
Policy Framings for Access Control

Massimo Bartoletti
Dipartimento di Informatica

Università di Pisa, Italy

bartolet@di.unipi.it

Pierpaolo Degano
Dipartimento di Informatica

Università di Pisa, Italy

degano@di.unipi.it

Gian Luigi Ferrari
Dipartimento di Informatica

Università di Pisa, Italy

giangi@di.unipi.it

ABSTRACT
A new model for access control is proposed, based on policy
framings embedded into histories of execution. This allows
for policies that have a possibly nested, local scope. In spite
of the increased expressive power of our model, we present a
way to use standard model checking for history verification.

1. INTRODUCTION
Models and techniques for language based security are re-

ceiving increasing attention [11, 13]. Among these, access
control plays a relevant role [12]. Indeed, modern program-
ming languages feature access control policies and mecha-
nisms as design principles.

Access control policies specify the rules by which prin-
cipals are authorized to access some protected objects or
resources; while mechanism will implement the controls im-
posed by the given policy. For example, a policy may specify
that a principal P can never read a certain file F . This pol-
icy can be enforced by a trusted component of the operating
system, that intercepts any access to F and prevents P from
reading.

Several models for access control have been proposed,
among which stack inspection, adopted by Java and C]. In
this model, a policy grants static access rights to code, while
actual run-time rights depend on the static rights of the code
frames on the call stack. As access controls only rely on the
current state of the calling sequence, stack inspection may be
insecure, when trusted code depends on results supplied by
untrusted code [10]. In fact, access controls are insensitive
to the frame of an untrusted code, when popped from the
call stack. Additionally, some standard code optimizations
(e.g. method inlining) may break security in the presence of
stack inspection.

The main weaknesses of stack inspection are caused by
the fact that the call stack only records a fragment of the
whole execution. History-based access control considers in-
stead (a suitable abstraction of) the entire execution, and
the actual rights of the running code depend on the static

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WITS’05, January 10, 2005, Long Beach, CA, USA.
Copyright 2005 ACM 1-58113-980-2/05/01 ...$5.00.

rights of all the pieces of code (possibly partially) executed
so far. History-based access control has been recently receiv-
ing major attention, both at the foundational level [2, 9, 15]
and at the implementation level [1, 7].

The typical run-time mechanisms for enforcing history-
based policies are reference monitors, which observe pro-
gram executions and abort them whenever about to violate
the given policy. The observations are called events, and are
an abstraction of security-relevant activities (e.g. opening a
socket connection, reading and writing to a file). Sequences
of events, possibly infinite, are called histories. Usually, the
security policy of the monitor is a global property: it is
an invariant that must hold at any point of the execution.
Reference monitors have been proved to enforce exactly the
class of safety properties [14].

Checking each single event in a history may be inefficient.
A different approach is to instrument the code with local
checks (see e.g. Java and C]), each enforcing its own lo-
cal policy. Under certain circumstances, the two ways are
equivalent [5, 6]. Recently, Skalka and Smith [15] have ad-
dressed the problem of history-based access control with lo-
cal checks, combining a static technique with model check-
ing. In their approach, local checks enforce ω-regular prop-
erties of histories. These properties are written as µ-calculus
logic formulae, verified by Büchi automata. From a given
program, their type and effect system extracts a history ex-
pression, i.e. an over-approximate, finite representation of
all the histories the program can generate. History expres-
sions are then model checked to (statically) guarantee that
each local check will always succeed at run-time. If so, all
the local checks can be safely removed from the program.

We propose here a novel approach to history-based ac-
cess control, along the line of [15]. We assume that policies
are ω-regular properties of histories. We extend the no-
tion of history to comprise policies with local scope. For
example, suppose we have a history ϕ[α0α1], made of two
events in sequence, enclosed in a policy framing ϕ[· · ·]. This
history is valid when both α0 and α0α1 satisfy ϕ, to reflect
that all partial computations (i.e. the prefixes of the history)
must satify the enclosing policy. Similarly, suppose we have
ϕ′[α2]. We can now concatenate the two histories and ob-
tain ϕ[α0α1]ϕ

′[α2], expressing that α0 and α0α1 both obey
ϕ, while α0α1α2 only obeys ϕ′. This reflects our intuition
that programs must be prevented from hiding events in the
past: as a consequence, security policies inspect the whole
history of execution. An additional feature of our model is
that scopes can be nested, e.g. ϕ′′[ϕ[α0α1]ϕ

′[α2]] in which
α0, α0α1 and α0α1α2 must also respect the policy ϕ′′.

Even though policies are ω-regular properties, the nesting
of policy framings may give rise to non-regular properties:
indeed, every history η must obey to the conjunction of all
the policies within the scope of which the last event of η oc-
curs. A run-time mechanism enforcing this kind of proper-
ties needs to be at least as powerful as pushdown automata.

