UNIVERSITA DEGLI STUDI DI PISA

FACOLTA DI SCIENZE MATEMATICHE FISICHE E NATURALI
CORSO DI LAUREA IN INFORMATICA

TESI DI LAUREA

Static Analysis for Java Security

CANDIDATO

Massimo Bartoletti

RELATORI CONTRORELATORE

Prof. Pierpaolo Degano Prof. Laura Ricci
Prof. Gian-Luigi Ferrari

Anno Accademico 2000/2001

Contents

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4

Introduction

Java security

The classloader
The bytecode verifier
The security manager
An e-commerce example

Related worko

Program model

The access control policy
Basic properties of control flow graphs
Abstract paths Lo L
Concrete paths
Valid paths

Traversable paths

Data Flow Analysis

Basic definitionso
Data flow frameworks
Solutions and their properties

The Worklist-Iteration algorithm

10
11
11
13
16

23
23
28
29
32
34
44
o7
64

5 Static analyses
5.1 The Denied Permissions Analysis

5.2 The Granted Permissions Analysis

5.3 The DP® Analysis
5.4 The GP° Analysis
5.5 The DP'" Analysis
5.6 The GP' Analysis
5.7 The DP? Analysis
5.8 The GP? Analysis
5.9 Optimized stack inspection

6 Conclusions

A An e-commerce example

Index of symbols

Bibliography

CHAPTER 0. CONTENTS

133

135

141

143

Chapter 1

Introduction

A main innovation of the Java platform concerns its approach to security: the
language comes equipped with constructs and mechanisms for expressing and
enforcing security policies. Since the code actually executed is on the form of
an intermediate object-oriented language — the bytecode — bytecode verification

is the basic building block of Java security.

Over the past few years, there has been considerable effort in developing
formal models of the Java bytecode verifier. Some authors showed that the
problem of bytecode verification can be formally understood and described
at static time using type systems [SA98, FM98, FM99a]. All the proposals
are proved to enjoy the type soundness properties (on the bytecode fragments
they consider). Also, the type inference algorithm can be turned into a correct
bytecode verifier, see e.g. [CGQ98, Nip01].

Another crucial aspect of the Java security architecture is the dynamic
check of the permissions granted to running code. Roughly, one has to make
sure that whenever a principal invokes a certain method, it has the rights to.
At run-time, the security policy is enforced by stack inspection: a permission
is granted, provided that it belongs to all principals on the call stack. An
exception are the so-called privileged operations, which are allowed to execute

any code granted to their principal, regardless of the calling sequence.
Since the analysis of stack frames may be expensive, the run-time overhead

due to stack inspection may grow very high: effective techniques which improve

and optimize stack inspection are therefore in order.

6 CHAPTER 1. INTRODUCTION

In this thesis we develop a static analysis which improves run-time check-
ing of permissions. We reduce the number of frames to be examined, while
maintaining the same accuracy of the plain stack inspection algorithm. Also,
our analysis may be used for optimizing bytecode, by moving checks where

they are actually needed, and by removing redundant ones.

Our approach is based on Data Flow Analysis, a static technique for pre-
dicting safe and computable approximations of the set of values that the objects
of a program may assume during its execution. These approximations are then
used to analyze properties of programs in a safe manner: if a property holds
at static time, then it will always hold at run-time. The vice-versa may not

be true: the analysis may “err on the safe side”.

Our main technical contribution is the formulation of two families of data
flow analyses with increasing accuracy. We call them Granted Permissions
(GP) Analyses and Denied Permissions (DP) Analyses, respectively. The anal-
yses are specified over an abstract representation of Java programs proposed in
[JLT98b], which specializes the usual control flow graph by adding information

about security checks, privileged operations and protection domains.

Control flow graphs are given an operational semantics: essentially, the
states that a program can pass through are represented by stacks o, made
of nodes of the graph, each interpreted as an abstraction of the actual stack
frames. The control point is the top n of the stack o : n, and a computation
step is represented by a transition between stacks, written as o > o’. The
operational semantics incorporates a specification of the Java stack inspection
mechanism: this is done through a predicate JDK. The predicate is true for a
state o and a permission P, when P is granted to o according to the security
policy: in this case, we write o = JDK(P). Otherwise, if P is denied to o, the
predicate is false, and we write o ¥ JDK(P).

For each node n, a GP-analysis computes an approximation y(n) of those
permissions that are granted to n in any execution leading to it. Similarly,
a DP-analysis computes an approximation d(n) of the permissions denied to
n in every run leading to it. Both analyses are correct with respect to the

operational semantics. Suppose that n models a security check of permission

P, and that P € y(n) (resp. P € §(n)). Then, whenever there is a derivation
[> --- > 0:n, it always happens o : n = JDK(P) (resp. o :n ¥ JDK(P)).
The approximations computed by our analyses are then used to reduce the
depth at which the stack inspection algorithm stops. When checking privileges
against a permission P, it suffices to reach a frame m such that P € y(m) or
P € 6(m). In the first case the check succeeds, while in the second one an

AccessControlException is raised.

This thesis is organized as follows:

e in chapter 2 we review the Java security architecture, and we report some
of the work done towards a better understanding of this model. Also,
different security-aware frameworks are described, and their properties

are compared to those featured by Java.

e in chapter 3 we introduce our program model, with its syntax and op-
erational semantics. Through this chapter, we see how the translation
from Java bytecode gives rise to particular contraints on the structure
of control flow graphs. When a control flow graph respects these con-
straints, its operational semantics enjoys some properties, needed for our
subsequent formal development. A large portion of this chapter is then

devoted to the proof of these characterizing properties.

e in chapter 4 we give a brief overview of Data Flow Analysis. Our ap-
proach slightly deviates from the standard one, because it is intended to

fit with our program model and with the analyses we will build upon it.

e in chapter 5 we present our static analyses: for each of them, we prove a
correctness result, and we show that an effectively computable solution
always exists. The analyses are ordered according to their degree of ac-
curacy. Furthermore, we show how the stack inspection algorithm can be
optimized once the static information about granted/denied permissions

has been computed.

e finally, chapter 6 contains some concluding remarks, and propose exten-

sions to our analyses, in order to make them more effective in practice.

CHAPTER 1. INTRODUCTION

Chapter 2

Java security

Code mobility presents one of the major challenges in computer security. Java
accepts the challenge by providing a customizable environment, called the
sandbozx, in which untrusted programs are placed: the sandbox prevents un-
trusted code from performing security-critical operations, according to a cus-
tomizable fine-grained policy.

This chapter gives a brief overview of the Java security model. For more
detailed information, we refer the reader to one of the several books that
address this topic, e.g. [MF99, Gon99, Oak01].

A comprehensive example of a security-aware application is provided: it will
be used throughout the thesis to test the effectiveness of our static analyses.

Finally, we review some of the work on the formalization of Java and its

security model. We also present some extensions to the model.

10 CHAPTER 2. JAVA SECURITY

2.1 The class loader

Since Java advocates code mobility, it is equipped with a class loading mecha-
nism, which brings bytecode from the outside into the JVM. Code may come
from different places, either trusted ones (e.g. files on the local disk) or un-
trusted ones (e.g. applets downloaded across the network). Therefore, the

class loader architecture is the first line of defense against security attacks.

Class loaders are organized hierarchically. The bootstrap class loader is
responsible for loading all the classes that are needed to start the JVM. The
other classes (e.g. libraries in the classpath, downloaded applets, etc.) are
loaded by user-defined class loaders. Class loaders form then a tree, having

the bootstrap class loader as root.

Each class loader caches all classes it loads over time. When an user-defined
class loader is asked for a class, it first checks if the class is in the cache: if so,
the class is returned directly. Otherwise, the class loader pass the request to
its parent. This process is repeated until the bootstrap class loader is reached.
If no class loader up in the hierarchy has loaded the requested class before, the

class loader it was first asked for finally attempts to load the class.

This delegation model prevents “class name spoofing” attacks, in which a

malicious class loader replaces trusted classes with hostile ones.

Each class loader L, defines a name space, containing the names of all the
classes that have been loaded by L. Once a class named C has been loaded by
L, it is impossible for another class named C to be placed into the same name
space. Moreover, classes belonging to different name spaces cannot interact:
indeed, they cannot even detect each other’s presence, unless class loaders

provide explicit mechanisms to let them doing so.

Name space separation not only relieves applet programmers from having
to worry about name collisions, but also constitutes a main contribution to

the security (and privacy, too) of the Java platform.

Another task is attained by class loaders: they place each loaded class into
a protection domain. This information will be used by the security manager

to enforce the access control policy.

2.2. THE BYTECODE VERIFIER 11

2.2 The bytecode verifier

Once a class has been loaded, it has to be linked to the rest of the system
before it can be executed. However, in order to preserve security, a verification
step is performed on the loaded class: this is done by statically analyzing the

bytecode, to guarantee that it satisfies some safety properties, e.g.:

e the loaded class file has the correct format;

e the loaded class has a non-final superclass;

e methods are invoked with the correct number and types of arguments;
e objects and variables are initialized before they are used;

e access to classes, methods and variables is done according to their re-

spective access modifiers;
e the operand stack neither overflows nor underflows;

e the class preserves binary compatibility with the classes it refers to.

While any trusted Java compiler produces bytecode that satisfies these

properties, there are several reasons that suggest a deferred verification phase:

e bytecode can be corrupted during network transmission;
e bytecode can be generated on-spot;
e bytecode can be written by hand;

e bytecode can be generated by an hostile compiler.

2.3 The security manager

While both the class loader and the bytecode verifier are mainly concerned
with the safety facet of security, the security manager more directly address the

problem of protecting critical resources from leakage and tampering threats.

12 CHAPTER 2. JAVA SECURITY

A critical resource is protected by ensuring that no code can invoke its
accessor methods without having the rights to. This is done by placing calls
to the AccessController’s checkPermission() method before the accessor

methods of the critical resource (for an example, see section 2.4 in this chapter).

A permission is an access right on a resource. The set of permissions
granted to code is specified by a security policy. Code can be attributed dif-
ferent degrees of trust, according to its origin and digital signature. A policy

is specified by means of a set of grant clauses of the form:

grant signedBy signer,...,signer, codeBase origin {
permission name; target,, action

permission namey target,, actionn

Each clause in the security policy defines a protection domain: by the
foregoing definitions, it turns out that a protection domain is just a mapping
from classes to sets of permissions. As mentioned above, it is responsibility
of the class loader to place each class into the appropriate protection domain

(according to the security policy).

The security policy is enforced by the security manager each time a
checkPermission() is invoked. The security manager decides whether grant-

ing access to the protected resource or not by performing stack inspection.

The stack inspection algorithm, shown in Fig 2.1, is based on the execu-
tion context (i.e. the sequence of method invocations). Each method in the
sequence belongs to a class, which in turn belongs to a protection domain.
Basically, the stack inspection algorithm grants access to a resource if all pro-

tection domains in the current execution context have the required permission.

This strategy is slightly complicated by the presence of privileged code.
When a method is executed in privileged mode, it exploits all of its permissions,

regardless of the other methods in the execution context.

