The JRS Graphical Editors of Logical and
Physical Plans

A. Albano, C. Valisena

Abstract

The functionalities of the JRS (Java Relational System) graphical editors of logical
and physical plans are presented. The graphical editors are used to define and
ezecute queries on a relational database represented by two kind of trees: A logical
plan of relational algebra, and a physical plan that describes an algorithm to execute
a query using the JRS physical operators, a relational DBMS developed in Java as
a teaching tool at the University of Pisa, Department of Computer Science.

1 Editor Window Areas

The two graphical editors for physical and logical plans are activated with
the buttons Logical Plan and Physical Plan from the main JRS window,
once a database has been selected. They have a similar interface to define
the nodes of a tree, the arcs between nodes, and to operate on a tree. The
differences are in the types of nodes available and how plans are executed.
The similar characteristics are presented first, and then those specific to
each type of tree.

When activated, a graphical editor displays a window divided into three
main areas (Figure 1):

e Control Panel: An area that contains the buttons to add or remove a
node, and to save, load or delete a plan.

e Logical/Physical Plan Area: An area to define a tree representation
of a plan.

e Query/Output: An area that contains the result of a plan execution,
which depends on the type of tree.

1 Editor Window Areas 2

e 00 Logical Plan e 00 Physical Plan
Logical Plan ~Control Panel Physical Plan rControl Panel
= [a]
Select Operator Select Operator
O Mutisatn’ | [© o Selection O Distinct O MergeJoin
1 4 O Except O NestedLoop
F O« Join O 3 Distinct T O Filter O Project
O y Grouping O 7 Sort O GroupBy O Sort
O IndexFilter O SortScan
O x Times O R Relation O IndexNestedLoop O TableScan
O v Union O n Intersection O IndexOnlyFilter O Union
— — O IndexScan O UnionAll
O - Difference O + Division O Intersect
| Remove Node] [Save Plan] [Remove Node || Save Plan
[<i||[[__LoadPian |[clearPlan | {|{[___LoadPian [ClearPian
< Il [Dl [save Plan as Snapshot |] D Save Plan as Snapsh
—— | —
Organize Plan Hide Nodes Execute Plan Show SQL Organize Plan Hide Nodes Execute Plan
’—Quer‘, ‘ "()uwu-

Fig. 1: The Logical and Physical Plan Editors

1.1 Control Panel

The area is divided into three parts:

e A frame Select Operator with the list of the operators that can be
used in a plan. An operator is selected with a mouse click. The selection
of an operator draws it in the plan area.

e A button Operator that shows the selected operator. Once an operator
has been selected, clicking on Operator draws a new node of the same
type in the plan area.

e An area with four buttons to operate on nodes and on trees.

— Remove Node, to remove a selected node shown in yellow.

Save Plan/Load Plan, to save or load a plane. Since each plan is
defined on a JRS database, the loading of a previously saved plan
is completed if the database currently in use is the one expected
by plan chosen.

— Clear Plan, to clear the plan area.

Save Plan as Snapshot, to save a plan image in the jpg format.

1 Editor Window Areas 3

1.2 Logical/Physical Plan Area

Once a node has been added to the plan area, the following operations are
allowed on it:

e Selection with a click.

e Mowing use selection to click and hold the node, then drag it to its new
location. To move an entire subtree, the same operation is performed
on the root, while pressing SHIFT.

e Adding an arc between two nodes. When the mouse pointer is on a
node, on its edges some handles appear. To add an arc, the pointer is
moved, holding the left mouse button, from a handle on the starting
node to the end node, where the mouse button is released.

e Remowing an arc by dragging one of its end points.

e Description of a node with a contextual menu shown with a right click
on the node.

1.3 The Result Area

The area is called the Query in the case of a logical plan, and Output in the
case of a physical plane. The area shows the result of evaluating a plan or a
subplan rooted in the node selected.

Above the result area there is a blue bar, to resize the area with the
mouse, and the following buttons:

e Hide/Show Nodes, to hide the border of the nodes in order to view
the plan as plain text.

e Execute Plan, to execute the plan rooted in the node selected. This
feature enables to analyze the result of a plan execution step-by-step
from the leaves. The result is printed in the output window and it is
shown also in a separate window provided by JRS.

e Organize Plan, to redesign the plan tree automatically.

e Show SQL, to see in the Query area the translation of a logical plan
into SQL, which is then used to execute it.

2 Contextual Menu of the Logical Plans Editor 4

2 Contextual Menu of the Logical Plans Editor

Relational algebra is based on a small number of operators which take one
or two relations as operands to yield a relation as result. A query is just
an expression involving these operators. The Logical Plan Editor allows the
definition of query as an expression tree of relational algebra operators. Any
subtree, with relations as leaves, can then be executed to see the results.