Note in passing that ω-regular local checks can be easily
recovered in our model: the history ϕ[α] corresponds to a
local check of the policy ϕ after the event α.

Furthermore, we enrich the history expressions of [15] with
policy framings (in [3], we introduce a linguistic level and
a static analysis to extract history expressions from pro-
grams). However, the model checking techniques of [15] can-
not be straightforwardly imported in our model, because of
the inherent non-regularity of the enforced policies.

The main technical contribution of this paper is showing
that also histories with nested policy framings can be veri-
fied using standard model checking techniques. We define a
transformation that, given an history expression H, obtains
an expression H ′ such that (i) the histories represented by
H ′ are regular, and (ii) they respect exactly the same poli-
cies (within their scopes) obeyed by the histories represented
by H. From the history expression H ′ we then extract a Ba-
sic Process Algebra process p and a regular formula ϕ such
that H ′ is valid if and only if p satisfies ϕ. This satisfiability
problem is known to be decidable by model checking [8].

2. A MOTIVATING EXAMPLE
To illustrate our approach, consider a simple web browser

that displays HTML pages and runs applets. If an applet is
trusted (e.g. because downloaded from a trusted site), then
it is executed with full privileges; otherwise, the applet is
run in a policy framing ϕ, enforcing the following property:
the applet cannot perform a write operation after it has read
from the local disk. We define the browser as a function that
processes the URL given as input (we assume that URLs
represent both applets and HTML pages). This behaviour
is implemented by the following program, written à la ML:

let Browser = fun url
if is_html(url) then display(url)
else if is_applet(url) then

if is_trusted(url)
then url;
else ϕ[url]

Now consider a trusted applet that reads some data from
the local disk, and then writes that data to a remote server
via a socket connection. We represent this applet as a se-
quence of two events, that we call read and write.

let TrustedApplet = read; write

The behaviour of the browser applied to the trusted ap-
plet, i.e. the program Browser TrustedApplet, is illustrated
by the following trace:

(ε, Browser TrustedApplet)

→ (ε, TrustedApplet)

→ (read, write)

→ (read write, skip)

where → is a transition of the operational semantics, and the
program states are pairs, whose first component is a history
(ε stand for the empty history), and the second one is the
program continuation (see [3] for details).

Now consider an untrusted applet that attempts to exploit
the privileges of the TrustedApplet as follows:

let UnknownApplet = Browser TrustedApplet

The behaviour of the program Browser UnknownApplet is
represented by the following trace, where the history event
[ϕ stands for entering in the scope of the policy ϕ:

(ε, Browser UnknownApplet)

→ (ε, ϕ[UnknownApplet])

→ ([ϕ, ϕ[Browser TrustedApplet])

→ ([ϕ, ϕ[TrustedApplet])

→ ([ϕ read, ϕ[write])

At this point, the computation aborts, because the history
read write does not satisfy the property ϕ, i.e. no write

can happen after a read.
To illustrate the expressive power of our model, consider

an untrusted applet than can read, write, or call itself re-
cursively, depending on the values of two guards b and b’:

let rec UnknownApplet2 =
if b then read
else if b’ then write

else Browser UnknownApplet2

The following trace shows a possible execution of the pro-
gram Browser UnknownApplet2; Browser write. We as-
sume that b and b’ are false for the first n transitions.

(ε, Browser UnknownApplet2; Browser write)

→ (ε, ϕ[UnknownApplet2]; Browser write)

→ ([ϕ, ϕ[Browser UnknownApplet2]; Browser write)

→ ([ϕ, ϕ[ϕ[UnknownApplet2]]; Browser write)

→ ([ϕ[ϕ, ϕ[ϕ[Browser UnknownApplet2]]; Browser write)

→∗ ([n
ϕ , ϕn[UnknownApplet2]; Browser write)

where ϕn[−] abbreviates ϕ[ϕ[· · ·ϕ[−] · · ·]], i.e. n nestings
of ϕ. At this point, if the guard b becomes true, then the
computation proceeds as follows:

→ ([n
ϕ , ϕn[read]; Browser write)

→∗ ([n
ϕ read, ϕn[]; Browser write)

→∗ ([n
ϕ read] n

ϕ , Browser write)

→ ([n
ϕ read] n

ϕ , write)

→ ([n
ϕ read] n

ϕ write, skip)

where the event]ϕ represents leaving the scope of ϕ. The
write operation is performed with full privileges, because
the number of]ϕ matches the number of [ϕ. Note that
the property represented by the history [n

ϕ read] n
ϕ is non-

regular, because the language an bn is context-free.

3. ACCESS CONTROL HISTORIES
We assume a finite set of access events Σ (ranged over by

α, α′), and a finite set of policies Π (ranged over by ϕ, ϕ′),
i.e. ω-regular properties on sequences of access events. Let
ΣΠ = { [ϕ,]ϕ | ϕ ∈ Π }, with Σ ∩ ΣΠ = ∅.