This is useful in client-server systems, where the server runs a security-
critical resource that the client can only access through the interface provided

by the server.

2.4. AN E-COMMERCE EXAMPLE 13

void checkPermission(Permission P)
throws AccessControlException {

for each frame in the current call stack,
starting from the topmost {

if permission P is not granted to the frame
throw an AccessControlException;

if the frame is privileged
return;

Table 2.1: The stack inspection algorithm.

2.4 An e-commerce example

Throughout this thesis we will make use of an example that models a small

e-commerce application. Its UML class diagram if shown in Fig. 2.1.

The ControlledVar class implements a controlled integer variable. This
means that not only the integer variable is properly encapsulated (i.e. it is only
accessible through the public interface), but also its methods are protected by
security checks, which ensure that only principals having appropriate permis-

sions can access the variable.

We assume that ControlledVar is a standard extension, i.e. it is installed
in the directory 1lib/ext/ under the Java home. By default, all permissions

are granted to standard extensions.

The BankAccount class uses the controlled variable balance to implement
a simple account manager. One boolean query and three transactions are
provided by the public interface: each of these methods is protected by an
appropriate security check. Observe that, once a subject has gained access
to one of the methods of the account manager, balance is accessed in privi-
leged mode. Of course, we assume that the permissions to read and write the

controlled variable are granted to BankAccount.

14

<<interface>>
Client

CHAPTER 2. JAVA SECURITY

Spender Saver RoBber
transact () transact () transact ()
BankAccount

ControlledVar

canpay(anount)
debi t (anmount)
credit (anmount)
| oan(anmount)

var: int

read()
wite(val ue)

Figure 2.1: UML class diagram for the e-commerce application.

public class ControlledVar {
private int var;

public void write(int newValue) {

AccessController.checkPermission(write) ;

var = newValue;

}
public int read() {

AccessController.checkPermission(read) ;

return var;

Three clients aim at exploiting the services offered by the account manager:

of these, two (Spender and Saver) are regarded as trusted clients, while the

other one (Robber) is considered untrusted, and no permissions are granted to

it. However, only Saver has enough permissions to accomplish its task (i.e.

depositing money into the account). A Spender can perform its transactions

(i.e. drawing on the account) as long as it has enough cash; as it tries to ask

2.4. AN E-COMMERCE EXAMPLE 15

public class BankAccount {
private ControlledVar balance;

public boolean canpay(final int amount) {
AccessController.checkPermission(canpay) ;
Object res = AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
return new Boolean(balance.read() > amount);
}
b;
return ((Boolean) res).booleanValue();
}
public void debit(final int amount) {
AccessController.checkPermission(debit);
if (this.canpay(amount)) {
AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
balance.write(balance.read() - amount);
return null;
}
b
}
}
public void credit(final int amount) {
AccessController.checkPermission(credit);
AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
balance.write(balance.read() + amount);
return null;
}
b;
}
public void loan(final int amount) {
AccessController.checkPermission(loan) ;
credit (amount) ;

for a loan, the access controller raises a security exception, because Spender

is not granted the required loan permission.

Table 2.2 shows the relation between classes, protection domains, and per-
missions: this relation actually defines the security policy for the e-commerce
application. The complete Java sources for the example, together with an

appropriate policy file, are contained in appendix A.

16 CHAPTER 2. JAVA SECURITY

public class Spender extends Client {

public void tramsact() {
if (account.canpay(AMOUNT)) account.debit (AMOUNT) ;
else account.loan(AMOUNT);

}
public class Saver extends Client {

public void tramsact() {
account.credit (AMOUNT) ;
}
}

public class Robber extends Client {
public void tramsact() {

account.loan (AMOUNT) ;
account.debit (AMOUNT) ;

}
}
Class Protection Domain Permissions
Spende .
ga:err Client canpay, credit, debit
Robber Unknown
BankAccount Bank canpay, credit, d.ebit, loan,
read, write
ControlledV
entroriediar System AllPermission
Ecommerce

Table 2.2: Security policy for the e-commerce application.

2.5 Related work

Bytecode verification

Although bytecode verification is one the critical parts of the Java security
architecture, only an informal specification [LY96] and a reference implemen-
tation of the verifier are supplied by Sun. Then, a lot of research has been
done in order to provide a formal description of the Java bytecode verifier.
Stata and Abadi [SA98| take a minimal subset of the JVM language, in-

cluding the “jump” and “return” instructions for JVM subroutines. Then,

2.5. RELATED WORK 17

they define a dynamic semantics for the language, and a type system which is
proved to be sound with respect to the semantics. The same goal is reached by
Hagiya and Tozawa [HT98] by means of a different type system, which enables

a simpler proof of type soundness.

Freund and Mitchell extend the work of Stata and Abadi by adding con-
structors and object initialisation [FM98], exception handling [FM99b|, and,
finally, an almost-complete subset of the JVM language including classes, in-
terfaces, methods and arrays [FM99a]. Each of these fragments of the JVM
language is proved to enjoy the type soundness property. Moreover, with the
insight gained by carrying out the soundness proofs, they show a bug in the
Sun’s implementation of the bytecode verifier: this strengthen the opinion that
a formal specification of the bytecode verifier is needed in order to make the

Java language secure.

Bigliardi and Laneve [BLOO0] give a further extension of the work of Freund
and Mitchell, taking into account thread creation and the synchronization
primitives. They prove that, for the pieces of bytecode accepted by the verifier,

any critical section is executed in mutual exclusion.

Posegga and Vogt [PV98] show how bytecode verification can be reduced
to a model checking problem. The semantics of bytecode programs is given
by employing the formalism of Abstract State Machines (ASM). Then, it is
shown how ASM rules can be translated into propositional formulae, which

are directly amenable to the SMV model checker.

Coglio, Goldberg and Qian [CGQ98] specify bytecode verification as a data
flow analysis problem. Then, the Specware system is used in order to convert
their formalization into a provably-correct implementation of the verifier.

Nipkow [Nip01] develops an abstract framework to transform the type in-
ference algorithm of bytecode verification into a correct bytecode verifier. This
task is accomplished by using the Isabelle/HOL theorem prover.

Dean [Dea97, Dea99] models dynamic linking in PVS. Then, he proves that
dynamic linking does not interfere with static type checking.

Jensen, Le Metayer and Thorn [JLT98a] and Qian, Goldberg and Coglio

[QGCO00] provide formal specifications of Java class loading. Jensen et al. show

18 CHAPTER 2. JAVA SECURITY

how the type confusion bug found by Saraswat [Sar97] can be derived in their

model. Qian et al. prove that their specification enjoys type safety.

Fong and Cameron [FC98, FC99, FC00| propose a framework called proof
linking, that supports the distributed verification of Java bytecode. They
state sufficient condition under which their implementation of proof linking is

consistent with standard bytecode verification.

Stack inspection

Many authors advocated the use of static techniques in order to optimize the

check of security properties.

Jensen, Le Metayer and Thorn [JLT98b] make one of the first attempts to
apply static tecniques to the verification of global security properties. They
formalize classes of security properties through a linear time temporal logic.
They show that a large class of policies (including Java stack inspection) can
be expressed in this formalism, while more sophisticated ones (like the Chinese
Wall policy) are not. Model checking is then used to prove that local security
checks, inserted at certain points in the code, enforce a given global security
policy. Under the additional hypothesis that programs do not contain mutual
recursion, they prove that it is possible to perform the verification of a global
security property in a finite number of steps. The problem with mutual re-
cursion has been fixed in a subsequent paper by the same authors and Besson
[BJLTO01]. In this paper, they also propose a model checking technique for the
verification of global security properties, based on the translation from linear-
time temporal formulae to deterministic finite-state automata. The soundness
and completeness of the method are proved, and an example shows how it can

be applied to the analysis of Java programs.

Nitta, Takata and Seki [NTSO01] address the same problem of Jensen’s,
except that they use regular languages instead of temporal logic to express
security properties. This formalization is more powerful than Jensen’s, because
the class of regular languages strictly contains the class of languages generated
by linear-time temporal formulae. Moreover, they show that the verification

problem is decidable also for problems with mutual recursion.

2.5. RELATED WORK 19

The problem with these approaches is that, given an arbitrary program, it
seems hard to mechanically guess a “suitable” global security property for that

program, i.e. a property that, if enforced, would guarantee safe execution.

Wallach, Appel and Felten [WF98, Wal99, WAF00] formalize stack inspec-
tion by exploiting the ABLP belief logic presented in [ABLP93]. They propose
a technique called security-passing style, which allows standard optimizations,
such as method inlining and elimination of tail recursion, to be performed
without interfering with the stack inspection mechanism. They suggest some

optimizations to reduce the overhead due to security-passing style.

Pottier, Skalka and Smith [SS00, PSS01] model the Java security architec-
ture by a A-calculus, whose operational semantics incorporates a specification
of Java stack inspection. Then, they show how the security-passing style pro-
posed by Wallach and Felten gives rise to a type system, which can statically
predict the outcome of some of the access control decisions contained in a term.
Observe that the last two approaches implicitly characterize the checks that

are redundant, while our data flow analyses will effectively compute them.

Fournet and Gordon [FGO1] investigate the limitations of stack inspection
in the abstract setting introduced by [PSS01]. They provide examples of how
the interaction between trusted and untrusted code may give rise to security
breaches. Moreover, they show how stack inspection affects standard program

transformations, like function inlining and tail-call optimizations.

Extensions to the Java security model

Metha and Sollins [MS98] define a constraint language that makes possible to
express history-based policies, like the Chinese Wall policy (i.e. “an applet
cannot connect to the network after it has read a protected file”). A policy
is a set of conditional rules, whose meaning can depend on past actions: for
example, an applet can be labelled as “suspicious” after it has read a protected
file; on the other hand, another rule may estabilish that only applets labelled
as “trusted” can gain access to the network. A logging facility keeps track of all
potentially dangerous actions performed by applets; this information is then

used by the extended security manager in order to enforce the given policy.

20 CHAPTER 2. JAVA SECURITY

Hauswirth, Kerer and Kurmanowytsch [HKKO00] present the Java Secure
Execution Framework (JSEF), which allows the definition of subtractive per-
missions, an hierarchical organization of security policies and the interactive

negotiation of permissions.

Walker [Wal00] propose an approach which is orthogonal to Jensen’s [JLT98b].
When a security-unaware program is compiled, a centralized security policy
dictates where to insert run-time checks, in order to obtain a provably-secure
compiled code. An optimization phase follows: whenever a security check is
removed, it is replaced by a proof that the optimized code is still safe. This is
done by means of typed compilation schemata: types encode assertions about
program security, ensuring that no run-time violation of the security properties
will occur. Finally, a correct verification software ensures that any code obeys
the centralized security policy, before it can be executed. Observe that, in this
way, compilers are not required to be trusted. Security properties are specified
by security automata [Sch98, ES99]. Schneider claims that this mechanism can
enforce any safety property, by inserting appropriate run-time checks. How-
ever, other properties not involving safety (e.g. information flow, resource

availability, liveness, performance) are not expressible by security automata.

