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Abstract

We analyze here the behaviour of the Proximal Decomposition algorithm with global and adaptive
scaling. The algorithm is well adapted to solve convex multicommodity flow problems that arise in
Network Routing problems with QoS requirements. Numerical tests performed on quadratic models
confirm that adaptive global scaling subsumes former scaling strategies with one or many parameters.
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1 Introduction

Let G = (V,E) be a directed graph such that V is the set of nodes and |V | = n, and E is the set of
arcs and |E| = m. Each arc is assigned a capacity Ce, e ∈ E, and T is a traffic requirement matrix
such that, for each pair (i, j) of nodes, tij representing the amount of traffic required from node i to
node j. Each pair of nodes such that tij > 0 will be referred to as a commodity and the index k will
be associated with a commodity, i.e. a pair of origin and destination nodes (respectively ok and dk),
and a demand of traffic tk = tokdk

. The flow residual on a given arc e ∈ E will be denoted by x0
e and

x0
e = ce−

∑
k xk

e where xk
e is the amount of commodity k routed on arc e. In the arc-node formulation of the

multicommodity flow problem, we will need the node-arc incidence matrix A (where aie = +1, aje = −1
if e = (i, j) ∈ E) to express the individual flow constraints as Fk = {xk ∈ IRm | Axk = bk, xk ≥ 0} (where

bk
i =

 +tk if i = ok

−tk if i = dk

0 else
).

We will consider the following multicommodity flow model with convex increasing costs on the arcs
(without topology constraints) :

(MINDEL) min
∑
e∈E

φe(x0
e)

s.t.

 x0
e +

∑
k xk

e = ce e ∈ E
xk ∈ Fk, k = 1, . . . ,K
0 ≤ x0 ≤ ce e ∈ E

In practice, the congestion function can be either linear, or convex quadratic. In the classical Kleinrock’s
model, it approximates the average delay on the arc and φe(x0

e) = ce−x0
e

x0
e

, which is a smooth strictly
convex and decreasing function defined on (0, ce].
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Various methods have been proposed and tested in the literature to solve (MINDEL), from the Flow
Deviation method to the Analytic Center Cutting-plane method, see Ouorou et al [OMV00] for a survey
and numerical comparisons. Recent interesting contributions have been proposed by Ouorou in [Ouo07]
and [LOP08]. We analyze here a generalized version of the Proximal Decomposition method [MOD95]
with a global scaling, i.e. different scaling parameters in each subproblem. Numerical comparisons with
the best known algorithms are performed on academic quadratic test problems and real-life multicom-
modity flow problems.

2 The Proximal Decomposition method for convex cost multi-
commodity flow problems

The Proximal decomposition method is an adaptation of the Alternating Direction Method of Multipliers
originally proposed by [GM75] and further developed by Mahey et al [MOD95]. It can be viewed as a
separable Augmented Lagrangian method and it is best understood when applied to the following generic
separable convex program with coupling constraints :

Minimize Φ(x) =
∑p

i=1 φi(xi)
s.t.

∑p
i=1 Aixi = b

xi ∈ Si, i = 1, . . . , p

where the variables are partitioned in p blocks, all functions being convex on the compact convex sets
Si; suppose too that there exist xi ∈ Si, i = 1, . . . , p such that

∑p
i=1 Aixi = b so that the problem has an

optimal solution with value v∗.
The key idea resumes in adding primal allocation variables yi, i = 1, . . . , p to get the equivalent

formulation (where
∑

i bi = b are given initial allocations) :

v∗ = min
x,y

{Φ(x) |Aixi + yi = bi, xi ∈ Si, i = 1, . . . , p,
∑

i

yi = 0}

which is itself equivalent for any λ > 0 to :

v∗ = min
x,y

{Φ(x) +
λ

2

∑
i

‖Aixi + yi − bi‖2 |Aixi + yi = bi, xi ∈ Si, i = 1, . . . , p,
∑

i

yi = 0}

The Lagrangian dual with respect to the local constraints in (xi, yi) will induce the following subproblem :

v(u1, . . . , up) = min
x∈S,y∈Y

{Φ(x) +
λ

2

∑
i

‖Aixi + yi − bi‖2 +
∑

i

〈ui, Aixi + yi − bi〉}

where Y = {(y1, . . . , yp)|
∑

i yi = 0} is the primal subspace. To decompose that subproblem, the trick is
to apply some kind of Gauss-Seidel scheme to alternate minimizations with respect to x and y. Indeed,
the minimization w.r.t. y can be solved explicitly.