A history η is a (possibly infinite) sequence (β1, β2, . . .)
where βi ∈ Σ ∪ ΣΠ. Intuitively, the events in Σ represent
activities with possible security concerns, while the events
in ΣΠ bind the scope of the access control policies in Π.

Let H range over sets of histories. Then, HH′ denotes
the set { ηη′ | η ∈ H, η′ ∈ H′ }, and ϕ[H] denotes the set
{ [ϕ η]ϕ | η ∈ H}. When unambiguous, we denote with η

both the history and the singleton set {η}. Note that, if η
is infinite, then ηη′ = η, for each η′ (in particular, ϕ[η] =
[ϕη]ϕ = [ϕη).

We say that a finite history η has balanced framings if
η = ε, η = α, or η = η0η1 and both η0 and η1 have balanced
framings, or η = ϕ[η′], and η′ has balanced framings. As an
example, the history α[ϕα′[ϕ′α′′]ϕ′]ϕ has balanced framings,
while α[ϕα′ has not.

Let η = (β1, . . . , βn) be a history, let η(k) = (βi1 , . . . , βik
)

be the history containing the first k access events of η, and

ϕ
(k)
η be the conjunction of the policies ϕ such that the num-

ber of [ϕ is greater than the number of]ϕ in (β1, β2, . . . , βik
).

We say that η is valid if η(k) |= ϕ(k), for all k.
For example, consider the history η0 = αrϕ[αw], where ϕ

is the property saying that no αw can occur after αr (read αr

and αw as the events read and write in Section 2). Then, η0

is not valid, because η
(2)
0 = αrαw does not satisfy ϕ

(2)
η0

= ϕ.

Instead, the history η1 = ϕ[αr]αw is valid, because η
(1)
1 = αr

satisfies ϕ
(1)
η1

= ϕ, and η
(2)
1 = αrαw satisfies ϕ

(2)
η1

= true .
We extend the above definition by continuity, saying that

an infinite history is valid when all its finite prefixes are
valid. Assuming continuity is not a limitation, because our
notion of validity is a safety property: nothing bad can hap-
pen in any execution step [14].

Note that our notion of validity ensures that the event
sequence interested by access control is always the whole
history. This is motivated by our basic assumption that no
event can ever be hidden from the execution history. For
example, a history α1ϕ[α2]α3 is valid when α1α2 |= ϕ (even
if α1 is outside of the square brackets), while α1α2α3 is
not required to satisfy ϕ any longer. Actually, the square
brackets dictate the point in the execution where to perform
the checks. It is in that sense that we call our policies local.

We say that H has ϕ-framings if and only if:

• H = H0H1, and H0 or H1 have ϕ-framings.

• H = H0 ∪H1 , and H0 or H1 have ϕ-framings.

• H = ϕ′[H′], H′ 6= ∅, and ϕ = ϕ′, or H′ has ϕ-framings.

We say that H has framings in Φ, if and only if Φ is such
that ϕ ∈ Φ whenever H has ϕ-framings.

We say that H has redundant framings if and only if:

• H = H0H1, and H0 or H1 have redundant framings.

• H = H0∪H1, and H0 or H1 have redundant framings.

• H = ϕ[H′], H′ 6= ∅, and H′ has ϕ-framings, or H′ has
redundant framings.

For example, the history η = ϕ[α]ϕ′[α′] has framings
in {ϕ, ϕ′} and no redundant framings. The history η′ =
ϕ[ϕ′′[η]] has framings in {ϕ, ϕ′, ϕ′′} and redundant framings.

A crucial point about redundant framings is their relation
with validity. Indeed, eliminating inner redundant framings
preserves the validity of histories. For example, the history
η′ = ϕ[ϕ′′[ϕ[α]ϕ′[α′]]] has an inner redundant ϕ-framing
around the event α. Since α is already under the scope of
the outermost ϕ, it happens that η′ is valid if and only if
ϕ[ϕ′′[αϕ′[α′]]] is valid.

By standard automata theory arguments, it turns out that

identifying the redundant framings within a history requires
again the expressive power of pushdown automata, because
one has to match pairs of open and closed framings.

For example, consider the following history, where all events
but [ϕ and]ϕ have been discarded:

n� ��� �
[ϕ · · · [ϕ

m� ��� �
]ϕ · · ·]ϕ [ϕ

Then, the last [ϕ is redundant if n > m, and is not if n = m.

3.1 History Expressions
We finitely approximate below the infinitary language of

histories. This is sufficient for our purposes, because the
validity of histories is a safety property. Recall that com-
putations rejected by a safety property are rejected after a
finite number of steps [14]. History expressions have the
following abstract syntax:

History Expressions

H,H ′ ::= ε empty
h variable
α access event
H · H ′ sequence
H + H ′ choice
ϕ[H] policy framing
µh.H recursion

The free variables in a history expression H are defined
as usual: fv(ε) = fv(α) = ∅, fv(H · H ′) = fv(H + H ′) =
fv(H) ∪ fv(H ′), fv(h) = {h}, fv(µh. H) = fv(H) \ {h}.
We say that a history expression is closed when it has no
free variables. We fix the precedence of operators as follows:
· has precedence over +, that in turn has precedence over µ.