Each node of a logical plan has a different contextual menu, that is
dynamically created taking into account the attributes of the operands and
schema of the database. Each choice of parameters implies an update of the
node label to reflect the choices made. In creating a tree, the node parameters
must be specified from the leaves to the root: A contextual menu becomes
active, with a right click on the node, only when the node has all the required
operands specified.

A brief description follows of the contextual menu of each operator.

Relation Operator (R)

The menu has the following options:

e Relation, to select a relation among those defined in the current database,
shown in a submenu. Fach database table must be defined with at least
one key.

e Tuple Variable, to define a variable that stands for a record of the
selected relation.

Selection Operator (o)

The menu has the following options:
e Condition, to define a simple selection condition using a submenu.

e Enter Condition, to define a complex selection condition.

Grouping Operator ()

The menu has the following options:

e Groupings, to select the grouping attributes.

2 Contextual Menu of the Logical Plans Editor 5

e Aggregations, to select an aggregation function, with or without DIS-
TINCT.

Each aggregate function must be renamed with the AS operator.

e AS, to rename a grouping attribute.

Product Operator (X)

This node has no contextual menu.

Join Operator (1<)

The menu has the following options:

e The entries of the menu o to define a general join condition.

e Natural Join, to define automatically the join condition using the com-
mon attributes of the two operands.

e Equi Join, to define automatically the join condition using the at-
tributes of the primary key and the foreign key of the two operands.

Division Operator (<)

This node has no contextual menu.

The operator has two operand: A relation with two attributes (e.g.
R(A, B)), without duplicates, and a relation with only the second attribute
of the first operand and of the same type (e.g. S(B)), without duplicates.

The result is a relation with the attribute A that consists of the values of A
in R that appear together with all the values of B in S.
Set Operators (U, N, —)

These node have no contextual menu.
The operands result must be relations of the same type, and they must
satisfy the following rules:

e Both the relations have the same number of attributes.

e The names of the attributes are the same, and in the same order, in
both the relations.

2 Contextual Menu of the Logical Plans Editor 6

e Attributes with the same name in both relations have the same type.

The nodes of a logical plan constructed with the previous operators of the
relational algebra have as result a set of records, assuming that the relations
of the leaves of the tree are defined in SQL JRS with at least one key. Instead,
the result of the following operator 7 is a multiset of records, and it is
provided to define logical tree of common SQL queries.

Multiset Projection Operator (7%)

The menu has the following options:

e Attributes, to select some of the attributes of a relation, shown in a
submenu.

e Enter Expression, to define an expression instead of an attribute.

e AS to rename some selected attributes.
The result of a 7® operator is a multiset.

Distinct Operator (¢)

This node has no contextual menu.
The operator must have as operand a 7°, and eliminates duplicate records
from the operand result, i.e. it is used to turn a multiset into a set.

Sorting Operator (7)
The menu has the following options:
e Attributes, to select the sorting attribute.

e Direction, to select between the ascending or descending order.

The graphical editor allows the use of the operators w°, & or T as the root of
an expression tree only. When T is used, it must be the root because it can
be used only to turn the operand result, a set or a multiset, into a list.

2 Contextual Menu of the Logical Plans Editor 7

2.1 Node’s Information

A double click with the left button on a node will display a box with the
following information:

e Operator: The node operation.

Relation: The relation name of a leaf node.

Condition: The condition for select and join operators.

Result Type: The operator result type is a set denoted {(A4; T1, ...,
Ay, T),)}, or a multiset, or a sorted set denoted {(A;1T1,...,A,Th)}.

Order: The order of records in the query result.

3 Contextual Menu of the Physical Plans Editor 8

3 Contextual Menu of the Physical Plans Editor

A physical plan is an algorithm for executing a query using different eval-
uation methods, called physical operators. Often the physical operators are
particular implementations of the operators of relational algebra. They differ
in their basic strategy and have significantly different costs. However, there
are also physical operators for other tasks that do not involve an operator
of relational algebra. The result of the evaluation of a physical plan is in
general a multiset of records, which is the answer of the query. The Physical
Plans Editor allows the definition of query as a tree of physical operators.
Any subtree, with operators on relations as leaves, can then be executed to
see the results.

Each node of a physical tree has a different contextual menu, which is
dynamically created taking into account the attributes of the operands and
schema, of the database. Each choice of a parameter implies an update of the
node label to reflect the choice made. In creating a tree, the node parameters
must be specified from the leaves to the root: A contextual menu becomes
active only when a node has all the required operands specified. A brief
description follows of the contextual menu of each operator.