Resuming the steps, we solve first the inner subproblem with respect to x for a fixed ut and fixed allo-
cations yt−1 ∈ Y ; observe that the subproblem decomposes in p subproblems, where the i-th subproblem
is :

Minimizexi∈Si [φi(xi) +
λ

2
‖Aixi + yt−1

i − bi‖2 + 〈ut
i, Aixi + yt−1

i − bi〉]

Let xt be the optimal solution; we must then solve the primal allocation subproblem, i.e. the following
quadratic program with linear equality constraints :

inf
y∈Y

∑
i

[
1
2
‖Aix

t
i + yi − bi‖2 + 〈ut, Aix

t
i + yi − bi〉]
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yt is an optimal solution of that quadratic program if and only if there exists vt ∈ IRm such that :

ut + Aix
t
i + yt

i − bi = vt,
∑

i

yt
i = 0

We can solve easily the linear system in IRm to get vt = ut + 1
prt where rt =

∑
i(Aix

t
i − bi) is the

residual of the coupling constraint, and substitute above to get yt. Finally, the update of ut will be
simply ut+1 = vt.

Observe that, even if the method may be interpreted as a separable Augmented Lagrangian technique,
the parameter λ is a scaling parameter and not a penalty one, which must be estimated to drive the two
primal and dual sequences at the same pace towards the optimal fixed point.

When applied to the convex multicommodity flow problem (MINDEL), the coupling constraints are
the multicommodity constraints to aim at decomposing into K single commodity flow problems, plus m
congestion subproblems on each arc. It is shown in [OMV00] how quadratic flow problems can be avoided
by including the K individual demand satisfaction constraints∑

p

xkp = dk, k = 1, . . . ,K (1)

in the coupling constraints to yield a completely distributed decomposition algorithm. Moreover, the
arc-path formulation is used to induce the generation of supporting paths by successive shortest-paths
calculations.

3 Global scaling of the proximal decomposition method

Global scaling is a generalization of the Proximal Decomposition algorithm where multiple scaling pa-
rameters may be used in each coupling constraint and in each subproblem.

3.1 Scaled allocations

Instead of allocating yi to each subsystem, we can introduce positive definite matrices Mi different from
each other for every i and force the scaled allocations zi = Mi(bi − Aixi). The concatenated scaled
allocation vector z has now to live in a subspace depending on the Mi:

AM = {z = (z1, . . . , zp) ∈ (IRm)p |
p∑

i=1

M−1
i zi = 0} (2)

and we get a new equivalent formulation of the problem :
Minimize

p∑
i=1

fi(xi)

∀i = 1, . . . , p zi = Mi(bi −Aixi)
z ∈ AM

(3)

3.2 Algorithm and convergence

Following the same approach as in the original Proximal Decomposition algorithm, we can write the
augmented lagrangian function (of parameter λ = 1) obtained by associating a multiplier wi to the scaled
allocation constraint zi = Mi(bi −Aixi):

LM (x, z;w) =
p∑

i=1

Li,Mi
(xi, zi;wi) (4)
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with:
Li,Mi(xi, zi;wi) = fi(xi)− 〈wi,Mi(bi −Aixi)− zi〉+

1
2
‖Mi(bi −Aixi)− zi‖2 (5)

The minimization in x still consists in solving independent subproblems:

min
xi

Li,Mi(xi, z
k
i ;wk

i ) (6)

To project on AM we use the fact that AM = ker(N) and A⊥M = Im(N>) with:

N =
(
M−1

1 | . . . |M−1
p

)
Consequently, the projectors onto AM and A⊥M respectively are:

PAM
= I −N>(NN>)−1N (7)

PA⊥
M

= N>(NN>)−1N (8)

The inner matrix (N>N)−1 is given by (
∑p

i=1 M−1
i M−>

i )−1 so we can compute the projection v of a
vector ṽ by the following procedure:

r =
p∑

i=1

M−1
i ṽi (9a)

∀i vi = M−T
i (

p∑
i′=1

M−1
i′ M−>

i′ )−1r (9b)

v is the projection of ṽ onto A⊥M and (v − ṽ) is the projection onto AM .
Convergence of the new algorithm with global scaling has been analyzed in [LM07].