Karjoth, Lange and Oshima [KLO97| present a security model for aglets,
a Java-based paradigm for distributed computation. Mobile agents introduce
new challenges in computer security, because both the aglets and their execu-

tion environment are mutually exposed to security threats.

Several work has also been done with the purpose of thwarting denial of
service attacks, like e.g. resource stealing and antagonism. However, all of
these approaches rely on empirical tecniques: in fact, it seems hard to formally
capture the idea of “denial of service attack”, because, for example, there is no
way to distinguish between an hostile applet trying to allocate a lot of memory

and an image-processing applet trying to make useful job.

Shin and Mitchell [SM98] introduce bytecode modification, a tecnique that
instantiates to Java applets the more general approach of software fault isola-
tion by Lucco et al. [WLAG93|. Before an untrusted applet is executed by the

Java virtual machine, a proxy server modifies the received bytecode in order

2.5. RELATED WORK 21

to perform some monitoring of security-critical resources. In this way, sev-
eral annoyance attacks (e.g. window consuming attacks, e-mail forging, URL

spoofing, annoying sound attacks) can be prevented.

Acharya, Ranganathan and Saltz [ARS97] implement Sumatra, an exten-
sion of Java that supports resource-aware mobile programs. A distributed
resource monitor (called Komodo) provides information about the availabil-
ity of given critical resources (e.g. network latency, network bandwidth, CPU

cycles), and mobile Sumatra programs then react accordingly.
The Java Authentication and Authorization Service (JAAS), presented in
[LGK™99], extends the Java security model by enabling more sophisticated

access control policies, based on the principal who actually runs the code.

22

CHAPTER 2. JAVA SECURITY

Chapter 3

Program model

3.1 Syntax

Since, in the Java security model, access control decisions are made by looking
solely into the call stack, we can base our analyses on an abstraction of the
bytecode language where only security checks and control flow are taken into
account. Thus, we model a bytecode program as an oriented graph, whose

structure is specified by the following definition:

Definition 3.1.1. A control flow graph is a triple G = (N, E, N¢pspy), where:

e N is the set of nodes, including a distinguished element 1. Each node
n € N\ {.Ln} is associated with a label £(n), describing the control
flow primitive represented by the node. Labels give rise to three kinds
of nodes: call nodes, representing method invocation, return nodes,
which represent return from a method, and check nodes, which enforce
the access control policy. We can think of a node labelled check(P) as
having the same meaning of an AccessController.checkPermission(P)
instruction in the Java language. The distinguished node 1y plays the

technical role of a single, isolated entry point.

o E=Euu W Eypans W Eepiry © N X (N\{Ln}) is the set of edges. Edges
are split into call edges n — n' € E 4y, modelling interprocedural flow,
and transfer edges n --+ N’ € Eyp4n5, which instead correspond to intra-

procedural flow. Moreover, we have the set of entry edges &— n € Epypy,

24 CHAPTER 3. PROGRAM MODEL

containing all pairs (Ln, 1) for n € N¢pypy. The Ly element only appears
in entry edges. Since the flow from a return node m to next instruction n’
of the respective call node n is not explicitly represented by an element

(m,m’) € E, we indicate E as the set of abstract edges (cf. def. 3.5.17).

® Neny € N\ {Ln] is the non-empty set of entry nodes. We assume
that a program may have many entry points, as it actually happens with
programs designed to be launched both as applets and as stand-alone

applications.

In what follows, we assume that all the information above is extracted
from the bytecode, e.g. by the Control Flow Analysis techniques presented
in [GDDC97, GHM00, Muc97, NNH99, SHR 00, TP00]. Unfortunately, these
analyses are always approximated for object-oriented languages with dynamic
resolution of method invocations. In Java, for example, when a program in-
vokes an instance method on an object, the virtual machine may have to choose
among various implementations of that method. The decision is not based on
the declared type of the object, but on the actual class the object belongs to:
since this is statically undecidable, Control Flow Analyses over-approximate
the set of methods that can be invoked at each program point. This approxi-
mation is safe, in the sense that any actual execution flow is represented by a
path in the control flow graph. However, the converse may not be true: some
paths may exist which do not correspond to any actual execution. This is a
main source of approximation for the static analyses built over control flow
graphs. Another source of approximation is the fact that control flow graphs

hide any data flow information.

Example 3.1.2. The control flow graph extracted from the Java program
for the e-commerce application is shown in figure 3.1. Observe that the condi-
tional constructs are modelled by non-determinism in the interprocedural flow.
Circled nodes represent calls that enable their privileges (i.e. each call within
the run() method of a PrivilegedAction object). Solid boxes enclose nodes
belonging to the same methods, while dashed boxes enclose methods belonging

to the same classes.

3.1. SYNTAX 25

Ecommerce

ni: return

Robber

Saver

Spender

transact () transact ()

transact ()

7 4

nz: call ns5: call : : /
4, Co Y\ Do nz: call

A - v - S

. . ' : : \)

n3: call ny4: call : : Ne: call : : SN

\ AN
BankAccount
canpay () debit () credit ()

ng: check(P’Canpay)

MNio: return

ControlledVar

r
n11: check(Pgepit)

\

[~—r— mni2: call

|

Ni15: return

T
n16: check(Pioan)

\

mni7: call—

v

T18: return

write()

T
N19: check(P redit)

/ ?

N22: return

\4
| 25: check(Puyrite)

'

N26: return

Figure 3.1: Control flow graph for the e-commerce application.

26 CHAPTER 3. PROGRAM MODEL

Throughout this chapter, we will put constraints on the structure of control
flow graphs, so that they more appropriately reflect some peculiarities of the
Java bytecode. When a control flow graph will satisfies each of the given con-
straints, we say that it is well-formed. Now, whenever one of these constraints
is stated, it will be clear that, for any admissible Java program, the constraint
will be automatically satisfied by the derived control flow graph. Therefore, in

what follows we shall always assume that control flow graphs are well-formed.

Well-formedness constraint 1. Edges do not overlap. This means that,
if a call edge connects two nodes n and n’, then no transfer edge may exist

between n and n’ (with the same direction), and vice versa. Formally:
Ecr N Epans = 9

This constraint is always satisfied by control flow graphs derived from actual
bytecode: in fact, the instruction which follows a method invocation cannot
be the first instruction of that method.

Well-formedness constraint 2. Each caller has a callee, i.e.:
{m)=call = I eN.n—n'

Since we assume that the whole program is available prior the construction of
its control flow graph, this constraint is clearly satisfied. If we were dealing with

dynamically linkable control flow graphs, this constraint should be relaxed.
Well-formedness constraint 3. Checks do not admit outgoing calls, i.e.:
¢(n) =check(P) A (n,n)eE = n--+n'

This implies that, if a call stack contains a check node, then it is the topmost
node. This constraint is always satisfied, because control flow graphs model

all the code inside a checkPermission method as a single check node.

3.1. SYNTAX 27

Well-formedness constraint 4. Return nodes have not outgoing edges, i.e.:
{m)=return = —-3In'eN.(n,n')eE

This implies that, if a call stack contains a return node, then it is the topmost
node. Since return nodes model exit points of methods (e.g. the ireturn and
areturn instructions) they cannot have outgoing call edges, because this kind
of flow only originates from method invocations (e.g. the invokevirtual and
invokespecial instructions). Return nodes cannot have outgoing transfer
edges, either: in fact, transfer edges only model interprocedural flow. Then,

this constraint is satisfied by any bytecode-derived control flow graph.

28 CHAPTER 3. PROGRAM MODEL

ne Nentry
— [>g]
[l >]
f(n)=call n—n'
, [Dcall]
onmpBP>on:n
£(n) = check(P) o:mtF JDK(P) n--+n'
, [Dcheck]
o.mpPb>o:n
f(m) =return n --» n’
, [Dreturn]
om:m?D> o:mn

Table 3.1: Operational semantics of control flow graphs.

3.2 Semantics

The operational semantics of the language is defined by a transition system
whose configurations are sequences of nodes, modelling call stacks. More for-

mally, we define the set of states as the Kleene closure of N\ { Ly}, i.e.:
I = (N\{Ln})"

A state is represented as a sequence of nodes enclosed in square brackets:
for example, 0 = [ng, ...,y is a state whose top node is ny. Concatenation
between states is implemented by an infix colon operator: for example, if 0 € X
and n € N\ {_Ly}, then 0:m is the concatenation between ¢ and [n].

The transition relation > C X x X is defined in Table 3.1 (the JDK predicate
is defined in Table 3.3). We write 0 > o' when the execution can lead from
0 to o’ in one step. For the purposes of our analyses, we define a reachability

relation - stating when the execution of program G can lead to a given state:

GFo op>o

GHFII GF o

We say that a state o is G-reachable iff G - 0. We say that a node n is

G-reachable iff G F o : n for some state o.

3.3. THE ACCESS CONTROL POLICY 29

n Perm(m)
ny — Ny, N7 { Pcanpaya Pcredit> Pdebit }
N5 — Ng (%]
ng — Nz { Pcanpay) Pcredit) Pdebit) Ploan) Pread) Pwrite }
Mo —Nqp,MN23 —Nyg Permission

Table 3.2: Permissions for the e-commerce application.

3.3 The access control policy

In order to give a specification of the access control policy being consistent
with the one introduced in chapter 2, we endow each node n € N \{ Ly } with

the following additional information:
e Perm(n), the set of permissions associated with n.
e Priv(n), a boolean predicate telling whether n represents privileged code.

The mapping between nodes and permissions for the e-commerce applica-
tion in Fig. 3.1 is illustrated in Table 3.2, where we denote with Permission
the set of permissions which actually occur in the control flow graph of interest:

Permission = U Perm(m) U U{P | £(n) = check(P)}
neN neN

We assume that permissions are drawn out from a finite set. Although the
Java security model allows the dynamic instantiation of permissions (imagine
an application that iteratively asks the user for a file name and then tries to
open the corresponding file), we only consider the permissions that can be
determined statically. This makes sense, because we are only interested in

control flow graphs which are amenable to static analysis.

Well-formedness constraint 5. As described in chapter 2, the Java secu-
rity model bounds permissions to whole protection domains: then, all nodes
belonging to the same protection domain carry the same permission set. Since
our model does not handle protection domains explicitly, we only require that

nodes belonging to the same method have the same permissions, i.e.:

n-->n' = Perm(m)= Perm(m')

30 CHAPTER 3. PROGRAM MODEL

Well-formedness constraint 6. Only call nodes can be privileged, i.e.:
Privin) = {(n)=call

In general, also security checks can be enclosed with privileged actions: how-
ever, privileged check nodes make little sense, because it is always possible,
during the construction of the control flow graph, to determine whether a
privileged check will succeed. Similarly, there is not point in enabling return
nodes to be privileged, because a return node will never be on the call stack

when stack inspection is performed.

