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Abstract

We study the classical problem of inferring the tra�c on each Origin-Destination (OD) pair of
a large IP network. The most recent methods take advantage of network-monitoring tools such as
Net�ow (Cisco Systems), which supplement the link measurements by direct information on the OD
�ows. The aim is to reduce the costs of deployment of Net�ow, and to optimize its use. We formulate
a combinatorial optimization problem, whose objective is to �nd the "best" set of interfaces on which
Net�ow should be activated. Our approach relies on an experimental design model, in which we
minimize the variance of an unbiased estimator of a linear combination of the �ows. We show that
this problem can be solved very e�ciently by Second Order Cone Programming, and we present a
method called "Successive Optimal gamma Designs" to optimize the deployment of Net�ow. We give
experimental results comparing our method with previously proposed ones.

Keywords: Tra�c measurement, Experimental design, Combinatorial optimization, Second Order
Cone Programming.

1 Introduction

The problem of estimating Origin-Destination (OD) tra�c matrices for backbone networks has recently
attracted much interest from both Internet providers and the network research community [5, 9, 8, 14],
because these tra�c matrices serve as important inputs of a variety of network tra�c engineering tasks.
This estimation problem is generally stated as follows.

We are given the graph of the network, with its set of l edges (or links). Direct measurements are
provided by the Simple Network Management Protocol (SNMP), which gives some statistics on the links
(for instance, the number of bytes seen on each link in a 5 minutes window). We will denote these SNMP
link counts by Y SNMP = (y1, . . . , yl)T . We are also given the set of routes among the network, that is to
say a set of m OD pairs, and for each pair, the set of links that a byte need traverse to go from origin O
to destination D. The information about the routing is classically gathered in the l×m incidence matrix
A0: this is a 0/1−matrix whose (e, r)-entry takes the value 1 if and only if the OD pair r traverses edge e.
More generally, the Internet provider routing policies may lead us to consider matrices in which A0(e,r)

is a real number representing the fraction of the tra�c from OD pair r that traverses link e.
The unknown in our problem is the vector of OD �ows X = (x1, . . . , xm), where xr is the number of

bytes which have been traveling through OD pair r during the observation period. The following relation
is easily seen to hold: Y SNMP = A0X.
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In typical networks, we have l << m, and so, the estimation of the �ow distribution X is a highly ill-
posed problem. In particular, the previous system cannot have a unique solution X, and we need some
additional constraints or information to ensure the identi�ability of the model.

A way to introduce new constraints is to use a network-monitoring tool such as Net�ow (Cisco
systems). This was considered by the authors of [8], who proposed a scheme for selecting dynamically
the �ows to be measured by Net�ow, in order to improve the accuracy of the tra�c estimation. Of
course, activating Net�ow everywhere on the network yields an extensive knowledge of the OD �ows.
According to [6] however, activating Net�ow on an interface of a router causes its CPU load to increase
by 10 to 50%. Moreover, the deployment of Net�ow on a network with heterogeneous routers may rise
maintenance issues. It is thus of great interest to optimize the use of this tool.

A similar problem arises in the �eld of road tra�c ; in that case, the pneumatic cables counting the
number of vehicles driving on a road replace the SNMP data, and one can make surveys instead of using
Net�ow. The issue is thus to minimize the economic costs of the surveys needed to estimate the tra�c
between each origin and destination with a prescribed accuracy.

Related Work

The placement of Net�ow has attracted much interest from the network research community [1, 2, 3, 4,
11, 13]. Most recent work includes Cantieni, Iannaccone, Barakat, Diot and Thiran [4], who interested
themselves in the optimal rates at which Net�ow should be sampled on each router, and formulated this
problem as a convex minimization problem, which they solved using a projected gradient algorithm.

Song, Qiu and Zhang [11] used special criteria from the theory experimental design to choose a subset
of measurements that Net�ow should perform, and developed an e�cient greedy algorithm to �nd a near
optimal solution to this combinatorial problem.

In a previous work [2], we formulated the placement of Net�ow as a combinatorial optimization
problem, and showed that the Greedy algorithm always �nd a solution within 1 − 1/e ' 62% of the
optimal.

The main contribution of this paper is to give an alternative to the greedy approach of [11]: the Suc-
cessive Optimal gamma-Designs approach (SOGD) introduced in Section 3 is not memory-consuming, it
reduces to solving a sequence of moderate size second order cone programming problems which can be
done rapidly by interior point methods, it may be tuned by the operator in order to give more weight to
the most important �ows. It yields results of a quality comparable to the greedy approach, whereas it is
applicable to much larger instances.