3.1 Table Operators
TableScan

The menu has the following options:

e Table, to select a table among those of the current data base.

e Tuple Variable, to define a record variabile.
IndexScan
The menu has the following options:

e The entries of the menu TableScan.

e Index, to select an index among those defined on the selected table.

SortScan

The menu has the following options:

e The entries of the menu TableScan.

3 Contextual Menu of the Physical Plans Editor 9

e The entries of the following menu Sort.

3.2 Sort Operator
Sort

The menu has the following options:
e Attributes, to select the sorting attributes.

e Direction, to select the sorting criteria.

3.3 Projection Operators
Project

The menu has the following options:

e Attributes, to select some of the attributes of a relation, shown in a
submenu.

e Enter Expression, to define an expression instead of an attribute.

e AS, to rename some selected attributes.

The result of a Project operator is a multiset.

Distinct

This node has no contextual menu.
The operator eliminates duplicate records from the operand result, that
must be ordered.

3.4 Selection Operators
Filter

The menu has the following options:

e Condition, to define a simple selection condition using a submenu.

e Enter Condition, to define a complex selection condition.

3 Contextual Menu of the Physical Plans Editor 10

IndexFilter

The menu has the following options:
e Table, to select an indexed table among those of the current data base.
e Tuple variable, to define a record variabile.
e Index, to select an index among those defined on the table.

e Condition, to define a simple selection condition on the index at-
tributes using a submenu.

e Enter Condition, to define a complex selection condition on the index
attributes.

e Join Condition), to specify that the join condition must be automat-
ically generated because the operator will be used as internal operand
of an IndexNestedLoop operator.

IndexOnlyFilter

The menu has the following options:

¢ Index, Condition, Enter Condition, Join Condition ¢, as for the menu
of IndexFilter.

e Project, to select the index attributes of the result.

3.5 Grouping Operator
GroupBy
The menu has the following options:
e Groupings, to select the grouping attributes.

e Aggregations, to select an aggregation function, with or without DIS-
TINCT.

Each aggregate function must be renamed with the AS operator.

e AS to rename a grouping attribute.

The operator requires that the operand data must be sorted on the grouping
attributes.

3 Contextual Menu of the Physical Plans Editor 11

3.6 Join Operators
NestedLoop

The menu has the following options:

e Condition, to define a simple join condition using a submenu.

e Enter Condition, to define a general join condition on the index at-
tributes.

e Equi Join, to define automatically the join condition using the at-
tributes of the primary key and the foreign key of the two operands.

IndexNestedLoop

The menu has the options of NestedLoop, with the constraint that the
internal operand must be a node IndexFilter or IndexOnlyFilter, or a Filter
applied to a IndexFilter or to a IndexOnlyFilter.

MergelJoin

The menu has the options of NestedLoop, with the constraint that the result
of the operands are ordered on the join attributes, a key for the external
operand.

3.7 Set Operators
Union, Union All, Intersect, Except

These node have no contextual menu.

The operands of result of the operators Union, Intersect, Except, must
be sorted multiset of the same type, that is they must satisfy the following
rules:

e Both the multisets have elements with the same number of attributes.

e The names of the attributes are the same, and in the same order, in
both the relations.

e Attributes with the same name in both multisets have the same type.

The result of the operators Union, Intersect, Except is a ordered set, while
the result of Union All is a multiset.

3 Contextual Menu of the Physical Plans Editor 12

3.8 Node’s information

A double click with the left button on a node will display a box with the
following information:

e Operator: The node operation.

e Table: The table name of a leaf node.

e Index: The index name, if the operator uses one.

e Attributes: The attributes of the index in use.

e Condition: The condition for select and join operators.

e Result Type: The operator result type, a multiset denoted {(A41 11, ..., A, Ty)}
e Order: The order of records in the query result.

e Cardinality: The estimate number of records of the plan result.

e Cost: The estimate the number of pages read from or written to disk
to produce the result.!

! The goal of the cost and result size estimations is not to predict the exact values, but
they are the estimations used by the optimizer to select a query plan using the information
available in the DBMS catalog.