History expressions can be extracted from programs using
static analysis, e.g. the type and effect system in [3]. To give
some intuition, consider the example in Section 2. Assume
that the function display cannot generate events. Then,
the history expression of Browser UnknownApplet2 is:

µh. ε + ϕ[read + write + h] + (read + write + h)

This expression denotes the least language H such that H
contains (i) the empty history ε, and the sets of histories
(ii) ϕ[read ∪ write ∪H], and (iii) read ∪ write ∪H.

The denotational semantics of history expressions is de-
fined over the complete lattice (2(Σ∪ΣΠ)∗ ,⊆). The environ-
ment ρ below maps variables to sets of (finite) histories. We
stipulate that concatenation and union of sets of histories
are defined only if both of their operands are defined. Here-
after, we feel free to omit curly braces, when unambiguous.

Denotational semantics of history expressions

�
ε � ρ = ε�
α � ρ = α�
h � ρ = ρ(h)�

H · H ′ � ρ =
�
H � ρ

�
H ′ � ρ�

H + H ′ � ρ =
�
H � ρ ∪

�
H ′ � ρ�

ϕ[H] � ρ = ϕ[
�
H � ρ]�

µh.H � ρ = � n∈ω fn(∅) where f(X) =
�
H � ρ{X/h}

As an example, consider H = µh. α+h ·h+ϕ[h]. The se-
mantics of H consists of all the histories having an arbitrary
number of occurrences of α, and arbitrarily deep, balanced
framings of ϕ. For instance, αϕ[α], ϕ[α]ϕ[αϕ[α]] ∈

�
H � ∅.

Note that the semantics of a closed history expression al-
ways contains histories with balanced framings.

We say that a history expression H is valid when all the
histories in

�
H � are valid.

Let h∗ ∈ fv(H) be a selected occurrence of h in H, if any.
We say that h∗ is guarded by guard (h∗, H), defined as the
smallest set satisfying the following equations.

Guards

guard (h∗, h) = ∅

guard (h∗, H0 · H1) =

�
guard (h∗, H0) if h∗ ∈ H0

guard (h∗, H1) otherwise

guard(h∗, H0 + H1) =

�
guard (h∗, H0) if h∗ ∈ H0

guard (h∗, H1) otherwise

guard (h∗, ϕ[H]) = {ϕ} ∪ guard (h∗, H)

guard (h∗, µh′. H ′) = guard (h∗, H ′) (h′ 6= h)

Notice that we don’t need to treat the case guard (h, µh. H),
because h does not occur freely in µh. H.

For example, consider ϕ[α · h · ϕ′[h]] · h. Then, the first
occurrence of h is guarded by {ϕ}, the second one is guarded
by {ϕ, ϕ′}, and the third one is unguarded.

The next two lemmas exploit guards to tell when a his-
tory expression has ϕ-framings or redundant framings. Also,
they help proving that redundant framings can be safely re-
moved, as stated in the next section.

Lemma 1.
�
H � ρ has ϕ-framings, if:

(1a) for some h ∈ fv(H), ρ(h) has ϕ-framings, or

(1b) for some occurrence of h ∈ fv(H) and set of policies
Φ, h is guarded by {ϕ} ∪ Φ.

Lemma 2.
�
H � ρ has redundant framings, if:

(2a) for some occurrence of h ∈ fv(H), ρ(h) has redundant
framings, or

(2b) for some occurrence of h ∈ fv(H) and some Φ, h is
guarded by {ϕ} ∪ Φ, and ρ(h) has ϕ-framings, or

(2c) H = µh.H ′, and some occurrence of h is guarded in H ′.

3.2 Elimination of the redundant framings
The semantics of a history expression can have redundant

framings. As a consequence, an automaton recognizing all
and only the valid histories needs to have the expressive
power of pushdown automata. This complexity is not ac-
ceptable. Thus, we introduce a transformation that, given a
history expression H, produces an expression H ′ such that
(i) H is valid if and only if H ′ is valid, and (ii) the histories
generated by H ′ can be verified by a finite state automaton.

Let H be a (possibly non-closed) history expression. With-
out loss of generality, assume that all the variables in H have

distinct names. We define below H ↓Φ,Γ, the expression pro-
duced by the regularization of H against a set of policies Φ
and a mapping Γ from variables to history expressions.