The rest of this paper is organized as follows: The problem and the experimental design background
are presented in Section 2. Next, we discuss previous methods to solve this problem, in particular the
�Netquest� greedy approach proposed in [11]. The Successive Optimal gamma-Designs approach (SOGD),
which is the main contribution of this manuscript, is presented in Section 3. Finally, we give some ex-
perimental results in Section 4.

2 Experimental design background and Problem statement

When Net�ow is activated on an interface of the network, it will analyze the headers of the packets
traversing this interface, and as a result we will have access to some statistics, such as the source and
destination IP addresses, and the source and destination AS numbers of these packets. However, we are
not directly interested in this information, because we are not trying to estimate the global run of the
packets, but only the part of their run which is inside the network of interest, like the backbone of an
autonomous system (AS).

Practically, and without any loss of generality [2], we will assume throughout this paper that when
Net�ow performs a measure on the kth interface, we get a multidimensional measure Yk which is a linear
combination of the OD �ows traversing interface k:

Yk = AkX . (1)
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We de�ne the design variable w as the 0/1 vector of size s, where wk equals 1 if and only if Net�ow is
activated on the interface k. The measurement vector Y is now the concatenation of the SNMP data
Y SNMP with all the Net�ow measurements (Yk){k|wk=1}. The measurements are never exact in practice,
and we have to deal with a noise ε, which is a result, among other things, of Net�ow sampling and lost
packets. This can be modeled as follows:

Y = A(w) X + ε, (2)

where Y = [Y
T
SNMP , Y Tk1 , ..., Y

T
kn

]T and A(w) = [AT0 , A
T
k1
, ..., ATkn

]T .

Under the classical assumptions that we have enough measurements, so that A(w) is of full rank,
and that the noise has unit variance (E(εεT ) = I), the best linear unbiased estimator is given by a
Moore-Penrose generalized inverse : X̂ = A(w)†Y (Gauss Markov Theorem), and its variance is:

Var(X̂) = (A(w)TA(w))−1. (3)

If we further assume that the noise follows a normal distribution N (0, I), then this variance is nothing
but the inverse of the Fisher information matrix of the OD �ows. We denote it by MF (w):

MF (w) = A(w)TA(w) = AT0 A0 +
s∑

k=1

wkA
T
kAk .

The experimental design approach consists in choosing the design w which maximizes a scalar function
of the information matrixMF (w), which is concave and nondecreasing with respect to the natural ordering
of the symmetric cone of positive semide�nite matrices, namely the Loewner ordering. For a more
detailed description of the information functions, the reader is referred to the book of Pukelsheim [10],
who proposes to use the matrix spectral functions Φp, which are essentially the �Lp-norms� of the vector
of eigenvalues of the Fisher information matrix, but for p ∈ [−∞, 1]. The function Φp is given by

Φp(M) =


0 for p ≤ 0 and M singular;
λmin(M) for p = −∞ ;

(det(M))
1
m for p = 0 ;

( 1
m trace Mp)

1
p otherwise,

where we have used the extended de�nition of powers of matrices Mp for p ∈ R: trace Mp =
∑m
j=1 λ

p
j .

We now give a mathematical formulation to the problem of optimizing the use of Net�ow. Assume
that the cost of deployment/activation of Net�ow on interface k is ck. If an Internet provider has a
limited budget B, the Net�ow Optimal Deployment problem is:

max
w ∈{0,1}s

Φp
(
MF (w)

)
(4)

s.t.
∑
k

wkck ≤ B

When the cost of deployment ck is the same everywhere, the constraint is equivalent to deploy Net�ow
on no more than n interfaces. We call this special case the unit-cost case. For particular values of p, it
is interesting to notice that we recover some classical optimal designs problems, known in the litterature
as A−optimality (p = −1), E−optimality (p = −∞), D−optimality (p = 0) and T−optimality (p = 0).
For small positive values of p, we also recover the maximal rank design [2].

3 Resolution of the problem

In this section, we review previous methods to solve the Net�ow optimal deployment problem, and we
develop a new one. We limit our attention to methods that can be used on a large scale Network, say
with more than 5000 OD pairs, and 100 interfaces.

3



Greedy Algorithm

The hardness and approximability results given presented in [2] suggest to use a greedy algorithm. On
a network with m = 5000 OD pairs however, the computation of the objective function Φp(w) requires
about 2 minutes on a PC at 4GHz, since it includes the diagonalization of a m×m matrix. Consequently,
selecting only one among one hundred interfaces already requires more than 3 hours. In order to overcome
this problem, the authors of [11] proposed to use the special values p = 0 or p = −1, which make the
increment of the criterion e�ciently computable thanks to Sherman-Morrisson like formulae. We adapted
their idea to the case of block observations (1):(

M +ATkAk
)−1 = M−1 −M−1ATk

(
I +AkM

−1ATk
)−1

AkM
−1 ,

det(M +ATkAk
)

= det(M) det
(
I +AkM

−1ATk
)
.

