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Boulevard du Triomphe, 1050, Brussels, Belgium

¦IAG - Louvain School of Management and CORE, Université Catholique de Louvain
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Abstract

The desire for configuring well-managed OSPF routes to handle today’s communication needs with
larger networks and changing service requirements has opened the way to use traffic engineering tools
with OSPF protocol. Moreover, anticipating possible shifts in expected traffic demands while using
network resources efficiently has started to gain more attention. We consider these two crucial issues
and study a weight-managed OSPF routing problem for polyhedral demands. Our motivation is to
optimize the link weight metric such that the minimum cost routing uses shortest paths with Equal
Cost Multi-Path (ECMP) splitting, and the routing decisions are robust to possible fluctuations in
demands. We provide an algorithmic approach with two variations to tackle the problem. We present
several test results and discuss whether we could make our weight-managed OSPF comparable to
unconstrained routing.
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1 Introduction

OSPF is an intra-domain routing protocol where traffic between routers are routed on shortest paths,
which are uniquely determined by the link metric. Fixing link weights a priori gives no chance to traffic
engineering with OSPF. Consequently, following Fortz and Thorup [4, 5], determining the link metric so
as to optimize some design criteria like link utilization or routing cost has been the focus of the most
recent research on OSPF routing [1, 6, 8, 9].

For a given network, the traditional routing problem deals with selecting paths of an arbitrary struc-
ture to route a ‘given’ set of demands. However, we consider polyhedral demands and discuss weight-
managed OSPF routing, where the optimal routing is oblivious since it is determined irrespective of a
specific demand matrix. We also apply the ECMP rule and hence for each node j on a shortest path
between a source and sink pair, we use all shortest paths from j to the sink node such that each path
carries an equal fraction of the corresponding demand passing through j. The current work offers new
extensions in several dimensions. Firstly, Ben-Ameur and Kerivin [2] use polyhedral demands for the
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general routing problem with no restriction on the path structure or how the flow is split among multiple
paths. But, we study OSPF routing with ECMP for polyhedral demands. Mulyana and Killat [8] consider
a rather restricted demand polyhedron where there can only be outbound or inbound constraints, but not
both. However, we consider the general case to handle any demand polyhedron. Moreover, we provide an
alternative approach to Altın et al. [1], where they use a quotient min-max regret performance measure
based on link utilization and employ pure mathematical programming tools. In this work, we use the cost
function of Fortz and Thorup [4] and extend their tabu search algorithm to handle polyhedral demands.

Let G = (V,A, c) be a capacitated backbone graph with node set V , directed arc set A, and arc
capacity vector c > 0. Let Q be the nonempty set of commodities. A traffic matrix (TM ) d ∈ <|Q| keeps
the demand information for each commodity in Q. We do not assume that the link weights or the demand
matrix d are known a priori. We rather want to determine a link metric that would yield a shortest paths
configuration, which is able to handle ‘applicable’ changes in demand estimates in the least costly and
most fair way. We characterize such possible changes with a polyhedral set D = {d ∈ <|Q| : Ad ≤ α}
and the routing cost (φij) on each arc (i, j) ∈ A is an increasing piecewise linear convex function of its
utilization rate lij

cij
where lij is the total traffic load on (i, j) ∈ A ([4, 5]). Basically, for the break point

z ∈ Z of the cost function, if lij

cij
∈ [ρz, ρz), then φij = uzlij − vzcij where uz and vz are the coefficients

of the corresponding segment. The rest of the paper is organized as follows. We discuss our tabu search
based algorithm in Section 2 and continue with some test results in Section 3. We conclude the paper
with a summary of our study in Section 4.

