectively. Using theses
multipliers we write down the dual:

maximize
∑
d∈D

∑
s∈Shdλds −

∑
d∈D

∑
p∈Pd

∑
s∈S(1− r∗dps)hdβdps (5a)∑

s∈Sαdps ≤
∑
e∈Ep

πe d ∈ D, p ∈ Pd (5b)
λds ≤ αdps + βdps d ∈ D, p ∈ Pd, s ∈ S (5c)
πe ≤ ξe e ∈ E . (5d)

Let (λ0,α0,β0,π0) denote the optimal solution of (5), and consider path p and state s for which r∗dps = 1 and β0
dps > 0.

Suppose that the value of r∗dps is forced to be zero, and (5) is re-optimized. It can be shown that new value of λdps can be
smaller than λ0

dps because corresponding βdps is now minimized due to its negative coefficient in (5a). Thus, setting rdps
to zero in the next step of the procedure can potentially decrease the optimal value of the primal objective function, i.e., the
dimensioning cost.

Similarly, setting r∗dps to zero for path p and state s for which α0
dps > 0 can also lead to decreasing the optimal

value of objective function (5a). Due to these observations we consider an alternative objective function of R which takes
into account the output of M. Let Ia and Ib be the sets of triplets (d, p, s) for which α0

dps > 0 and β0
dps > 0, i.e.,

Ia = {(d, p, s) : α0
dps > 0} and Ib = {(d, p, s) : β0

dps > 0}. The proposed objective function reads:

maximize
∑

(d,p,s)∈Ib
β0
dps(1− rdps) +

∑
(d,p,s)∈Ia

α0
dps(1− rdps). (6)

Clearly, when (6) is used, formulation of R must also involve an appropriate set of constraints (1k) related to triples (d, p, s)
contained in Ia ∪ Ib. On the other hand, the subsequent solutions visited by the procedure could, in practice, be very
distant. Thus, it can be advantageous to use an objective function which combines both: (4) and (6).

minimize ε(
∑
e∈E

∑
f∈Fξfufe) + (1− ε)(

∑
(d,p,s)∈Ib

β0
dpsrdps +

∑
(d,p,s)∈Ia

α0
dpsrdps), (7)

where 0 ≤ ε ≤ 1 is an optimization parameter. The first component of (7) minimizes the total length, with respect to ξf , of
all the selected paths. It is aimed at forbidding usage of relatively long paths even if α0 and β0 associated with these paths
are promising.

Notice that for given realization of the upper layer links problem M can be infeasible due to empty set of allowable
candidate paths. Using specific inequalities we can exclude the infeasible link realizations from the solution space of
problem R without solving problem M. The basic form of these inequalities refers to a cut-set in graph H(W,F). Let
δ(W ′) be a cut-set associated with a subset of nodesW ′ ⊆ W .∑

e∈δ(W′)wes ≥ 1 s ∈ S. (8)

Inequality (8) assures that at least one IP link must be available for a given cut-set δ(W ′) in H(W,F). In particular, (8) is
valid for the set of links outgoing from one specific node, i.e.,W ′ = δ+(v). Because the number of potential cut sets grows
exponentially with the number of nodes, we assume that only specific cut sets, related to one, two or three nodes could be
examined in the practical implementations.

Even if appropriate inequalities (8) are introduced to the formulation of problem R, it may still appear that the feasible
solution space of problem M is empty (inequality (8) states necessary but not sufficient condition for feasibility of realiza-
tions) for a specific realization of the IP links. In such a case we exclude the current solution from the feasible solution
space of problem R using simple inequality. Let U0 and U1 be the sets of (e, f ) pairs for which uef ’s are equal to zero and
one in the excluded realization, respectively. The discussed inequality reads:∑

(e,f)∈U0
uef +

∑
(e,f)∈U1

(1− uef ) ≥ 1. (9)

Appropriate inequality (9) is introduced into the formulation of problem R, each time problem M is infeasible, and a cut-set
which assures feasibility of M cannot be identified. This inequality simply forbids using the same configuration u0 of lower
layer paths again.
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Figure 1: Two phase algorithm: improvement of the objective function (1a) for pdh, ε = 0.9, and κ = 1.0.
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4 Numerical results
In our computational experiments we assessed the correctness of the introduced two-phase method, evaluated the influence
of parameter ε in (7) on the algorithm efficiency, and checked what is the rate of improvement of the generated solutions
in the consecutive iterations. To do this we implemented Algorithm 1 using optimization package CPLEX 10.0 to resolve
problems R and M. The computations were conducted on a PC equipped with P4 Quad Core processor and 4 GB memory.