4 Examples Using the Graphical Plan Editor

13

4 Examples Using the Graphical Plan Editor

The examples will be given using the relational database schema in Figure 2

_ InvoiceLines
Countries Products
FkinvoiceNo <<PK>>
PkCountry <<PK>> <<FK(Invoices)>> PkProduct <<PK>>
Nation LineNo <<PK>> ProductD <<PK1>>
Continent FkProduct ProductName
<<FK(Products)>> Category
Qty UnitPrice
Price
Customers -
Invoices
PkCustomer <<PK>> PkInvoiceNo <<PK>>
FkCountry
. FkCustomer
<<FK(Countries)>> <<FK(Customers)>>
CustomerName Date
CustomerType

Fig. 2: The Relational Database Schema

and the following query to retrieve the category of products sold singly more
than once, and the total quantity sold:

SELECT Category, SUM(Qty) AS TotalQty
FROM InvoiceLines, Products
WHERE FkProduct = PkProduct AND Qty =1

GROUP BY FkProduct, Category
HAVING COUNT(*) > 1;

Let us first select the option Show Access Plan, located in the Options
menu, and then execute the query. We then get the query result and the
physical query plan generated by the cost-based JRS query optimizer to
execute the query. The physical query plan is represented by an iterator
tree in a separate window (Figure 3a). The JRS cost-based query optimizer
estimates the costs of alternative query plans and chooses an efficient final
plan. This is done using the metadata available on the database, such as the
size of each relation, the number of different values for an attribute, and the
existence of certain indexes.

Clicking on a node of the plan produces a Physical Operator Properties
window with information regarding the operator involved, the estimated
number of records produced by the operator, and the estimated cost of the
operation (Figure 3b).

4 Examples Using the Graphical Plan Editor 14

Access Plan

[»

(S
Project
Filter
GroupBy ™ M O Physical Operator Properties .
joperator : Project it
=| |attributes : Category,SUM(Qty) AS TotalQty it
Sort jorder : none
Cardinality : 3.0 Records |
Cost : 42.0 Logical Reads

| IndexNestedL... |

Filter I IndexFilter

TableScan

< Il \ D] |

Kl

Fig. 3: The Optimized Physical Query Plan

As usually happens in relational DBMSs, the standard way to evaluate a
query with GROUP BY is to first retrieve the sorted record required by the
operator, and then to execute it in order to produce the final result.

A Logical Plan

Let us define the query using the relational algebra, as shown in Figure 4.

By clicking on Hide Nodes the logical plan is shown in the traditional
form of an algebraic expression tree (Figure 5).

Double clicking on a node opens a Logical Plan Node Information win-
dow with the following information about the logical operator and the result
type (Figure 6).

Any plan node can be select by clicking. Users can then proceed as
follows:

e Clicking on Execute produces the query result in the query result
window.

e Clicking on Show SQL opens a query window that displays the SQL
query generated by the Logical Editor, for the subtree of the selected
plan node. Figure 7 shows the query generated when the selected node
is the plan root, which in this case is the same used to get the physical
plan in Figure 3.

4 Examples Using the Graphical Plan Editor 15

Logical Plan ~Control Panel
-~
Operator
Select Operator
O n® Multiset i O o Selection
O » Join © & Distinct
+ v ’ + i O y Grouping O 1 Sort
FiProduct, Category | SUM(Qty) AS TotalQty, COUNT(*) AS NumProd =
O x Times © R Relation
© v Union O nIntersection
O ay=1 - =
/ O - Difference O + Division
™ | Remove Node | [Save Plan I
InvoiceLines.FkProduct = Products.PkProduct I Load Plan I [Clear Plan ‘
/ \ [Save Plan as Snapshot]
| InvoiceLines | | Products | ja|
-2
] i [[]
2 1]
| Organize Plan || Hide Nodes || ExecutePlan || ShowSQL |

Fig. 4: A Logical Query Plan

The SQL query generated for a logical plan is generally not a single
SELECT, but a SELECT that uses temporary views, because JRS
does not allow the use of a subquery in a FROM clause.

Another Logical Plan. Let us try a different logical plan on the basis of
the following result:

Proposition 4.1: Let A(«) be the set of attributes in o and R Zf S an equi-
join using the primary key pi of S and the foreign key fi of R. R has the
invariant grouping property

xYr(RES) = 7 xur((xuacy)-as)7r(R) & S) (1)

if the following conditions are true:
1. X — fy, with X the grouping columns in R [éf S.