2 A heuristic approach to oblivious OSPF routing

We use an algorithmic approach to tackle the OSPF routing problem for polyhedral demands, which has
two main steps, namely the TM enumeration and weight optimization. For a given routing, the motivation
for TM generation is to enumerate the extreme points of D which correspond to the ‘most challenging’
traffic demands in terms of either the arc utilization or the routing cost. Since D is a polyhedral set, the
algorithm will terminate after a finite number of iterations. We show two different strategies based on
Cost Maximization (CM ) in Algorithm 1 and Load Maximization (LM ) in Algorithm 2. In CM we search
for a feasible TM that would increase the average routing cost for the current best OSPF routing scheme.
On the other hand in LM, we search for a TM, which makes some arc of the network more congested.
Hence, the main difference between CM and LM is the domain of the challenge. CM generates a demand
matrix d∗ that puts the network in a worse situation as a whole for a given routing configuration on the
basis of the total routing cost. On the contrary, in LM, the new TM is at least ‘locally’ challenging,
since we consider the worst case for each arc individually. In both strategies, we enumerate at most one
TM at each iteration where we use hashing functions to avoid generating multiple copies of the same
TM. However, we can modify Algorithm 2 easily to generate multiple TM s. Finally, even though we put
emphasis either on the congestion rate or routing cost in these two approaches, this does not mean that
we focus on just one dimension and ignore the other since our routing cost is a function of utilization
rates. We may also use several hybrid strategies by incorporating the two measures explicitly in the
decision process. But our preliminary tests show that we do not gain any significant benefit by doing so.

On the other hand, we use IGP-WO of TOTEM ([7]), for weight optimization. IGP-WO uses tabu
search based heuristics to find an integer link weight setting and hence an OSPF routing scheme that
avoids congestion by minimizing the cost function

∑
(i,j)∈A φij . It handles multiple TM s by minimizing

the sum of the cost functions over the set of TM s enumerated so far at each iteration. Moreover, each
time the algorithm performs a tabu search, it starts with the optimal weight metric of the most recent
iteration. This is useful to reduce the time spent for re-optimizing the weight metric in the TABU stage.

2



Algorithm 1 Strategy 1 with Cost Maximization - CM
Require: directed graph G = (V,A, c), traffic polytope D, routing cost function Φ;
Ensure: minimum cost OSPF routing f∗ and metric ω∗ for (G, D,Φ);

INITIALIZE:
Find an initial feasible TM d0 ∈ D;
drec ← d0; // drec : the most recently enumerated TM;
D̃ ← d0; // D̃ : current set of TMs enumerated so far;
NewTM ← TRUE, cnt = 0;

MAIN:
while (cnt ≤ cnt−limit) and (NewTM = TRUE) do

TABU: Find an optimized oblivious OSPF routing g∗ for D̃ and the associated metric ω∗T ;
Get ΦD̃ : the average routing cost for D̃;
NewTM = FALSE;
GENERATE TM: Determine the most costly TM dnew for g∗ with the routing cost

∑
a∈A φ∗a;

if
∑

a∈A φ∗a > ΦD̃ and dnew /∈ D̃ then
D̃ ← dnew, NewTM = TRUE, cnt ← cnt + 1;

f∗ ← g∗, ω∗ ← ω∗T ;
CHALLENGE:

Find the challenge TM dmax = argmaxd∈D

∑
(s,t)∈Q dst;

Get Φ∗dmax and U∗
dmax// the routing cost and congestion rate for dmax with f∗;

Algorithm 2 Strategy 2 with Arc Load Maximization - LM
Require: directed graph G = (V,A, c), traffic polytope D, routing cost function Φ;
Ensure: minimum cost OSPF routing f∗ and metric ω∗ for (G, D,Φ);

INITIALIZE // As in Algorithm 1
MAIN:
while (cnt ≤ cnt−limit) and (NewTM = TRUE) do

TABU: Find an optimized oblivious OSPF routing g∗ for D̃ and the associated metric ω∗T ;
Umax = maximum link utilization for drec;
NewTM = FALSE, a = 0 // start with the first arc of G;
while (a < |A|) and (NewTM = FALSE) do

GENERATE TM: dnew = argmaxd∈D(g∗ad); // dnew : worst case TM for a with routing g∗;
if (g∗adnew > ca) or ( g∗adnew

ca
> Umax) then

if dnew /∈ D̃ then
drec = dnew, D̃ ← drec, NewTM = TRUE, cnt ← cnt + 1;

if NewTM = FALSE then
a ← a + 1;

f∗ ← g∗, ω∗ ← ω∗T ;
CHALLENGE //As in Algorithm 1
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3 Computational experiments

3.1 Hose Model

We consider the hose model ([3]), where each node is assigned an outgoing and incoming traffic bandwidth
capacity. Then for G = (V, A, c), we have Dhose = {d ≥ 0 :

∑
t∈W\{s} dst ≤ b+

s ;
∑

t∈W\{s} dts ≤ b−s ∀s ∈
W} where W ⊆ V is the set of nodes called terminals who want to exchange traffic with the rest of the
nodes in W , whereas b+

s and b−s are the outflow and inflow capacities of terminal s, respectively.