In the experiments we used two network instances from Survivable Network Design Library (SNDlib, see http://sndlib.
zib.de): pdh (11 nodes, 34 links, 24 demands) and newyork (16 nodes, 49 links, 240 demands). The network topologies
defined the lower layer graph. The sets of the IP nodes were defined as subsets of the WDM nodes. Whether a particular
WDM node was enriched with the IP functionality (and in effect became also an upper layer node) was decided randomly
with probability κ. In the experiments, parameter κ took the values 1.0, 0.8, and 0.5. In the first case all the nodes of the
lower layer were also the the nodes of the upper layer. For κ = 0.8, 80% of the lower layer nodes were also the nodes of
the upper layer, and so on. The topologies of the upper layer were in all cases fully connected. The sets of the demands
contained all the demands related to the selected IP nodes.

The major goal of the experiments was to investigate the influence of the value of parameter ε on the cost of the obtained
solutions. For this purpose we run Algorithm 1 using different values of this parameter. In the computations we considered
all single WDM link failures. The time limit was set to 2 hours. In tables 1 and 2 we present the values of the objective
function (1a) of the best solution found within the assumed time limit. Column LB defines a lower bound on the objective
function. It was computed as the optimal solution of the single-layer path diversity design problem (taking into account all
single-link failures) with the network topology and the unit capacity link costs of the lower layer, and the demand matrix
from the upper layer.

Table 1: Two phase algorithm: objective values for different values of ε and κ for the pdh network.
objective

κ LB ε ∈ 〈0.0− 0.8〉 ε = 0.85 ε = 0.88 ε = 0.9 ε = 0.92 ε = 0.95 ε = 1.0
1.0 93217.6 98622.7 93323.8 93323.8 93217.6 93389.7 93389.7 93632.4
0.8 79521.3 91118 88553.3 88661.7 88637.9 88637.9 88652.3 88652.3
0.5 38804.8 57378.7 57378.7 56550.8 56121.2 56121.2 56121.2 56121.2

Table 2: Two phase algorithm: objective values for different values of ε and κ for the newyork network.
objective

κ LB ε ∈ 〈0.0− 0.9〉 ε = 0.92 ε = 0.95 ε = 1.0
1.0 24191.4 26012.9 25533.5 25758.5 25474.6
0.8 18457 21981.8 21501.6 21211.8 21379
0.5 17673.3 21197.1 21197.1 20400.7 20426.2

According to the results presented in tables 1 and 2 we may conclude that parameter ε in the objective function (7) (used
when resolving the lower layer problem R) strongly influences the efficiency of the two-phase algorithm. It appeared that
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the approach based on weighting both components of (7) is more efficient in terms of the resulting cost function that the
dual based indicators or the shortest path lengths when used stand-alone (ε = 1 or ε = 0). Analyzing Figure 1, illustrating
the algorithm convergence, we conclude that for a proper value of ε the algorithm quickly finds a good quality solution in
several tens of iterations, which is only slightly improved in the further iterations.

5 Concluding remarks
In the paper we have investigated an optimization problem related to designing a resilient two-layer IP-over-WDM network.
In the considered problem the capacities of the WDM links must be large enough to accommodate flows associated with
selected realizations of the IP links. Since the WDM links are subject to failures and the network is supposed to be
robust to failures, we have assumed that demand flows are protected through path diversification. The related optimization
problem has been formulated in terms of a mixed-integer programs (in two versions). Because the problem is in general
NP-hard, the MIP optimization solvers, are capable to solve it only for small network instances. Thus, in the paper we
have proposed a dedicated method for resolving it. The method is based on iterative resolving of two subproblems, each
related to optimizing flows in a distinct network layer. In our numerical experiments we have tested the effectiveness of
the method for different settings of weighting parameter ε in objective function (7). The experiments revealed that neither
dual based indicators, nor shortest path lengths when used stand-alone could provide the solutions of the best quality. As
the experiments have shown, the method is capable of providing good-quality solutions in a moderate time.
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[9] A. Tomaszewski, M. Pióro, and M. Żotkiewicz. On the complexity of resilient network design. Networks, 2009. To
appear.

7