In our formalization, we use a slightly simplified version of the full access
control algorithm presented in chapter 2, as we let privileged frames to exploit
all of their own permissions. The simplified algorithm, described in Fig. 3.2,
performs a top-down scan of the call stack. Each frame in the stack refers to the
protection domain containing the class to which the called method belongs.
As soon as a frame is found whose protection domain has not the required
permission, an AccessControlException is raised. The algorithm succeeds
when a privileged frame is found that carries the required permission, or when
all frames have been visited. We formally specify this behaviour by means of

the inference rules in Table 3.3.

Algorithm 1: Stack inspection

CHECK-PERMISSION(P, o)
1 while o # NIL do

2 n « POP(0)

3 if P ¢ Perm(n)

4 then throw “access control exception”
5 if Priv(n)

6 then return

Figure 3.2: The stack inspection algorithm.

3.3. THE ACCESS CONTROL POLICY 31

- IDKs
[1 - JDK(P)
Pep ~ JDK(P
erm(n) ok JDK(P) [JDKZ]
o:nF JDK(P)
PeP Pri
erm(m) Priv(n) [JDK pyiv]
o:nF JDK(P)

Table 3.3: Specification of the access control policy.

There are several differences between our model and the Java security

model introduced in chapter 2, in addition to those mentioned above:

e in the Java security model, a permission P may be granted to a piece of
code, lying inside a protection domain D, even if P does not belong to
the permissions explicitly associated with D (this may happen through
the implies() method). Our model prevents this behaviour, because

the JDK rules ensure that, for each state o and node n:

P ¢ Perm(n) = o:n¥ JDK(P)

e since our inference rules for JDK are fized, as well as those for the
transition relation >, we are prevented from modelling permissions like
AllPermission and FilePermission("*","write"), as they may breach

security by altering the Java system binaries.

e in our model, the mapping from nodes to permissions is static: once the
security policy is fixed, it cannot change any more. On the contrary, the
Java security model allows the policy to be updated via the refresh()

method of the Policy object.

32 CHAPTER 3. PROGRAM MODEL

3.4 Basic properties of control flow graphs

Lemma 3.4.1. Let:
M=oy > 0y > > 0xg=0:1n

be a derivation. Then:
deld.k—1l.0o;=0

Proof. We proceed by induction on the length of derivations. For the base case, we have
k=1,n € Neptry and ¢ = []: then 09 = 0 by premises. For the inductive case, assume
the lemma is true for all derivations of length lower than k. By case analysis on transition
Okx_1 > Ok, we have:

e case [call]:
{n')=call n'—n
where ox_1=0':n'

o':n' > o'in':in
Here, the i we are looking for is just k — 1.

o case [check]:
L(n') = check(P) o:n'FJDK(P) n/--»n

o:n' > o:n
By the inductive hypothesis, 3i € 0.k — 2. 01 = 0.

e case |return|:
[| {(m) =return n' --»n

o:m':mp o:n
By the inductive hypothesis, 3j € 0..k —2. 05 = o : n/ (clearly, j # 0). Applying the
inductive hypothesis again, we find an i € 0..j — 1 such that oy = o.

O
Corollary 3.4.2.
GFo:rm — GFo

Proof. Let o : n be a G-reachable state, i.e. G I o : n. By definition, this means that a
derivation og I> - - - > 0k exists, with 0p = [] and ox = 0 : . Then, by lemma 3.4.1, we find
that oy = o for some 1 € 0..k — 1. Now, 0g I> - -- > 03 is a derivation for o: thus, GF 0. O

Lemma 3.4.3. Let:

=0y > oy > ---> oxy=0:N:m
be a derivation, and define:

Tk

1 = max{1i€0.k—1|oy=0:n}

Then:

Vieitk.dr; e N.oi=0:n: 14

3.4. BASIC PROPERTIES OF CONTROL FLOW GRAPHS 33

Proof. By lemma 3.4.1, we know that there is at least one index i such that 3 = 0 : n,
hence i* is well defined. We proceed by induction on the length of the derivation. Clearly,
in any case we will have T = [m]. The base case is 1 € Ny, £(n) =call and n — m:
here 1* = 1 and we define 17 = []. For the inductive case, we proceed by case analysis on
the transition ox_1 > Ok, yielding:

e case [call]:
{n)=call n—m

where ox_1 =o0:n
o:mp>o:n:m

Here, by definition of i*, we have i* =k —1, and the lemma holds by letting i« = [].
o case [check]:

2(m') = check(P) o:n:m’'FJDK(P) m'--» m

o:n:m'>o:n:m
By the inductive hypothesis, Vi€ i*.k— 1.3t e N*. 0y = 0:n: 15.

e case [return):
{n') =return m' -+ m

o:n:m':n' ' >o:n:m

Define j* = max {j € 0.k—2 | 05 = 0 : n: m'}. By the inductive hypothesis,
Viej*k—1. 3t € N*. 0; = o:n:m': 1. Applying again the inductive

hypothesis, we have that: Vi € i*..j* —1.31]' € N*. 63 = 0:n: t{". Then we define:

I Lt if i* < i<j*
lmit ifjr<i<k

Lemma 3.4.4.
GFo:n:m = {(n)=call

Proof. Consider an arbitrary derivation for o : n: m, say: oo [> - -+ I> 0y, where 6o = [] and
ox = 0:1n: m. By lemma 3.4.3, we know that, choosing i* = max{i€ 0..k—1|0; =0:n},
we have Vi € i*..k. 31; € N*. 0; = 0: n: 1;. By contradiction, assume £(n) # call. This
leaves the following cases for the transition oi« > Oi+y1:

e if {(n) = check(P), then In’ € N. 0 : n > o : n'. This is a contradiction, as
—dtreN*.o:n"=0:n:7

e if {(n) = return, then 46’ e I, n',n" eN.o=0¢":n"and o’ :n':n > o :n'.
Again, this is a contradiction, because ~3t € N*. ¢/ :n"”" =¢':n':n: 1

34 CHAPTER 3. PROGRAM MODEL

3.5 Abstract paths

A path is a sequence of edges in the graph, corresponding to a partial trace of
a program’s potential control flow. More formally, let G = (N, E, N¢py) be a

control flow graph. Then, the sequence:

((no,n1), (N4, M2), ..., (Mg, k)

is an abstract path on G if ng # L, and (n;,ny;1) € E for each i € 0.k — 1.

Since we have assumed that control flow graphs are well-formed, by con-
straint 1 it follows that, for each i € 0.k — 1, an unique edge may exist from
node n; to ny; 1. Therefore, each abstract path is fully characterized by the

sequence of nodes it traverses, as stated by the following definition.

Definition 3.5.1. An abstract path from node ng € N\ { Ly } to node ny is

a sequence (Ny,...,Ny) where k =0, or:
VieO0.k—1.(ny,ny) €E

We denote with TT, ,, the set of all abstract paths from ny to ny, and with
IT the set of all abstract paths. An abstract entry path is an abstract path
which starts from some entry node ng € Nepyry. We denote with TI,, the set
of all abstract entry paths leading to n, and with T, the set of all abstract
entry paths. The empty sequence () is a (non-entry) abstract path. We write
Moy (G), TI(G), TTh(G) and Tepyy (G) when we want to make clear that the

control flow graph under consideration is G.

Lemma 3.5.2.
GFom = T,#9

Proof. The proof is carried out by induction on the derivation used to estabilish G - o : n.
For the base case, if 0 = [] and n € N¢pypy, then (n) € TT,,. For the inductive case, we
proceed by case analysis on the last rule used to derive G - ¢ : n, yielding:

o case [call]:
{M')=call n'—n
where 0 =0':n'

o':n'>o:n:in
By the inductive hypothesis, G F ¢ : n’ implies TT,» # &. So, take 7t € TI,,,. Since
n' — n, the path 7t: n is in TT,,.

3.5. ABSTRACT PATHS 35

e case [check]:
£(n') = check(P) o:n'FJDK(P) n'-—-»n

o:n' > o:n
By the inductive hypothesis, G F o : ' implies 1T, # @. Again, take 7 € TI,,,. Here
n' --» n, hence m: n € TT,,.

e case |return|:
[| {(m) =return n'--» n

o:n':mp>o:n
By lemma 3.4.1, any derivation of o: n':m is of the form:
0> --->o:n'p>--->o:n':m

Therefore, we can apply the inductive hypothesis to o : n', obtaining TT,,, # &.
Again, if we take 7t € TT;;/, then ' --» n implies 7: n € TT,,.

O

Definition 3.5.3. The weight of an edge (n,n’) € E is defined as follows:

wn,n') =

1 ifn—mn'
0 ifn-—--n'

Since entry edges (L n,m) are never present in abstract paths, their weight is
left undefined.

Definition 3.5.4. The weight of an abstract path is defined as follows:

w(()) =0
k-1
w((no,...,m)) = 1+ ZW(m,mﬂ)
i=0
Lemma 3.5.5. Let m=my : M1y = (ng,...,Ny) : (Nn41,..., k) be an abstract
path, with 0 < h < k. Then:
w(n) = w(me) +w(m) + wnp, M) — 1

Proof. Since my and 77 are non-empty, by definition 3.5.4 we have:

h—1 k—1
w(m) +w(m) = (] + Zw(ni,ni+1)> + (] + Z W(Tli,TlH_]))

i=0 i=h+1

k—1

(1 + ZW(TH,THH)) +1—wnn,nhir)
i-o

w(m) + T —=w(nn, nhir)

36 CHAPTER 3. PROGRAM MODEL

Definition 3.5.6. Let 7 be an abstract path, n,n’ € N, and 0 € X. We
define the transition system x = (TTU L, X, —,) by the following rules:

ne Nentry

P [Xentry]

(n) —y

m:n' =0 n'—n
, [Xcall]
T:n' :'n —)X o:'n
mn' =0’ n'-—sn

[Xtmns]

m:n':n—o,o:n

Lemma 3.5.7. Let w= (ny,...,ny) be an abstract path, such that:

T —y [Mo, ..., M4l
Then, a strictly increasing function ¢ : 0..h — 0..k exists, satisfying:

VieO.h.my=ne,qyn A @h)=k (3.1)

Proof. The proof is carried out by mathematical induction on the length of the abstract
path 7t. For the base case, if m = (ng) and ng € Neptry, then it must be m — [no], because
only the first rule of x is applicable. Then, the function ¢ = {0 — 0} trivially satisfies (3.1).
For the inductive case, we proceed by case analysis on the last edge of the abstract path:

o case [call]:
(mo,...,Mx—1) —x 0 Mg_1 — Nk

Moy vy M) =y O 1Nk

By the inductive hypothesis, we have a strictly increasing function:
@':0.o] -1 = 0.k—1

which satisfies (3.1). Then, we define @ : 0..]o] — 0..k as follows:

(x) = k if x =|0]
¢] e'(x) otherwise

Now, @ is strictly increasing on 0..|o| — 1, because, inside that interval, it coincides
with @'. Since @’(Jo] —1) =k —1 by (3.1), we have that:

o(lol) = k > k=1 = @'(lol =1) = o(lo]-1)

Hence, @ is strictly increasing inside the whole domain 0../¢|. Since we also have
Nk =Ny (o)), We can conclude that ¢ satisfies (3.1).