Regularization of history expressions

ε↓Φ,Γ = ε

h↓Φ,Γ = h

α↓Φ,Γ = α

(H · H ′)↓Φ,Γ = H ↓Φ,Γ · H ′ ↓Φ,Γ

(H + H ′)↓Φ,Γ = H ↓Φ,Γ + H ′ ↓Φ,Γ

ϕ[H]↓Φ,Γ =

�
H ↓Φ,Γ if ϕ ∈ Φ

ϕ[H ↓Φ∪{ϕ},Γ] otherwise

(µh. H)↓Φ,Γ = µh. (H ′σ′ ↓Φ,Γ{(µh.H)Γ/h} σ)

where H = H ′{h/hi}i, hi fresh, h 6∈ fv(H ′), and

σ(hi) = (µh.H)Γ↓Φ∪guard(hi,H′),Γ

σ′(hi) =

�
h if guard (hi, H

′) ⊆ Φ

hi otherwise

Intuitively, H↓Φ,Γ results from H by eliminating all the
redundant framings, and all the framings in Φ. The envi-
ronment Γ is needed to deal with free variables in the case
of nested µ-expressions, as shown by Example 2 below. We
sometimes omit to write the component Γ when unneeded,
and, when H is closed, we abbreviate H ↓∅,∅ with H ↓.

The last two regularization rules would benefit from some
explanation. Consider first a history expression of the form
ϕ[H] to be regularized against a set of policies Φ. To elim-
inate the redundant framings, we must ensure that H has
neither ϕ-framings, nor redundant framings itself. This is
accomplished by regularizing H against Φ ∪ {ϕ}.

Consider a history expression of the form µh.H. Its reg-
ularization against Φ and Γ proceeds as follows. Each free
occurrence of h in H guarded by some Φ′ 6⊆ Φ is unfolded
and regularized against Φ∪Φ′. The substitution Γ is used to
bind the free variables to closed history expressions. Tech-
nically, the i-th free occurrence of h in H is picked up by
the substitution {h/hi}, for hi fresh. Note also that σ(hi)
is computed only if σ′(hi) = hi.

As a matter of fact, regularization is a total function, and
its definition induces a terminating rewriting system.

Example 1. Let H0 = µh. H, where H = α+h ·h+ϕ[h].
Then, H can be written as H ′{h/hi}i∈0..2, where H ′ = α +
h0 · h1 + ϕ[h2]. Since guard (h2, H

′) = {ϕ} 6⊆ ∅:

H0 ↓∅ = µh. H ′{h/h0, h/h1}↓∅ {H0 ↓ϕ /h2}

= µh. α + h · h + ϕ[H0 ↓ϕ]

To compute H0 ↓ϕ, note that no occurrence of h is guarded
by Φ 6⊆ {ϕ}. Then:

H0 ↓ϕ = µh. (α + h · h + ϕ[h])↓ϕ = µh. α + h · h + h

Since
�
H0 ↓ϕ � = {α}ω has no ϕ-framings, we have that�

H0 ↓ � = � {α}ωϕ[{α}ω] � ω
has no redundant framings.

Example 2. Let H0 = µh. H1, where H1 = µh′. H2, and
H2 = α + h · ϕ[h′]. Since guard (h, H1) = ∅, we have that:

H0 ↓∅,∅ = µh. (H1 ↓∅,{H0/h})

Note that H2 can be written as H ′
2{h/h0}, where H ′

2 = α +
h · ϕ[h0]. Since guard (h0, H

′
2) = {ϕ} 6⊆ ∅, it follows that:

H1 ↓∅,{H0/h} = µh′. H ′
2 ↓∅,{H0/h,H1{H0/h}/h′}

{H1{H0/h}↓ϕ,{H0/h} /h0}

= µh′. α + h · ϕ[h0]

{(µh′. α + H0 · ϕ[h′])↓ϕ,{H0/h} /h0}

= µh′. α + h · ϕ[H3 ↓ϕ,{H/h}]

= α + h · ϕ[H3 ↓ϕ,{H/h}]

where H3 = µh′. α + H0 ·ϕ[h′], and the last simplification is
possible because the outermost µh′ binds no variable. Since
guard (h′, α + H0 · ϕ[h′]) = {ϕ} ⊆ {ϕ}, it follows that:

H3 ↓ϕ = µh′. (α + H0 · ϕ[h′])↓ϕ = µh′. α + H0 ↓ϕ ·h′

To compute H0 ↓ϕ, note that {ϕ} contains both guard (h, H1) =
∅, and guard (h′, H2) = {ϕ}. Then:

H0 ↓ϕ = µh. (µh′. α + h · ϕ[h′])↓ϕ

= µh. µh′. (α + h · ϕ[h′])↓ϕ

= µh. µh′. α + h · h′

Putting together the computations above, we have that:

H0 ↓∅ = µh. α + h · ϕ[H3 ↓ϕ]

H3 ↓ϕ = µh′. α + � µh. µh′. α + h · h′ � · h′

We conclude this subsection by establishing the following
basic property of regularization.

Theorem 1. H ↓ has no redundant framings.

3.3 Normalization of histories
So far, we have proved that regularization makes history

expressions to generate histories with no redundant fram-
ings. We now show that regularization also preserves the
validity of histories.