2. Each aggregate function in F uses only columns from R.

This property of doing the group-by before a join is called invariant grouping
since the operator can be brought forward modifying the grouping attributes

4 Examples Using the Graphical Plan Editor 16

Logical Plan

[»

b
T Category, TotalQty

o NumProd > 1

FxProduct, Category Y SUM|(Qty) AS TotalQty, COUNT{*) AS NumProd

Il

InvoiceLines.FkProduct = Products.PkProduct

/ \ |

InvoiceLines Products

[«]

<] Il I [»]

Fig. 5: A Logical Query Plan

8006 Logical Plan Node Info
perator : Group1 ng

Resu]t Type : {(FkProduct integer, Category varchar(5), TotalQty integer, NumProd integer)}
rder 1 none

Fig. 6: A Logical Plan Node Information

only, but the transformation may need an additional projection in order to
produce the final result. In general, with a big table R the performance of a
join query with grouping and aggregation is improved by doing the group-by
before the join.

If there are selections on R, the operator « is done before a join on the
selections on R (Figure 8).

Since the query optimizer does not consider the possibility of doing the
group-by before the join, the Logical Editor generates the following SQL
code to execute the logical plan:

4 Examples Using the Graphical Plan Editor

Organize Plan || ShowSQL |[Hide Nodes [Execute

Query
SELECT Category, SuMm(Qty) AS TotalQty
FROM InvoiceLines, Products
WHERE Qty = 1

AND FkProduct = PkProduct
GROUP BY FkProduct, Category
HAVING COUNT(*) > 1

Fig. 7: The SQL Query to Execute the Logical Plan in Figure 4

Logical Plan

[»

b
T Category, TotalQty

e
| InvoiceLines.FkProduct = Products.PkProduct ‘

| {

| O nurProd> 1 | ‘ Products |

[«]

< Il [»]

Fig. 8: Another Logical Query Plan

WITH LTV1 AS

(

SELECT FkProduct, SUM(Qty) AS TotalQty, COUNT(*) AS NumProd
FROM InvoicelLines

WHERE Qty =1

GROUP BY FkProduct

HAVING COUNT(*) > 1

)

SELECT Category, TotalQty

FROM LTV1, Products

WHERE FkProduct = PkProduct;

4 Examples Using the Graphical Plan Editor 18

In this case, the generated query uses a temporary view as a left operand
of the join, thus forcing the optimizer to generate two separate plans, one
for the view and another for query. However it is interesting to check if the
query generated by a logical plan that brings forward the group-by before a
join is more efficient.

A Physical Plan

Let us now design a physical plan that exploits carrying out the group-by
before a join, and uses the operator IndexNestedLoop with an index on the
Products primary key (Figure 9).

Physical Plan

D

Project
({Category, TotalQty})

IndexNestedLoop
{InvoiceLines.FkProduct = Products.PkProduct)

Project IndexFilter

| ({FkProduct, TotalQty}) | | (Products, PK_Products, PkProduct = InvoiceLines.FkProduct)

Filter

(NumProd > 1)

GroupBy
({FkProduct), {SUM(Qty) AS TotalQty, COUNT(*) AS NumProd})

Sort
(FkProduct ASC)

Filter
(Qty =1)

TableScan

(InvoiceLines)
il []

4]

Fig. 9: A Physical Query Plan

Clicking on Hide Nodes displays the physical plan in the traditional form
of an iterators tree (Figure 10).

A double click on a node of the plan displays information about the op-
erator involved, the estimated number of records produced by the operator,
and the estimated cost of the subtree with the selected node as root node
(Figure 11, Figure 12).

As it happens with a logical plan, any physical plan node can be clicked
on in order to execute the subtree with the selected node as root node.

4 Examples

Using the Graphical Plan Editor

19

Physical Plan

({FkProduct), {SUM(Qty) AS TotalQty, COUNT(*) AS NumProd})

Project
({Category, TotalQty})

IndexNestedLoop
(InvoiceLines.FkProduct = Products.PkProduct)

Project IndexFilter
({FkProduct, TotalQty}) (Products, PK_Products, PkProduct = InvoiceLines.FkProduct)
Filter
(NumProd > 1)
GroupBy

Sort
(FkProduct ASC)

Filter
(Qty=1)

TableScan

|»

(InvoiceLines)

4

[

[«]

-ﬁergtéf
Condition

Fig. 10: The Iterators Tree

Operator : Project
Result Type: {{(Category varchar(5), TotalQty integer)}}
order : none

cardinality: Erec(0) = 2 Records

Cost : €(0) = 5 Logical Reads

: IndexNestedLoo)

: InvoiceLines.FkProduct = Products.PkProduct

: {{(FkProduct integer, TotalQty integer, PkProduct integer, ProductID va
: FkProduct

: fs(Condloin) * Erec(0e) * Erec(0i) = 2 Records

: C(0e) + Erec(0e) * C(01) = 5 Logical Reads

rchar(3),

v

Fig. 12: Information About the Physical Operator IndexNestedLoop