One could naturally object that at the beginning of the algorithm, when no interface has been selected
yet, the initial observation matrix M0 = AT0 A0 is not invertible. The authors of [11] remedy to this
problem by regularizing the initial observation matrix: they set M0 = AT0 A0 + εI, with ε = 0.001.
Although this trick may look arbitrary, it leads to very good results. However, the inconvenient of these
greedy updates is that one needs to store the m×m matrix M−1 in memory, and to update it with the
Sherman-Morrisson formula each time a new interface is selected by the greedy algorithm. The authors
of [11] work on a similar experimental design problem, in which the observation matrix M has the nice
property of being very sparse. Then, storing a sparse LU decomposition of the M is much more e�cient
than storing the full M−1 matrix, and it allows one to compute M−1ATk . In our case though, M0 is
partially sparse only, and the LU decomposition is full. So this method may have reached its limit for our
problem: it is unlikely that we may use it on a network with m = 20000 OD pairs without an additional
e�ort to handle the storage of M−1.

Convex Programming algorithms

A natural idea to solve the problem (4) is to replace the integer constraint w ∈ {0, 1}s by

0 ≤ wk ≤ 1,∀k ∈ {1, . . . , s}.

This relaxation lets problem (4) become a convex program. We can therefore apply di�erent techniques
to solve it, for instance projected gradient algorithms. Moreover, the solution of this relaxed program
might be interpreted to some extent as a sampling of Net�ow. The projected gradient algorithm for
Problem (4) is described in [2], as well as rounding techniques to approximate the integer solution. The
bottleneck of this algorithm is the spectral decomposition required to compute the gradient of Φp. For
future work, we hope to implement second order techniques, by using appropriate approximations of the
Hessian, whose direct computation is not tractable on large networks.

Successive Optimal gamma-Designs

The hardness of the Optimal Net�ow Deployment is linked to the large dimension of the parameter that
we want to estimate, which leads to large size covariance matrices. Rather than searching an estimator
for the full parameter X, a natural idea is to estimate a linear combination z = γTX of the �ows, for
which the best linear unbiased estimator and its variance are known [10] :

ẑ = γTA(w)†y , var(ẑ) = γTMF (w)†γ,

where A† denotes the Moore-Penrose inverse of A. The variance of this estimator is a scalar, but it still
depends (non-linearly) on a m×m matrix.
The following result shows that the minimization of var(ẑ) is equivalent to a Second Order Cone Program
(SOCP) ; the proof is omitted due to the lack of space, and will be published elsewhere. As in [7] (which
handles the case in which the observation matrices Ai are vectors), the idea is to give a geometrical
characterization of the γ−optimal designs, based on the intersection of the vectorial straight line directed
by γ and the boundary of a special convex set.
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Theorem 3.1. Let w∗ be the optimal (real) solution of the γ−optimal design problem:

min
w≥0

γTMF (w)†γ

∑
i≥1

wici = B, MF (w) =
s∑
i=0

wiA
T
i Ai.

And let h∗, (µ∗, z∗) be a pair of primal and dual solution of the SOCP:

(P − SOCP ) : max
h

γTh (D − SOCP ) : min
µ>0,z

∑
i≥0

µi

‖A0h‖ ≤ 1; AT0 z0 +
∑
i≥1

√
B/ciA

T
i zi + γ = 0

∀i ≥ 1, ‖Aih‖ ≤
√

ci

B ∀i ≥ 0, ‖zi‖ ≤ µi.

Setting T =
∑
i≥1 µ

∗
i , the following relations hold :

w∗0 = µ∗0/T, ∀i ≥ 1 w∗i = µ∗iB/(ciT ),

T 2 = γTMF (w∗)†γ .

This theorem shows how to compute the optimal weights w∗ for the γ−combination of the �ows by
SOCP. This can be done very e�ciently with interior points codes such as Sedumi [12]. Moreover, this
method takes advantage of the sparsity of the matrices Ai, since SOCP codes are optimized to work with
sparse matrices.

Another advantage of this method is the �exibility brought by the vector γ : The operator can choose
this vector so that the weighted sum correlates the most important �ows. In order to estimate all the
�ows, a possibility is to repeat the SOCP several times with vectors γ either chosen by the operator
for their signi�cance or tossed randomly on the unit sphere of dimension m, and �nally to combine (for
instance by taking the mean) the resulting optimal designs : we call this method SOGD (Successive
Optimal gamma-Designs).