It is convenient to introduce a normal form for histories.
It permits to compare the histories produced by an expres-
sion H with those of the regularization of H.

Normalization of histories

ε⇓Φ = ε

α⇓Φ = (� Φ) [α]

(HH′)⇓Φ = H⇓Φ H′⇓Φ

(H∪H′)⇓Φ = H⇓Φ ∪ H′⇓Φ

ϕ[H]⇓Φ = H⇓Φ∪{ϕ}

Intuitively, normalization transforms histories with policy
framings into histories with local checks. Indeed, η ⇓Φ is
intended to record that each event in η must obey to all the
policies in Φ. This is apparent in the second and in the last
equation above.

Note that constructing the normal form of a history re-
quires counting the framing openings and closings (see the
last equation): a pushdown automaton is therefore needed.

We abbreviate H⇓∅ with H⇓. Note that H⇓∅ is defined
if and only if H has balanced framings.

Example 3. Consider the history η = αϕ[α′ϕ′[α′′]]. Its
normal form is computed as follows:

η⇓ = α⇓ (ϕ[α′ϕ′[α′′]])⇓

= α (α′ϕ′[α′′])⇓ϕ

= α (α′⇓ϕ) (ϕ′[α′′])⇓ϕ

= α ϕ[α′] (α′′⇓ϕ,ϕ′)

= α ϕ[α′] (ϕ ∧ ϕ′)[α′′]

The following theorem establishes that a history expres-
sion H and its regularization H ↓ have the same normal
form.

Theorem 2.
�
H ↓ � ⇓ =

�
H � ⇓.

The next theorem states that normalization also preserves
the validity of histories.

Theorem 3. A history η is valid iff η⇓ is valid.

Summing up, we conclude that a history expression H is
valid if and only if its regularization H ↓ is valid.

4. VERIFICATION
We now introduce a procedure to verify the validity of his-

tory expressions. Our technique is based on model check-
ing Basic Process Algebras (BPAs) with Büchi automata,
which is known to be decidable [8]. Furthermore, several
algorithms and tools show this approach feasible.

BPAs provide a natural characterization of (possibly in-
finite) histories. A BPA process is given by the following
abstract syntax:

p ::= ε | α | p · p′ | p + p′ | X

where ε denotes the terminated process, α ∈ Σ, X is a vari-
able, · denotes sequential composition, + represents (nonde-
terministic) choice.

A BPA process p is guarded if each variable occurrence in
p occurs in a subexpression α · q of p. We assume a finite

set ∆ = {X
def
= p} of guarded definitions, such that each

variable X has a unique defining equation, i.e. there exists

a single, guarded p such that {X
def
= p} ∈ ∆. As usual, we

consider the process ε · p to be equivalent to p.
The operational semantics of BPAs is given by the follow-

ing labelled transition system, in the SOS style:

Operational Semantics of BPA processes

α
α
−→ ε

p
α
−→ p′

p + q
α
−→ p′

q
α
−→ q′

p + q
α
−→ q′

p
α
−→ p′

p · q
α
−→ p′ · q

p
α
−→ p′ X

def
= p ∈ ∆

X
α
−→ p′

We denote with
�
p0, ∆ � the set { (ai)i | p0

a1−→ · · ·
ai−→ pi }

∪ { (ai)i | p0 · · ·
ai−→ · · · }. We write

�
p,∆ � fin for the first set,

containing the strings that label finite computations. We
omit the component ∆, when empty.

We now introduce an encoding of history expressions into
BPAs, in the line of [15]. The encoding takes as input a
history expression H and a mapping Ψ from history vari-
ables h to BPA variables X. Without loss of generality,
we assume that all the variables in H have distinct names.
The encoding outputs a BPA process p and a finite set of
definitions ∆.

To avoid the problem of unguarded BPA processes, we
assume a standard preprocessing step, that inserts a dummy
event before each unguarded occurrence of a variable in a
history expression. Dummy events are eventually discarded
before the verification phase.

The rules that transform history expressions into BPAs
are rather standard. History events, variables, concatena-
tion and choice are mapped into the corresponding BPA
counterparts. A history expression µh.H is encoded into a
fresh BPA variable X, bound to the translation of H in the
set of definitions ∆ (the mapping Ψ is extended by binding
h to X). An expression ϕ[H] is encoded in the BPA for H,
surrounded by the opening and closing of the ϕ-framing.