3.2 Experimental Results

In this section, we provide test results for CM and LM under the hose model. We perform our tests on
bhvac, pacbell, eon, metro, and arpanet from the IEEE literature as well as exodus, abovenet, vnsl, and
telstra from the Rocketfuel project [10].

We implement the algorithms in C and use Cplex 11.0 to solve the maximization problems in CM and
LM. We choose cnt−limit as 50. For CM, we had to reduce cnt−limit to 5 and 10 in eon and arpanet to
avoid excessive solution times. We show our results in Table 1 and Table 2 where we give |V | (number of
nodes), |A| (number of arcs), |W | (number of terminals), |D̃| (number of TM s enumerated throughout
the algorithm), ΦD̃ (final average routing cost for D̃), ΦF (routing cost for the final TM, drec, added to
D̃), the normalized cost for drec (Φnorm

F = ΦF

ΦU
where ΦU is the cost of routing drec if all arcs in A had

a unit length and unlimited capacity), Umax = maxa∈A,d∈D̃
la
ca

(the maximum utilization rate), and t
(solution time). Finally, ∗ indicates a termination due to cnt−limit in both tables.

Instance |V | |A| |W | |D̃| ΦD̃ ΦF Φnorm
F Umax t (sec)

exodus 7 12 7 2 844.5 877.16 30.28 4.53 1
nsf 8 20 5 5 2961.73 3550.52 0.26 0.96 9

vnsl 9 22 3 2 170,331.3 170,331.3 0.25 0.83 2
example 10 30 4 3 2409.8 10,630.33 16.89 1.25 8

metro 11 84 5 6 528.84 899.07 0.27 0.69 78
bhvac 19 44 11 5 26,268,982.1 27,638,469.33 401.91 49.25 67

abovenet 19 68 5 4 708.84 725.28 105.67 2.36 71
telstra 44 88 7 2 0.28 0.31 0.12 0.88 200
pacbell 15 42 7 5 2370.83 2671.5 0.15 0.84 111

eon 19 74 15 5 11,734,977.88* 16,889,017.5* 214.6* 6.45* 8135*
arpanet 24 100 10 10 353,069.59* 470,151.65* 12.12* 1.5* 124,074*

Table 1: Results for CM under the hose model of demand uncertainty.

Although Φnorm
F entries are relevant for the most recent TM, we see that large values of Φnorm

F

are accompanied by large Umax values and vice versa. Such high entries in Table 1 for exodus, example,
bhvac, and abovenet suggest the existence of some bottleneck arcs for which capacity expansion is essential.
Moreover, Φnorm

F column shows that our traffic engineering efforts have improved the relative performance
of the final routing significantly in nsf, vnsl, metro, telstra, and pacbell. However, eon and arpanet are
difficult instances for CM since generating cost-maximizing TM s takes relatively longer for them.

We present our test results for LM in Table 2. Φnorm
F shows that LM performs significantly better

than the unit-weight OSPF routing on uncapacitated networks in nsf, vnsl, metro, telstra, and pacbell
whereas as good as it in example. We also observe that Φnorm

F and Umax follow a similar trend as in CM.
Moreover, the algorithm had to stop after 50 iterations in bhvac and eon.

We can make a comparison of CM and LM based on Table 1 and Table 2. Naturally, we had to
enumerate more TM s in LM on the average as a result of the difference in the domain of impact for each
enumeration. Basically, LM generates at least ‘locally challenging’ TM s since it considers arcs one by
one. Moreover, as a natural consequence of the difference in their TM generation criteria, ΦD̃ is larger for
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Instance |V | |A| |W | |D̃| ΦD̃ ΦF Φnorm
F Umax t (sec)

exodus 7 12 7 2 841.07 837.66 178.09 4.53 1
nsf 8 20 5 3 1373.3 1219.33 0.77 0.96 3

vnsl 9 22 3 1 170,331.3 170,331.3 0.25 0.83 1
example 10 30 4 7 2236.8 85.33 1 1.25 23

metro 11 84 5 23 140.61 99.5 0.20 0.73 1029
bhvac 19 44 11 51 7,547,647.45* 3,385,313.33* 368.18* 50.7* 3084*

abovenet 19 68 5 12 254.43 106.85 46.8 3.19 440
telstra 44 88 7 1 0.26 0.26 0.13 0.88 96
pacbell 15 42 7 23 603.72 635 0.18 0.84 485

eon 19 74 15 51 1,068,540.68* 1,991,960.17* 110.63* 6.80* 10,500*
arpanet 24 100 10 45 73,835.82 185,369.83 13.69 1.5 18,331

Table 2: Results for LM under the hose demand uncertainty model.