3.5. ABSTRACT PATHS 37

e case [transfer]:
(Mo, ..oy Nk—1) =y O Mgy Mg ——» Nk

Moy .oy M) 2y O T
By the inductive hypothesis, we have a strictly increasing function:

@': 0.0 = 0.k—1
which satisfies (3.1). Then, we define ¢ : 0../0] — 0..k as follows:
x) = k if x =|o]
®] e'(x) otherwise

Now, @ is strictly increasing on 0../c] — 1, because, inside that interval, it coincides
with @’. Since @'(lo]) =k —1 and @’(|o]) > @'(Jo] — 1) by (3.1), we have that:

e(lol) =k > k-1 = 9'(lo) > @'(lol 1) = @(lo] 1)

Hence, @ is strictly increasing inside the whole domain 0..|o|. Since we also have
Nk = Ng(|o), We can conclude that ¢ satisfies (3.1).

O
Lemma 3.5.8. Let m= (ny,...,ny) be an abstract path, such that:
T —y Mo, ..., My
Then, if @ is the function defined in lemma 3.5.7 and i € 0..h, we have:
Moy« -, M) —x Mo, ..., My (3.2)

Proof. The proof is carried out by mathematical induction on the length of the abstract
path 7. First of all, observe that (3.2) is immediately satisfied when i = h: in fact, lemma
3.5.7 states that @(h) = k. For the base case, if T = (no) and no € Nepsry, then, by the first
rule of x, we have m —, [no]: hence h =0, and (3.2) is trivially satisfied. For the inductive
case, we proceed by case analysis on the last edge of the abstract path:

o case [call]:

<TLo,...,T1k71>—)xO' MNkg—1 — Nk
(Mo,..., M) =y 01Nk
Let 0 = [m{,...,m{,]. Then, we have h =h'+ 1, and:
ng ifx=h
mey = ,)
m, otherwise

By the inductive hypothesis, we find a function @' : 0..h/ — 0..k —1, such that:
Vie 0.h'. (no,...,Ngr 1)) = [Mg,...,m{]
Following the construction of lemma 3.5.7, we define ¢ : 0..h — 0..k as:
k ifx="h
ox) = {(p'(x) otherwise
Then, if i{ < h, we have that i <h’, and:

Moy, M) = Moy.. oy M) —x Mg,...,m{l = [mo,...,myl

38 CHAPTER 3. PROGRAM MODEL

e case [transfer]:

(Moyevoy 1) Dy OiMg—] Ng—1 --* N
(Mo, ..oy Tk) =y 01T
Let 0 :nx—q1 =[my,...,m{.], with m{, = ng_1. Then, we have h =h', and:
ng ifx=h
myx = ' .
m,, otherwise

By the inductive hypothesis, we find a function ¢@’: 0..h/ — 0..k — 1, such that:
Vie 0.h' (no, ..., Npr)) —x Mg, ..., my]

Following the construction of lemma 3.5.7, we define ¢ : 0..h — 0..k as:

k ifx=h
p(x) = , .
@'(x) otherwise

Then, if i < h, we have that i < h', and:

(Tlo,...,n(p(i]) = (no,...,nq,:(i)) —x [m(',,,ml] = [mo,...,mi]

Lemma 3.5.9. The evaluation of x is deterministic, i.e.:
m—,0 N m=,0 = o=0¢

for any abstract path t € IT and 0,0’ € X.

Proof. The proof is carried out by mathematical induction on the length of the abstract
path 7. For the base case, let m = (n), with n € Nepgry. If 1 =y 0 and m — o, then it
must be 0 = ¢’ = [n], because only the first rule of x is applicable. For the inductive case,
let Tt=m':n':n. We proceed by case analysis on the last edge of the abstract path:

e case [call]: consider the two transitions:

n':n' 50 n'—n n':n' =0 n'—n

m:n'in—, o n:n'im—,0'n
By the inductive hypothesis, we have 0 = o', then 0:n = ¢’ : n holds, too.
e case [transfer]: consider the two transitions:

n:n' —=yom’ n'--»n ' =y o'in' n’-—-sn

ninin—oy,oin n':n'in-oyo0'in

By the inductive hypothesis, we have ¢ : n/ = ¢’ : n/, which clearly implies ¢ = ¢'.
Then, also 0:n = ¢’ : n does hold.

O

3.5. ABSTRACT PATHS 39

Lemma 3.5.10. The evaluation of x is total on abstract entry paths, i.e.:

mne€llegpyy = do€l m—yo0

Proof. We prove the stronger result:
nell, = dJoeXl. m—=y,0:n

The proof is carried out by mathematical induction on the length of the abstract path 7.
For the base case, if n € N¢pypy and m= (n) € Iy, then m —, [n] by the Xcntry rule. For
the inductive case, let m =’ : n' : n, with 7t’ possibly empty. By the inductive hypothesis
applied to ' : n’, it follows that:

n:n'elly = 3Jo'el.n':n' 5,0 :n'
Now we proceed by case analysis on the edge (n’,n):

e case [call]: if n' — m, then the X rule is applicable, and we obtain:

nin' =y’ n—n

:n'in—oy, o :n'in
Then, the result is proved by letting 6 = ¢’ : n'.
e case [transfer]: if n' —-+ n, we can apply the X¢rans rule, yielding:

nin' =o' n'--sn

':n'in—oyo0'in
Here the result is proved by letting 0 = ¢”.

O

Since we have proved that the evaluation of x is both deterministic and

total on abstract entry paths, we define the total function x : ey — X as:

x(m) = o if mt—, 0

Theorem 3.5.11.

GFo:m —=— dnell.x(n)=o0:n

Proof. The proof is carried out by induction on the derivation used to estabilish G F o : n.
For the base case, if 0 = [] and n € Ny, then (n) € T, and x((n)) = [n]. For the
inductive case, we proceed by case analysis on the last rule used to derive G + ¢ : n,
yielding:

40 CHAPTER 3. PROGRAM MODEL

e case [call]:
{n')=call n'—n

where o =¢':n’
o''n'po':n':n

By the inductive hypothesis applied to o’ : n’, we have:

! !

e My . x(m)=0":n

Since n' — n, the path m:nisin My, and x(t:n) =0’ :n':n.

o case [check]:
{(n') =check(P) o:n'FJDK(P) n'--»+n

o:n' > o:n
By the inductive hypothesis applied to o : n’, we have:

!

ey . x(n)=0:n

Here we have n/ —-» n, hence m: n € Iy, and x(m:n) =0 :n.

e case [return):
{(m) =return n' --»n

o:n':mpo:n
By lemma 3.4.1, any derivation of o: n':m is of the form:
0l -—->po:np>--->o:n:m
Therefore, we can apply the inductive hypothesis to o : n’, obtaining:
!

ey . x(nm)=0:n

As in the previous case, n' --» n implies w: n € T, and x(7t: 1) =0 :n.

Theorem 3.5.12. Let 7t be an abstract entry path. Then:

x(m| = w(n)

Proof. The proof is carried out by mathematical induction on the length of the abstract
path 7t. For the base case, if m = (n) and n € N p4py, then w((n)) =1 and [x((n))| = [[n]| =
1. For the inductive case, we proceed by case analysis on the last edge of the abstract path:

e case [call]:
x(:n)=0 n'—n

where m=n':n':n
x(:n':n)=0:n

By the inductive hypothesis, we have |[x(nt’ : n')| = |o| = w(n’ : n'). Then:

x(@':n':n)| =lo:n| =lo/+1 = wr'":n)+1 = w(r':n':n)

3.5. ABSTRACT PATHS 41

e case [transfer]:

x(m':n)=0:n' n'-—-+n

where m=7n':n'":n

x(w:n':n)=0:n
By the inductive hypothesis, we have |[x(7t' : n')| = |o:n'| = w(nt’ : n’). Then:

IX(7':n":n)| = lo:n = lo:n'| = w(r':n') = wr':n':n)

Definition 3.5.13. We say that n € N is an exit node if:
e T, w(n) =1
We denote with N,;; the set of exit nodes.

Well-formedness constraint 7. An exit node cannot be the return of any
call. This constraint is formalized by saying that each abstract path leading

to an exit node does not contain any call node, i.e. the path has unit weight:
NENg;: — Vrnell,.w(n) =1

This constraint follows by the fact that methods are only accessible through

their entry points.

Lemma 3.5.14. Let n be an exit node. Then:

GFo:m = —3Jo'€el.o:np> o

Proof. By contradiction, assume ¢ :n > o' for some ¢’ € £. Then, since {(n) = return,
only the > ,esm rule is applicable, and we obtain:
{(n) =return m--» n'

wherec=0¢":mand ¢’ =0¢":n’

o:m:n > o":n'

By theorem 3.5.11, we find an abstract path 7t € TT,, such that x(7) = ¢” : m: n. Now, by
well-formedness constraint 7, we have that any abstract path leading to n has unit weight:
therefore, w(mt) = 1. On the other hand, theorem 3.5.12 tells that w(m) = [x(m)/, which
raises the contradiction:

1 = wn) = l6":m:n| = |¢"+2

42 CHAPTER 3. PROGRAM MODEL

Definition 3.5.15. The set p(n,n’) of return nodes associated to a call edge

n — n' is defined as:
p(n,n’) = {meN|[{m)=return A I € My . w(m) =1}
The set p(n) of return nodes associated to a call node n is defined as:

p(n) = J{p(m,n)In—n'}
Lemma 3.5.16.

GFo:n:m A {m)=return = mep(n)
Proof. We prove the stronger result:
Gro:ntm = In'eN, el n.n-—n" Awnr =1

The proof is carried out by induction on the derivation used to estabilish G F o : n : m.
For the base case, we have 0 = [|, n € Neptry, £(n) = call and n — m: then (m) is an
abstract path from m to itself having unit weight. For the inductive case, we proceed by
case analysis on the last rule used to derive o : n: m, yielding:

o case [call]:
{n)=call n—m

where ox_1=0:n
o:mp>o:n:m

Here n — m and (m) is clearly an abstract path from m to itself having unit weight.

e case [check]:

2(m') = check(P) o:n:m'FJDK(P) m'--» m

o:n:m' > o:n:m
By the inductive hypothesis:
In'eN, ' €My mr.n—n" Awr')=1
Then the path T =7’ : m is in TTyy+ 1, and w(m) =w(n') =1 asm’ --» m.

e case |return|:
[| {(m") =return m’--s m

o:rn:m':m" > o:n:m

By lemma 3.4.1, any derivation of o:n:m’': m" is of the form:
0> -p>o:n:m' > --->o:n:m':m”
Therefore, we can apply the inductive hypothesis to o : n: m/', obtaining:
In'eN, 7w €My mr.n—n" Awr')=1

Again, the path m =7’ : m is in MMy m, and w(m) = w(w') = 1.