Encoding of history expressions into BPAs

BPA(ε,Ψ) = 〈ε, ∅〉

BPA(α, Ψ) = 〈α, ∅〉

BPA(h, Ψ) = 〈Ψ(h), ∅〉

BPA(H0 · H1, Ψ) = 〈p0 · p1, ∆0 ∪ ∆1〉,

where BPA(Hi, Ψ) = 〈pi, ∆i〉

BPA(H0 + H1, Ψ) = 〈p0 + p1, ∆0 ∪ ∆1〉,

where BPA(Hi, Ψ) = 〈pi, ∆i〉

BPA(µh.H, Ψ) = 〈X, ∆ ∪ {X
def
= p}〉,

where BPA(H,Ψ{X/h}) = 〈p, ∆〉
and X 6∈ dom(∆)

BPA(ϕ[H], Ψ) = 〈[ϕ · p ·]ϕ, ∆〉,

where BPA(H,Ψ) = 〈p, ∆〉

We now state the correspondence between the semantics
of history expressions and of BPAs. The histories generated
by a history expression H are all and only the finite prefixes
of the strings that label the computations of BPA(H). Re-
call that this is enough, because validity is a safety property.

Lemma 3.
�
H � =

�
BPA(H) � fin.

A standard approach to define properties of computations
is modelling them as an infinitary language accepted by a
Büchi automaton. Büchi automata are finite state automata
whose acceptance condition roughly says that a computa-
tion is accepted if some final state is visited infinitely often;
see [16] for details.

Since we also need to establish the validity of finite his-
tories, we use the standard trick of assuming that a finite
string is padded at the end with a special symbol $. Then,
each final state has a self-loop labelled with $. For brevity,
we will omit these transitions hereafter.

Given a policy ϕ, we are interested in defining a formula
ϕ[] to be used in verifying that a history η, with no redun-
dant framings of ϕ, respects ϕ within its scope.

Let the formula ϕ be defined by the Büchi automaton
Aϕ = 〈Σ, Q, Q0, ρ, F 〉, with Q = {q1, . . . , qk}. We assume

q1 q2

αr
q0

αw αr

αw

αr, αw

Figure 1: Büchi automaton for ϕ.

q1 q2

q
′

0
q

′

1

αr
q0

[ϕ]ϕ[ϕ]ϕ

αr

αw αr

αw αr

αw

αr, αw

Figure 2: Büchi automaton for ϕ[].

that Aϕ has a non-final sink state from which you cannot
leave.

We define the formula ϕ[] through the Büchi automaton
Aϕ[] = 〈Σ′, Q′, Q0, ρ

′, F ′〉, where: Σ′ = Σ∪{ [ϕ,]ϕ | ϕ ∈ Π },
Q′ = F ′ = Q ∪ { q′i | qi ∈ F }, and

ρ′ = ρ ∪ { 〈qi, [ϕ, q′i〉 | qi ∈ F } ∪ {〈q′i,]ϕ, qi〉}

∪ { 〈q′i, α, q′j〉 | 〈qi, α, qj〉 ∈ ρ and qj ∈ F }

∪ { 〈q, [ϕ′ , q〉 ∪ 〈q,]ϕ′ , q〉 | q ∈ Q′ and ϕ′ 6= ϕ }

Intuitively, the automaton Aϕ[] is partitioned into two
layers. The first layer is a copy of Aϕ, where all the states
are final. This models the fact that we are outside the scope
of ϕ, i.e. the history leading to any state in this layer has
balanced framings of ϕ (or none).

The second layer is reachable from the first one when
opening a framing for ϕ, while closing a framing gets back.
The transitions in the second layer are a copy of those con-
necting final states in Aϕ. Consequently, the states in the
second layer are exactly the final states in Aϕ.

Since Aϕ is only concerned with the verification of ϕ, the
transitions for opening and closing framings ϕ′ 6= ϕ are ren-
dered as self-loops.

Example 4. Let ϕ be the policy saying that there cannot
be an event αw after an αr (actually, this is the policy of
Section 2, where read and write become αr and αw). The
Büchi automaton for ϕ is in Fig. 1, while the one for ϕ[] is
in Fig. 2. For example, the history [ϕαr]ϕαw is accepted by
Aϕ[], while αr[ϕαw]ϕ is not (recall that we do not draw the
self-loops labelled by $).

The following lemma relates validity of histories with the
formulae ϕ[]. A history η is valid if and only if it satisfies
ϕ[] for all the policies ϕ spanning over η.

Lemma 4. A history η with no redundant framings is valid
if and only if η |= ϕ[], for all ϕ such that [ϕ ∈ η.

Recall that Büchi automata are closed under intersec-
tion [16]. Therefore, a valid history η is accepted by the
intersection of the automata Aϕ[], for all ϕ occurring in η.

The main result of our paper follows. Validity of a his-
tory expression H can be decided by showing that the BPA
generated by the regularization of H satisfies a ω-regular
formula.

Theorem 4.
�
H � is valid if and only if:

�
BPA(H ↓) � |= �

ϕ∈H

ϕ[]

Proof. By theorem 3,
�
H � is valid if and only if

�
H � ⇓

is valid. By theorem 2,
�
H � ⇓=

�
H ↓ � ⇓. By theorem 3,�

H ↓ � ⇓ is valid if and only if
�
H ↓ � is valid. By theo-

rem 1,
�
H ↓ � has no redundant framings. By lemma 3,�

H ↓ � =
�
BPA(H ↓) � fin. By continuity,

�
BPA(H ↓) � fin is

valid if and only if
�
BPA(H ↓) � is valid. Then, by lemma 4,�

BPA(H ↓) � is valid iff
�
BPA(H ↓) � |= � ϕ∈H ϕ[].