CM in all but one instance whereas Umax is larger for LM in metro, bhvac, abovenet, and eon. However,
both strategies achieve the same Umax values in the remaining 7 instances. Finally, the solution times
indicate that CM is more efficient especially for smaller networks whereas it becomes less effective for
more dense networks with higher number of commodities, i.e., |W | ∗ (|W | − 1), as in eon and arpanet.

In addition to these preliminary comments, in Table 3, we compare CM and LM on how good they
route the challenge TM dmax enumerated in the CHALLENGE step of both strategies.

Instance ΦCM Umax
CM ρCM ΦLM Umax

LM ρLM

exodus 844.48 4.53 1.06 844.48 4.53 1.06
nsf 2656.70 0.88 1.49 2037.73 0.76 1.14

vnsl 170,331.3 0.83 1.03 170,331.3 0.83 1.03
example 522.83 1.1 2.88 533.83 1.1 2.94

metro 464.71 0.57 1.19 455.67 0.57 1.17
bhvac 24,166,769.6 36.3 1.45 24,273,340.6 36.95 1.45

abovenet 659.53 2.09 1.49 689.55 2.66 1.56
telstra 0.26 0.88 1 0.26 0.88 1
pacbell 2025 0.65 1.16 2025 0.65 1.16

eon 10,042,441.08 5.28 3.33 8,404,778.71 3.8 2.79
arpanet 270,932.52 1.39 7.06 420,804.94 1.47 10.97

Table 3: CM versus LM in the CHALLENGE step.

In terms of the routing cost Φ, we see that neither of the two outperforms in all cases. The difference
is more clear for nsf, abovenet, eon, and arpanet where LM is superior in the first three. In the remaining
cases, the absolute value of the percent gaps between two methods are in the interval [0, 5.5%] where
we calculate the gap as 100 ∗ |ΦCM−ΦLM |

min{ΦCM ,ΦLM} . In the overall, LM is superior in 4 instances whereas CM
performs better in 3 cases. Next, we compare the congestion rates to assess the fairness of each routing.
The two strategies perform equally well in 7 instances. Nevertheless CM routes dmax more fairly in
bhvac, abovenet, and arpanet. LM appears to be slightly better in nsf.

We also compare our weight-managed OSPF routing with the unconstrained routing (UR) for the
challenge TM dmax to judge the effectiveness of our traffic engineering efforts. We show the cost coefficient
(ρ) measure, which is the ratio of the routing cost of each strategy to the routing cost of unconstrained
routing for dmax, in Table 3. Since the UR problem is a relaxation of the OSPF routing problem, ρCM

and ρLM can not be less than 1. Moreover, smaller values imply that we could make OSPF routing
comparable to UR through weight management. Table 3 shows that in 8 of the 11 instances, ρ for
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both strategies are quite close to 1. This also supports our previous comments on the need for capacity
expansion especially in exodus and bhvac. For these instances ρ values are slightly over 1 and hence we
have observed relatively larger Umax rates due to having insufficient capacity for some arcs rather than
the failure to optimize our OSPF routing. Hence, we can say that the current study provides a tool for
network operators to assess the sufficiency of their current network resources. To conclude, we can say
that we could make OSPF routing comparable to unconstrained routing by managing OSPF weights.

4 Conclusion

In this work, we studied the oblivious weight-managed OSPF routing problem for a general polyhedral
demand uncertainty definition. We used the cost function of Fortz and Thorup [4] to determine the
OSPF weight metric and hence the set of shortest paths such that the routing cost for the worst case
in the demand polyhedron is minimum. Given the difficulty of the problem, we decided to focus on
an algorithmic solution approach based on traffic matrix enumeration and tabu search. We generate an
extreme point of the traffic polyhedron at each iteration of the algorithm using two different maximization
problems and determine the best OSPF weight metric by a tabu search algorithm. Our experimental
tests with the hose model of demand uncertainty show that we can make OSPF routing comparable to
unconstrained routing by effective weight management for most of our test instances.
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