3.5. ABSTRACT PATHS 43

It is immediate that our lemma follows from this result, by hypothesis £(m) = return and
by definition of p(n). O

Well-formedness constraint 8. Each call has a return. This constraint is
formalized by saying that each method entry point (i.e. a node n’ such that

n — n' for some n) is connected to a return node by a path with unit weight:
n—n = pmnn)#£o

Definition 3.5.17. We say that m <— n'is a return edge iff:
neN.mepn) An-»n'

We denote with E,eym the set of return edges. The set E of all concrete edges
is defined as: E = Epy W { (M, 1) € Eyans | L(M) # call} W Eepyry W Erepurn.
The set of all edges (either abstract or concrete) is denoted with E, =E U E.

The weight w(m,n’) of a return edge m — n’is defined as —1.

Lemma 3.5.18.

MENg: A IneN.mepn) — TI,=9

Proof. By contradiction, assume m is an exit node, and m € p(n) for some node n such
that TT,, # &. By definition 3.5.15, this means that n — n’ for some node n’, and:

I’ € Myt jm- w(w') =1 (3.3)

Moreover, by hypothesis TT, # &, we can choose an abstract path 7" leading to n. Then,
the path w=n" : 7’ is in TT,,, and we have:

1 = w(n) by w.f. constraint 7
w(nt") +w(r") +wn,n’) =1 by lemma 3.5.5
= wr")+wr')+1-1 asn—n’
= w(n") +1 by (3.3)
Then, we find w(7nt'") = 0: this is a contradiction, since, by definition, non-empty abstract

paths have strictly positive weight. O

44 CHAPTER 3. PROGRAM MODEL

3.6 Concrete paths

Definition 3.6.1. A concrete path from node ng € N\ { Ly } to node ny is a
sequence (N, ...,Ny) where k =0, or:
Vie0.k—1. {(ny) =call A ny — ny, or

f(ny) = check(P) A my--+ nyyq, or
{(ny) =return A ny— niy

We denote with ﬁno,nk the set of all concrete paths from ngy to ny, and with
TT the set of all concrete paths. A concrete entry path is a concrete path
which starts from some entry node ng € Nepiry. We denote with ﬁn the set
of all concrete entry paths leading to n, and with ﬁentry the set of all concrete
entry paths. The empty sequence () is a concrete (non-entry) path. We write
ﬁno,nk(G), T(G), M.(G) and ﬁemry(G) when we want to make clear that the

control flow graph under consideration is G.

Lemma 3.6.2.
Gro:n = T,.#2
Proof. The proof is carried out by induction on the derivation used to estabilish G F ¢ : n.

For the base case, if 0 = [] and n € Ny, then (n) € ﬁn. For the inductive case, we
proceed by case analysis on the last rule used to derive G - 0 : n, yielding;:

e case [call]:
{m')=call n'—n

where o =¢':n’
o''n'po':n':n

By the inductive hypothesis, G F o : n' implies~ﬁn/ #+ @. So, take 7 € ﬁn/. Since
{(n') = call and n' — n, the path @ : n is in IT;.

o case [check]:
L(n') = check(P) o:n'FJDK(P) n/--»n

o:n' > o:n

By the inductive hypothesis, G+ o:n’ implies~ﬁn/ # &. Again, take 7t € M. Here
f(n’) = check(P) and n/ --» n, hence 7: n € TT,,.

e case |return|:
[| {(m) =return n'--» n

o:n':mp o:n

By the inductive hypothesis, G F 0 : n' : m implies M # @. Moreover, by lemma
35.16, GF o:n': m and £(m) = return imply m € p(n’). Now, take 7t € TT,,.
From m € p(n’) and n’ --+ n we deduce m < mn, hence : n € TT,,.

3.6. CONCRETE PATHS 45

O
Definition 3.6.3. The weight of a concrete path is defined as follows:
w(()) = 0
k-1
W((no,...,mi)) = 14> wng,nia)
i=0
Lemma 3.6.4. Let 7t = 7y : 711 = (Mo, ..., My) : (Mpy1,...,Nk) be a concrete
path, with 0 < h < k. Then:
w(mt) = W(7o) + W(7tr) + w(np, npr) — 1
Proof. Since 7ty and 7 are non-empty, by definition 3.6.3 we have:
h—1 k—1
W(7to) +W(ft) = (1 +) W(ni,ni+1)) + (1 +) VV(TH,THH))
i=0 i=h+1
k—1
= (14 X tnamisn) + 1= wlnn,)
i=0
= W(A) +1—wnn,nht)
O

Definition 3.6.5. Let 7t be a concrete path, n,n’,m € N, and o0 € Z. We
define the transition system x = (ﬁ UZ, X, —5) by the following rules:

ne Nentry .
- . - [Xentry]
(n) =y nl
in' —,0 n'—n 3
- .] [Xcall]
T:n' :m—,o:n
' =, 0’ n'-—n B
~) [Xtmns]
mT:n':m—,o:n
T:m—=yo:n':m m—= n B
~ [Xreturn]
MT:M:N—y 0:M
Lemma 3.6.6. Let T = (ny,...,ny) be a concrete path, such that:
0y) b 3

Then, a strictly increasing function ¢ : 0..h — 0..k exists, satisfying:

VieO.h.my=ney A o@h)=k (3.4)

46 CHAPTER 3. PROGRAM MODEL

Proof. Since, except for the X eturm rule, the rules of ¥ coincide with those of x, the proof
is identical to the proof of lemma 3.5.7 for the base, [call] and [transfer] cases. Hence, we
have to treat only the following case:

e case [return):
<TLo,...,TLk_1) _)5(O:M:MNk—1 MNk—1 & Nk

<Tlo,...,TLk) —% 0 Mg

By the inductive hypothesis, we have a strictly increasing function:
@' :0.o+1 = 0.k—1

which satisfies (3.4). Then, we define @ : 0..]o] — 0..k as follows:

(x) = k if x = o]
¢] e'(x) otherwise

Now, ¢ is strictly increasing on 0..|c| — 1, because, inside that interval, it coincides
with @'. Since @'(lo] +1) =k —1 and ¢'(lo] +1) > @'(lo| — 1) by (3.4), we have:

o(lol) =k > k=1 = @'(lol+1) > @'([o] 1) = @(lo] 1)

Hence, @ is strictly increasing inside the whole domain 0../c|. Since we also have
Nk = Ny (o)), We can conclude that ¢ satisfies (3.4).

O
Lemma 3.6.7. Let @ = (ny,...,ny) be a concrete path, such that:
T —5 Mo, ..., My]
Then, if @ is the function defined in lemma 3.6.6, and i € 0..h, we have:
Moy« o, M) =% Moy ..., My (3.5)

Proof. Since, except for the X eturm rule, the rules of ¥ coincide with those of x, the proof
is identical to the proof of lemma 3.5.8 for the base, [call] and [transfer] cases. Hence, we
have to treat only the following case:

e case [return):

Moy.evoy M) D O M1 M1 — Nk
(Mo, ..., k) =g 01Nk
Let 0: m:nx_1 =[my,...,m.], with m{,_; = mand m{, = nx_1. Then, we have
h=h'—1, and:
ng ifx=h
My = , .
m,, otherwise

By the inductive hypothesis, we find a function ¢@': 0..h/ — 0..k — 1, such that:

Vie 0.h' (no,...,yr1)) —x Mg, ...,m{]

3.6. CONCRETE PATHS 47

l

Nno: call

/

ny: call 4—» ny: call

\‘&

n3: return :D

Figure 3.3: Control flow graph for counterexample 3.6.9

Following the construction of lemma 3.6.6, we define ¢ : 0..h — 0..k as:

(x) = k ifx="h
@] e'(x) otherwise

Then, if i < h, we have that i < h’/ — 1, and:

(Tlo,...‘nq,(i]) = (no,...,n(p/(i)) —rx [m(’,‘...,mi] = [mo‘...,mi]

Lemma 3.6.8. The evaluation of ¥ is deterministic, i.e.:
T—z0 N mo30 = o0=0
for any concrete path 7t € T and o,0' € L.

Proof. Since, except for the X eturn rule, the rules of ¥ coincide with those of x, the proof
is identical to the proof of lemma 3.5.9 for the base, [call] and [transfer] cases. Hence, we
have to treat only the following case:

e case [return]: consider the two transitions:

in' sz om:in’ n'—= n iin! a5 o:min' n'f—= on

in'in—og0:n ain'in—og0'in

By the inductive hypothesis, we have 0: m:n' = ¢’ : m’ : n', which clearly implies
o0 =o0'and m=m'. Then, also 0 : 1 = ¢’ : n does hold.

O

Counterexample 3.6.9. The evaluation of X is not total on concrete paths.

48 CHAPTER 3. PROGRAM MODEL

Proof. To see why, consider the control flow graph in Fig. 3.3. Since ng € Nentry and
n; — ny41 for 1 € 0.2, by applying the Xcnry rule once and X qu three times, we obtain:

(no,m1,M2,n3) =5 [no, N1, N2, N3]

Now, the return edge nz3 — mnsz follows by the fact that w({nz,nq,n3)) = 1 implies
n3 € p(ni,nz2), and ny -—+ nz. Then, by rule X e, we have the following transition:

(nO)n1)n2vn3) _))2 [Tl,o,TL],TLZ,TL:;] n3 — ns3

(no,m1,M2,n3,n3) =% [No, N1, N3]

It is evident that, since n3 — n3 is a self-loop, we can append to the concrete path
(no,n1,m2,n3) a sequence (n3)* of arbitrary length, still obtaining a concrete path. Each
time the X erurn rule is applied, we derive a state whose length is an unit shorter: eventually,
the state will become of unit length, and the Xetur rule will no more be applicable. In our
case, to attain this aim it suffices to repeat the foregoing process two times more:

(no,m1,M2,n3,N3) =g Mo, M1, N3] N3 = n3

(no,m1,n2,n3,n3,N3) =5 [No, N3]
Again, if we append n3 to {ng,nq,n2,n3,M3,Nn3), we obtain:

(no,m1,M2,M3,N3,N3) =5 Mo, N3] N3 = n3

(no,n1,M2,M3,n3,N3,N3) =5 M3]

At this point, none of the rules of ¥ is applicable, so we cannot go any further. In conclusion,
we have shown that the transition system ¥ does not reach a terminal configuration on the
concrete entry path (ng,ni,nz,nz, nz,nz, ns). O

Since we have proved that the evaluation of ¥ is deterministic (but not

total) on concrete paths, we can define the partial function x : M— 3 as:

X(®) = o if T—50

Theorem 3.6.10. Let 7t be a concrete path, such that x(7t) is defined. Then:

K| = WA

Proof. The proof is carried out by mathematical induction on the length of the concrete
entry path 7t. For the base case, if T = (n) and n € Nepyry, then W((n)) =1 and [X((n))| =
[[n]] = 1. For the inductive case, we proceed by case analysis on the last edge of the path:

e case [call]:
X@ :n)Y=0 n'—n
where i=7":n':n

X(#@:n":n)=0:n

By the inductive hypothesis, we have [x(7' : n')| = |o| = W(#&' : n'). Then:

(' :m :n)| =lo:n| =lol+1 =wrmR :n)+1 = W@ :n":n)

3.6. CONCRETE PATHS 49

e case [transfer]:

X(T:m)=o:m':m mo= n

where i=7':m:n
X(@ :m:n)=o0:n

By the inductive hypothesis, we have [x(7' : m)| =|o:n': m| = W(#®': m). Then:
|)~((ft':m:n)| =lon =lon":m—-1=WwrAR":Mm) -1 =WwHR:Mm:n)

O

Definition 3.6.11. Let 7T = (ny, ..., ny) be a concrete path, 0 <1 <j < k—1,
and {(ny) = call, £(n;) = return. Then we say that n; is bound by n, in 7,

and write ny 25z ny, when w((ni1,...,n;)) =1 and:
Vil < j. 2(111/) =call A VV((THI_H, ce ,le)) =1 = i <1

Lemma 3.6.12. Let 7t = (no,...,ny) be a concrete path, and 1,1',j,j" € 0..k

such that max{1i,1'} < min{j,j’}. Then:

ng ;’ﬁnj N\ ny <:’7~tn,- — 121,

ni:’ﬁnj A\ niﬁﬁnj/ —):]’
Proof. For the first part, hypotheses n; 2z n; and nyr 2z ny imply:
VV((Tli_;_],...,le)):]:VV(<T111+1,...‘T1]')) e i<i{" Ai'<i = i=1i'

For the second part, assume, by contradiction, that j < j’. By hypotheses ny 25 n; and
ni =z Ny, after simple calculations we obtain:

j'=1
W(<ni+1)"')nj)) =1= W((“i-l—'lv"')n]")) == Zw(ny‘ny—&—l) =0
y=j

Since nj is a return node, we have n; — nj11. So w(n;j,nj41) = —1, and:

i1

D> wingny) = 1 (3.6)

y=j+1

50 CHAPTER 3. PROGRAM MODEL

Now, for x € j + 1..j', define the function:

511

fx) = D wny,ny)
y=x

By definition, we have f(j') =0, and f(j + 1) = 1 follows by equation (3.6). Actually f is a
step function, where the width of a jump between two consecutive steps is at most 1, i.e.:

flx+1)—fx)| < 1 (3.7)

This condition ensures the existence of intermediate values, that is, for any x4 < Xp in
j+ 1.3, and any y between f(xq) and f(xp), some x € xq..Xp exists such that f(x) = y.
Now take:

x* = max{x€j+1.§"|f(x)=1} (3.8)

Observe that x* is well-defined, as f(j + 1) = 1 by (3.6). Besides, it must be f(x* + 1) = 0.
By condition (3.7), we know that f(x* + 1) can only assume three values, i.e. 0, 1 or 2.
The second option is prevented, as it contradicts x* being defined as the greatest index for
which f evaluates to 1. Indeed, also the last option is prevented, because, by existence of
intermediate values, f(j') = 0 implies Ix € x* +1..j' — 1. f(x) = 1. Again, this would violate
definition (3.8). Now, by definition of f, we have:

f(x*) = f(x*+1) + wne, Ny 1)

Therefore w(nys,Nyx+41) = 1, and ngx — My« as only call edges have unit weight.
Actually, we have proved that {(nyg.) = call and W({nxs41,...,M4:)) = 1: by definition
3.6.11, this is in contradiction with hypothesis n; = n]-’ , because x* >j > 1i. O

Lemma 3.6.13. Let @ = (ny,...,Nn,...,n;) be a concrete path, such that

{(n;) = return. Then:

)2(77[):0'11’11:“]' — ng :’ﬁnj
Proof. We prove the stronger result:

X[=0:mi:n; = ny—nipq (3.9a)
A Vv((mg,...,nj)) =1 (39b)
A Vil > 1. {(ni/) =call = W((mrﬂ,...,nj)) <1 (39C)

By definition 3.6.11 and hypothesis £(n;) = return, this clearly implies ny =% n;. The
proof of the stronger statement is carried out by mathematical induction on the length of
the concrete path. For the base case, if 0 =[], ni € Nepgry, £(ni) = call and Ny — n;,
then W({(ni4+1)) = 1, while both conjuncts (3.9a) and (3.9¢) are trivially satisfied. For the
inductive case, we proceed by case analysis on the last rule used to derive X(7) = 0 : ny : nj,
yielding:

e case [call]:

X((no,...,nj—)) =0:mjm1 My — Ty
X((no,...,my)) =0 :nj_1: 1y
Here we have i =j —1: hence, W({ni41,...,1n5)) = w((n;)) = 1 satisfies (3.9b), while

(3.9a) and (3.9¢) are trivially true.

3.6. CONCRETE PATHS o1

e case [check]:
X({no,...,nj_1)) =0:nitny_1 My—q --3 N

)2((“01 e ,TL]>) =0:Mni:ny
By the inductive hypothesis applied to the concrete path (no,...,nj_1), and premise

X((no,...,nj—1)) =0 :n4:nj_1, we have:
ny — Ny (3.10&)
W((ni+1,...,nj,1>) =1 (3.10b)
Vi’ > 1 8(nis) = call = W({(niry1,...,my-1)) <1 (3.10c)

Therefore (3.9a) is trivially implied by (3.10a), while (3.9b) is fixed by:

W(Mig1y. o, Ny)) = WM, .00, My—1)) + W(ni—1,1y) by def. W
=w({Nnit1,...,n5-1)) as nj_1 --» Ny
- by (3.10b)
To prove (3.9¢), let i’ > i such that £(ni/) = call. Then:
w({nirg1, ..., 1)) =Ww((nirgr, ..., nyo1)) Fwng_,ny) by def. w
=w({(nis1,...,ny-1)) as nj_q --» Ny
<1 by (3.10¢)

e case [return):

X({no,...,mj_1)) =0:ni:imin_; N1 S Ny

)2((“01---)11]')) =0:Mni:ny

By lemma 3.6.6, it must be m = np, where h = @(jo]+ 1) and i < h <j — 1. Again,
by the inductive hypothesis applied to the concrete path (no,...,nn,...,nj_1), and
premise X({no,...,Nj—1)) =0’ :np :nj_1 (where ¢’ = 0:ny), we have:

h — Ty (3.11a)
VV((TL}-L_H,...,TL]'f])) =1 (3.11b)
Vi’ > h. f(ny/) = call = v”v((mur] S ,lef])) <1 (3.110)

On the other hand, by lemma 3.6.7, we have X({no,...,nn)) = 0: ni : n. Hence,
the inductive hypothesis can also be applied to (ng,...,nn), and we obtain:

ny — Ni41 (3'123)
W((mﬂ,...,nh)) =1 (3.12b)
Vi’ > i 8(ny) =call = V\)((Tlil_;_] Y ,Tlh)) <1 (3.12C)

Then, conjunct (3.9a) is clearly implied by (3.12a), while (3.9b) is fixed by:

W({Nig1, .., My)) = W((Mig1, .o, My—1)) + w(ni—1,ny) by def. W
=w((Mit1,...,n-1)) —1 asnj_1 & My
=w((nit1,...,nn)) +W((nnt1,...,ny-1))

+w(np, Npyr) — 2 by lemma 3.6.4
=w((Mit1,...,nn)) +W((nhy1,...,n-1)) =1 by (3.11a)
=w({(Mit1,...,nn))+1-1 by (3.11b)

+1-1 by (3.12b)

—_—

52 CHAPTER 3. PROGRAM MODEL

To prove (3.9¢), let i’ > i such that £(n;/) = call. If i’ < h, then:

WM, .o n4)) = Wl(Mirgt, .., ny—1)) +w(ng—1,my) by def. W
=w((Nirg1y..0,ny—1)) — 1 as nj_1 = My
:17\)(< i/+1,...,nh))+17v((nh+1,...,nj_1))
+wnp, Npyr) —2 by lemma 3.6.4
=N <T11 +1, .,Tlh)) -|—1~/V(<Tlh+1‘...,n]'71>) —1 by (3.11a)
=w({nirg1,...,mn)) +1 -1 by (3.11b)
1+1-1 by (3.12¢)
=1

Otherwise, if i’ > h, we obtain:

w(nirg1,...,n4)) = Wwl(Mirgr, .., ny—1)) + wng—1,ny) by def. W
=W((Mirg1,...,my-1)) =1 as Nj_1 — Ny
<1-1 by (3.11c)
<1

O

Definition 3.6.14. Let @ = (no,...,nx) be a concrete path. We define the
transition system o = (TTUTI, TT, —4) by the following rules:
k=0

T —q (No)

Moy ..oy Mi1) =™ (Mieg,my) €E

77[—)“7'C:le

Moy .oy Mir) Do T N S Ny Nye ——> Ny

TC—q T0: My

Lemma 3.6.15. Let © = (ny,...,ny) be a concrete path, such that:

T = (Mo, ..., My)
Then, a strictly increasing function ¢ : 0..h — 0..k exists, satisfying:

Vi€ 0..h.my = M) A @(h)=k (313)

Proof. The proof is carried out by mathematical induction on the length of the concrete
path 7. For the base case, if T = (n), then it must be @ —4 (no), because only the first
rule of « is applicable. Then, the function @ = {0 — 0} trivially satisfies (3.13). For the
inductive case, we proceed by case analysis on the last edge of the concrete path:

3.6. CONCRETE PATHS 93

e cases [call, transfer]:

Mo, ...,NMk1) 2o (Nk_1,Mn) €E

(Noy.v oy Ni) = 7T N
By the inductive hypothesis, we have a strictly increasing function:
@' 0. -1 — 0.k—1
which satisfies (3.13). Then, we define ¢ : 0../t] — 0..k as follows:
. k if i=m
e(i) = . .
@'(i) otherwise

Now, @ is strictly increasing on 0../7t] — 1, because, inside that interval, it coincides
with @’. Since @'(|] —1) =k —1 by (3.13), we have that:
o(n) =k > k=1 = @'(Inl=1) = @(nl—1)

Hence, @ is strictly increasing inside the whole domain 0..]7t|. Since we also have
Nk = Ng(|x|), We can conclude that ¢ satisfies (3.13).

e case [return]:
(Mo,...,Nix) DM TNir Sz N1 Nir —> N

(Mo, ...y M) = 70N

By the inductive hypothesis, we have a strictly increasing function:
@' 0.m—1 — 0.i*
which satisfies (3.13). Then, we define ¢ : 0..|nt] = 0..k as follows:
. k if i =|m
p(i) = Lo .
@'(i) otherwise

Now, @ is strictly increasing on 0../7t] — 1, because, inside that interval, it coincides
with @’. Since @'(|7] — 1) = 1* by (3.13) and k > i* by definition 3.6.11, we have:

e(n) =k > 1* = @'(Inl—1) = @(n/—1)

Hence, @ is strictly increasing inside the whole domain 0..]7tl. Since we also have
Nk = Ng(|x|), We can conclude that ¢ satisfies (3.13).

O

Lemma 3.6.16. The evaluation of « is deterministic, i.e.:
M=, N T—=, 17 = mn=mn

for any concrete path 7t € T and abstract path 7, v’ € TI.