5. CONCLUSIONS
We have tackled the problem of controlling accesses to

protected objects or critical resources, along the lines of
Skalka and Smith [15]. A novel approach to history-based
access control has been proposed, by endowing security poli-
cies with a local scope. Security policies are regular proper-
ties of histories; histories are abstract representations of the
activities performed while running programs, enriched with
special events that mark the scope of policies. Following [15]
we have also introduced history expressions, that represent
sets of histories.

A history is valid whenever it satisfies all the policies oc-
curring in it, within their scopes. Policy framings explicitly
represent the scope of policies within our histories, and can
be arbitrarily nested. Even though polices are regular prop-
erties, nesting policy framings in history expressions makes
validity of histories a non-regular property. Non-regularity
seemed to prevent us from verifying validity by standard
model checking techniques, but we have been able to trans-
form history expressions so that model checking is feasible.
Finally, we have extended known techniques for that, using
Basic Process Algebras and Büchi automata.

All the above has been carried out on finite histories, but
our results extend to infinite histories by continuity, as va-
lidity turns out to be a safety property (nothing bad will
happen). The extension to infinite histories and the use
of Büchi automata is not an unnecessary complication, as
we are currently considering liveness properties (something
good will happen), which are not prefix closed.

In [3], we consider an abstract language for history-based
access control, based on the λ-calculus. We define for it
a type and effect system that, given a program, extracts
a history expression H. The set of histories represented
by H includes those obtainable at run-time. One can then
exploit our present proposal to check at compile-time if a
program will respect a given policy at run-time, so giving
firm grounds to program optimization.

6. ACKNOWLEDGMENTS
We wish to thank Roberto Zunino, Emilio Tuosto and

Alberto Lluch Lafuente for their keen remarks on prelimi-
nary versions of this paper.

This work has been partially supported by EU project
DEGAS (IST-2001-32072) and FET project PROFUNDIS
(IST-2001-33100).

7. REFERENCES
[1] M. Abadi and C. Fournet. Access control based on

execution history. In Proc. 10th Annual Network and
Distributed System Security Symposium, 2003.

[2] A. Banerjee and D. A. Naumann. History-based access
control and secure information flow. In Workshop on
Construction and Analysis of Safe, Secure and
Interoperable Smart Cards (CASSIS), 2004.

[3] M. Bartoletti. PhD thesis, Università di Pisa,
Forthcoming.

[4] J. A. Bergstra and J. W. Klop. Algebra of
communicating processes with abstraction. Theoretical
Computer Science, 37:77–121, 1985.

[5] F. Besson, T. Jensen, D. Le Métayer, and T. Thorn.
Model checking security properties of control flow
graphs. Journal of Computer Security, 9:217–250,
2001.

[6] T. Colcombet and P. Fradet. Enforcing trace
properties by program transformation. In Proc. 27th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM Press, 2000.

[7] G. Edjlali, A. Acharya, and V. Chaudhary.
History-based access control for mobile code. In
Secure Internet Programming, volume 1603 of Lecture
Notes in Computer Science. Springer, 1999.

[8] J. Esparza. On the decidability of model checking for
several µ-calculi and Petri nets. In Proc. 19th
International Colloquium on Trees in Algebra and
Programming, 1994.

[9] P. W. Fong. Access control by tracking shallow
execution history. In IEEE Symposium on Security
and Privacy, 2004.

[10] C. Fournet and A. D. Gordon. Stack inspection:
theory and variants. ACM Transactions on
Programming Languages and Systems, 25(3):360–399,
2003.

[11] A. Sabelfeld and A. C. Myers. Language-based
information flow security. IEEE Journal on selected
areas in communication, 21(1), 2003.

[12] P. Samarati and S. de Capitani di Vimercati. Access
control: Policies, models, and mechanisms. In
R. Focardi and R. Gorrieri, editors, Foundations of
Security Analysis and Design: Tutorial Lectures,
volume 2171 of LNCS. Springer-Verlag, 2001.

[13] F. Schneider, G. Morrisett, and R. Harper. A
language-based approach to security. In Informatics:
10 Years Back, 10 Years Ahead. Springer-Verlag, 2001.

[14] F. B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security
(TISSEC), 3(1):30–50, 2000.

[15] C. Skalka and S. Smith. History effects and
verification. In Asian Programming Languages
Symposium, 2004.

[16] M. Y. Vardi. An automata-theoretic approach to
linear temporal logic. In Proc. Banff Higher order
workshop conference on Logics for concurrency, 1996.