Once the optimal fractional wi values are obtained, the deployment of Net�ow can be done using a
simple rounding heuristic: one can sort the interfaces according to the ratio wi

ci
, and activate Net�ow

sequentially on these sorted interfaces until the budget constraint is violated.
We may ask ourselves whether it is a good idea to add the constraint µiB ≤ ci

∑
k≥1 µk in Prob-

lem (D−SOCP ), in order to ensure that wi ≤ 1. However, our proof does not seem to adapt to this case,
and we can not guaranty that the w∗ that one would obtain with this additional constraint is the solution
of the γ−optimal design problem in [0, 1]. Moreover, the optimal fractional wi values never exceed 1 in
practice thanks to the budget constraint, and even if it would, it does not prevent one from applying the
rounding heuristic proposed above (although we loose the sampling interpretation of the vector w∗).

4 Experimental Results

We now present some comparisons between the methods presented above : experiments were carried out
on real data from France Telecom Opentransit backbone (100 nodes, 267 links and 5591 OD-pairs). The
inference was made on dynamic �ows observed during 50 time steps, using the widespread methodology
of entropic projections [9, 8], and the gravity model as initial estimate [9]. As our sample of Net�ow data
was incomplete, we simulated the true value of the unmeasured �ows, and we generated both SNMP and
Net�ow measurement using relation (2).
Table 1 compares the approaches presented in the previous section in terms of both CPU time and the
size of the smallest full-rank design found, i.e. the design with the smallest number of nodes where one
should activate Net�ow in order to infer exactly all the �ows. The computation was made in the unit cost
case, and we assumed that Net�ow measured each �ow traversing the interfaces where it is activated. The
performance of the SOGD method is outstanding in term of CPU time, although the greedy algorithm
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Figure 1: WAE vs time with Net�ow on 10 nodes (left) and 17 nodes (right) selected by Greedy (red),
SOGD (green), and P.Gradient (blue).

Algorithm
Smallest full-

CPU
rank design

Greedy (p = −1) 35 3h
Projected gradient 39 65h
SOGD 36 4min
SOGD + Rounding heuristic 35 16min

Table 1: Comparison based on the smallest full-rank design found

�nds a smaller full-rank design. Nevertheless, a simple rounding heuristic [2] allows one to obtain the
same full-rank design that the one provided by the Greedy algorithm. Table 1 also shows the limit of
direct convex programming methods, which fail to be e�cient on large scale networks.

Figure 2 compares the deployment of Net�ow on 10 nodes of the network obtained by the greedy
algorithm (in red) and by SOGD (circled in blue). One can notice that these deployments are the same
except for 2 nodes. The metric used to compare the designs is the weighted average error(WAE) : At time
step t, it is de�ned as the mean of the vector of relative errors |Xt− X̂t|/Xt, where X̂t is the vector found
by entropic projection of X̂t−1 over the space{X ≥ 0|A(w)X = Yt(w)}. Figure 1 shows the weighted
average error on the tra�c estimation for the 1000 largest �ows, which represent 97% of the tra�c due
to their lognormal distribution [9]. If the estimation is better with the greedy deployment for Net�ow
activated on 10 nodes, the SOGD method yields better results for 17 nodes.

Another important comparison of the deployment of Net�ow is the number of �ows correctly estimated
by each method. Figure 3 shows the distribution of the errors for the 1000 largest �ows (averaged over
time), when Net�ow is activated on 17 nodes. It is very satisfactory to notice that more than 97% of
the 1000 largest �ows are estimated with an average error below 1% by the SOGD mthod. We hope to
improve this result by tuning the vector γ in order to estimate the largest �ows in priority.

Finally, Figure 4 shows how the weighted temporal error falls when we add Net�ow measurements,
with nodes selected by SOGD. This suggests that 17 interfaces are enough to infer correctly the tra�c
matrix. The additional e�ort to obtain a design of full-rank is both huge and of limited interest, since no
improvement on the estimation is to notice between 17 and 35 nodes. The reason why the �ows are not
inferred exactly with a full rank matrix is the error ε on the measurements (2).

5 Conclusions

In this paper, we have proposed a new method to optimize the tra�c measurement, based on the esti-
mation of a sequence of linear combinations of the �ows, rather than on the estimation of the full vector
of �ows. This method remains tractable for very large instances, and it allows one to identify the tra�c
accurately. Our computational results also suggest that it may be unnecessary to activate measurement
tools such as Net�ow with a design of full-rank, since we achieve results of the same quality by activating
Net�ow only on one half of the required nodes, the missing part of the tra�c being recoveredmethod.
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Figure 2: Optimal Deployment of Net�ow on 10 nodes.
Greedy in Red, SOGD circled in blue.

Figure 3: number of �ows with
an error of estimation larger than
0.5%, 10%, 50% and 100%.

Figure 4: Evolution of the temporal error
with the number of nodes with Net�ow.
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