Proposition 1 If f is convex proper l.s.c, then the sequence {(zk, wk)}k converges to some (z, w) ∈
Z∗ ×W ∗.

Proposition 2 If each Ai is full-rank, or if the level-sets of f are bounded then the sequence {xk}k

converges to x , optimal solution.

In practical situations, we need to introduce an adaptive strategy to update the scaling matrices Mi

in order to accelerate convergence. It is shown in [LM07] that the global convergence results are not
weakened by using variable scaling with very slight hypotheses. Moreover, the choice of a good strategy
is induced by the study of the quadratic case where the authors showed that the optimal choice of the
global scaling matrix is exactly the gradient of the primal-dual operator. Thus, an empirical strategy to
update the scaling matrices in the general case is to set Mk+1

i = (1− αk)Mk
i + αkDk

i where 0 < αk < 1
is a relaxation factor and Dk

i is a diagonal positive definite matrix with the following components :

Dk
i,j =

(ũk+1
i )j − (ũk

i )j

(ỹk+1
i )j − (ỹk

i )j

where ui = MT
i wi, yi = Mi(bi − Aixi) (omitting the iteration indexes) and where (ũ, ỹ) means the dual

and primal allocations just before the projection operation in the algorithm.

4 Numerical study

We present numerical experiments on quadratic examples where each block function f(xi) = 1
2 〈xi, Qxi〉+i, xi〉

is strongly convex with positive definite Hessian matrix for different numbers of blocks (parameter p) and
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different numbers of coupling constraints (parameter m). Coefficients of bi and ci were drawn log-
uniformly in [−100,−0.01] ∪ [0.01, 100] and the matrices Qi were built by generating matrices Pi and
vectors pi, with coefficients ranging respectively log-uniformly in [−10,−0.1] ∪ [0.1, 10] and [0.1, 1], by
setting Qi = PT

i Pi + diag(pi).
We stopped the algorithm when ‖ỹk+1 − yk‖2 + ‖ũk+1 − uk‖2 was lower than p.10−5 or when the

number of iterations exceeded 5000.
We used D0 = λ0I as a starting value, with λ0 ranging in [10−4, 100]. We always chose αk =

(k + 1)−10/9 for the relaxation strategy. The updating strategy implemented is the one described above
with 3 variants :

• Single : Single parameter update;

• Subproblem : Different parameter update in each subproblem (Global scaling);

• Component : Componentwise parameter update (Multidimensional scaling).

Column ’none’ means that no adaptive scaling is used (single parameter with a fixed value equal to one).

Updating rules
p m none Single Subproblem Component
2 5 45 64 63 55

10 130 123 145 146
20 71 72 72 82

5 5 53 52 57 64
10 69 72 69 67
20 69 71 72 119

10 5 155 139 130 78
10 94 98 86 84
20 128 108 119 133

20 5 66 63 70 69
10 75 74 98 96
20 100 100 96 141

Table 1: Best number of iterations obtained for λ0 ∈ [10−4, 100]

We have reported in Table 1 the minimum number of iterations obtained and we can observe that the
best case is comparable whenever we use an updating strategy or not. However, the need to choose a good
initial value disappears. Table 2 show the standard deviation of the number of iteration with respect to
the initial value λ0. Observe that we have skipped all runs which terminated with the maximum iteration
count (some appear in column ’none’).

We can conclude from these preliminary testbeds that Global Scaling is always better than single
scaling but with a rather limited impact. On the other hand, multidimensional scaling is less efficient
for these quadratic models. The different graphics on Figure 1 show clearly how efficient is the updating
strategy compared with fixed parameter strategies, only superior with the optimal value of the parameter.
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p = 20, m = 10.
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