Proof. The proof is carried out by mathematical induction on the length of the concrete
path 7. For the base case, let @ = (ng). If @ =4 7 and @ — 7', then it must be
m = ' = (ngp), because only the first rule of « is applicable. For the inductive case, let
7t = (nog,...,Nk). We proceed by case analysis on the last edge of the concrete path:

54 CHAPTER 3. PROGRAM MODEL

T

np: call np: call

N

Ny return

N\

Nn3: return Ng4: return

Figure 3.4: Control flow graph for counterexample 3.6.17

e cases [call, transfer]: consider the two transitions:

{ng,...,nk—1) 2™ (M',M)EE (Mo,...,nk—1) =2 (n',n)€E

(N0, ...y NK) =g 70 N (No,y...,Nk) = TNk
By the inductive hypothesis, we have 7t = 7', then 7: ny = ' : ng holds, too.

e case [return]: consider the two transitions:

<TL(),...,T11*> e T Nix 2z N1 Nyx ——> Ny
(Mo, ...y NK) o T0: Ny

(Moy.v oy Nix) 2o T Nir Sz N1 Nis ——3 Mg
(Noy v oy Ni) = 7T i N

By the inductive hypothesis, we have m = ©’, which clearly implies 7t: ny = 7’ : ny.

O

Counterexample 3.6.17. The evaluation of « is not total on concrete paths.

Proof. To see why, consider the control flow graph in Fig. 3.4. If we take the concrete
path @ = (ng,ny,n4), then «((ng,n,)) is defined, but «(7) is not, because ny =z na but
Mo 7/—-) ng. O

Since we have proved that the evaluation of « is deterministic (but not

total) on concrete paths, we can define the partial function o : M — 1T as:

x(t) = m if T—ym

3.6. CONCRETE PATHS 95

Lemma 3.6.18. Let 7 be a concrete path, such that o(7t) is defined. Then:

mneEllymn = o) ellyn,

for any ng, nye € N.

Proof. The proof is carried out by mathematical induction on the length of the concrete
path 7. For the base case, if ©T = (ng) € ﬁno,no, then «(7t) = (ny), and the statement holds
because (ng) € TTy, n,- For the inductive case, let 7T = (ng,...,ng). We then proceed by
case analysis on the last edge of the concrete path:

o cases [call, transfer]:

x({no,...,Mk 1)) =m (nr1,mi) €E
x((no,...,nk)) =7m:ng
By the inductive hypothesis, we have m = «x({no,...,nk_1)) € Mny n, ,. Therefore,

(nk—1,nx) € E implies 7t: ng € Ty n, -
e case [return):

a({ng,...,Nix)) =T Ny Sz N1 Ny -3 Nk

x((no,...,nk)) =7m:nk

By the inductive hypothesis, we have 7w = a({no,...,ni+}) € Ty, n,.. Therefore, by
premise ni» --» Ny, it follows w: ng € Ty n, -

O

Theorem 3.6.19. Let 7t be a concrete path, such that o«(7) is defined. Then:

w(w) = w(a(n))

Proof. The proof is carried out by mathematical induction on the length of the concrete
path. For the base case, if © = (n) then a({(n)) = (n), and w((n)) =1 = w((n)). For the
inductive case, let T = (no,...,nk). We then proceed by case analysis on the last edge of
the concrete path:

o cases [call, transfer]:

x((no,...,Mk 1)) =m (nx1,mk) €E
x((no,...,nk)) =7m:ng
By the inductive hypothesis, we have W({no,...,nk—1)) = w(n). Moreover, by
lemma 3.6.18, {ng,...,Nk—1) € Myym, , implies 7T € Ty n, ,. Then:
W({no,...,nk)) =w((Mo,...,Nk1)) +Ww(ng_1,Nnx) by def. w
=w(n) + w(nk_1,nk) by ind. hyp.
=w(m: ng) by def. w

56 CHAPTER 3. PROGRAM MODEL

{P} ¢

No: call

ni: call - T check (P)

Ng4: check(P) -~~~ » ng3: return

Figure 3.5: Control flow graph for counterexample 3.6.20

e case [return]:

a({No,...,Mix)) =T MNi» Sz N1 Nis - N
CX((TL(), v ank)) =TTIMNgk
By the inductive hypothesis, we have W((no,...,ni+)) = w(7n). Moreover, by lemma

3.6.18, (no,...,Nix) € Myy n,. implies @ € My, n,, . Then:

w((no,...,nk)) =w({no,...,nx_1)) + wng_1,nk) by def. W
=w({(nog,...,nk_1)) — 1 as Ni_1 < Mk
=W((no,..., i) + Wl(Mi+41,..., Nk 1))

+w(ng,Mirp1) — 2 by lemma 3.6.4

=w({no,...,Nix)) + W(ni, niegq) — 1 as Nix 2a Ni—1
=w({nog,...,Ni+)) as MNi» — MNi» 41
= w(n) by ind. hyp.
=w(7) + w(ni~, i) as Mi» -—-* Mg
=w(m:ng) by def. w

O

Counterexample 3.6.20. The evaluation of « is not surjective, i.e. some

control flow graph G and abstract path 7t € TI(G) exist, such that:
—3Ix eTl. 7= afR)

Proof. To see why, consider the control flow graph in Fig. 3.5: the return edge n3 < ny
follows by the fact that w({nz,mn1,n4,n3)) = 1 implies n3 € p(n;,nz), and n; -+ n4.
Now, any concrete (non-empty) path 7t leaving from ny is of the form:

ny (g, m)* | (nyma)t
Therefore, the abstract path T = (n;,n4) does not belong to the image of «, because, by
lemma 3.6.18, for this to be possible it should be 7 € Ty, n,- O

3.7. VALID PATHS 57

3.7 Valid paths

Definition 3.7.1. A concrete path T = (no,...,ny) is valid if, for any j < k:
N = My - i € 0..k. n, 45 1% A ny ——* Ny

We denote with TTV the set of all valid paths from ng to ny, and with

T,k

TV the set of all valid paths. We denote with ﬁ}’l the set of all valid entry
paths leading to n, and with Tl . the set of all valid entry paths. We write

entry

m (G), ﬁU(G), ﬁ}{(G) and TTV (G) when we want to make clear that the

Mo,k entry

control flow graph under consideration is G.

Lemma 3.7.2. Let @ = (ng,...,ng) be a valid path, and h € 0..k. Then,

also (ng,...,ny) is a valid path.

Proof. This result clearly follows by the fact that n; 2z n; implies i < j. O

Lemma 3.7.3. Let @ = (no,...,nx) be a valid path, and n; =3 n; for some

0 <i<j <k. Then, also (ni,...,n) is a valid path.

Proof. Let 7' = (ni,...,n;), and choose an index j' € i.j — 1 such that nj; < mnjr4q. If
j' =7 or no return node exists between i and j, we are done. Otherwise, for x € 1+ 1..j, let:

x—1
glx) = Z W(ny)ny+1)
y=i+1

By definition, we have g(i + 1) = 0, and g(j) = O follows by the hypothesis Ny 2z n;.
Similarly to the proof of lemma 3.6.12, g(x) is a step function which ensures the existence
of intermediate values. Now define:

G = {xei+1.jlgx)<0}

By contradiction, assume G is non-empty, and let x* = min G. Then, it must be g(x*) = —1:
to see why, assume g(x*) < —h, for some h > 1. Then, by the fact g(i + 1) = 0, existence
of intermediate values implies that 3x € 1 + 1.x* — 1. g(x) = —h + 1 < 0, contradicting the
definition of x*. Besides, g(x* — 1) = 0: this happens because g(x* — 1) can only take three
values (i.e. 0, —1 and —2), and both the second and the last one are prevented by definition
of x*. Actually, we have proved that {(ny+_1) = return and W({niy1,...,nyx+_1)) = 1. By
definition 3.6.11, this would imply n; =% ny+_1: then, by lemma 3.6.12, we should also
have x* — 1 = j, as Ny 24 n; by hypothesis. Indeed, it is x* — 1 < j, hence we have a
contradiction with assumption G # &: then, it must be g(x) > 0 for any x € i + 1..j. Since
ni 24 N4, we have ny — ni41. Then, if we let x = j’, we actually deduce:

i'=1
> wny,ny) = T4g(G) > 0 (3.14)
y=i

58 CHAPTER 3. PROGRAM MODEL

Now, for x € i..j’, define the function:

51

fx) = D wny,ny)
y=x

By definition, we have f(j') =0, and (i) =h > 0 follows by equation (3.14). Again, f(x) is
a step function which ensures the existence of intermediate values. Now define:

F = {xeij'|fx)=1}

By existence of intermediate values, we have that Ix € 1 4+ 1.3’ — 1. f(x) = 1, therefore F is
non-empty. Now, define i’ = maxF. Since f(i’) =1, we have that f(i’ + 1) can only be 0, 1
or 2. The second option is prevented, as it contradicts i’ being defined as the greatest index
for which f evaluates to 1. Indeed, also the last option is prevented, because, by existence
of intermediate values, f(j') = 0 implies Ix € i’ + 1.3/ — 1. f(x) = 1. Again, this would
contradict definition of i’. By definition of f(x), we have:

fi) = fA' + 1) +whni,nirg)

Therefore w(nis,ni:11) = 1, and, since only call edges have unit weight, ni: — ny4q.
Actually, we have proved that {(n;/) = call and W({(ni41,...,m5:)) = 1. Moreover, we
have that W({ni»41,...,n4/)) # 1 for any i"” > i’. By definition 3.6.11, this indeed suffices
to state ni/ 27 nj.. On the other hand, by definition 3.7.1, nys --» ny, 41 immediately
follows by the fact that 7t is valid and hypothesis nj» < mnj11. Then, also 7! is valid. O

Lemma 3.7.4. Let 7t = (ng,...,ni,...,n) be a valid entry path, such that

X({no,...,n;)) = 0:ny for some state o € X. Then:

N2y = X(A) =o0:ing g

PTOOf. Assume ny 2% ny. We prove the stronger statement:

Vi'>i.3te L. x({no,...,nis)) = o:ni:t:in A 1l =w((nigr,...,ni)) =1 (3.15)
Observe that the main result follows from (3.15): in fact, if i’ =j, then we have:

X((no,...,ny))=0:ni:t:ny A Tl =w({nigr,...,ny)) —1

By definition 3.6.11, Ny 24 ny implies W({Nni41,...,1n5)) = 1, hence |1 = 0. Actually, this
can only happen if T = []: therefore, X((no,...,n;)) = 0 : ni : ny. The proof of (3.15) is
carried out by mathematical induction on the value of i’. For the base case, if i’ =1+ 1,
then x({no,...,ni)) = 0:n; is ensured by the premises of the lemma. Hence, the following

transition occurs:
X((Mo,...,ni)) =0:ni Ny — Niyg

X((no,...,mip1)) =0 :ni:nigg

If we define T = [] we are done, because |[]| =0 = W((niy1)) — 1. For the inductive case, we
assume the statement is true for an arbitrary i’ € 1+ 1..j —1; then, we show it also holds for
i’ + 1. We proceed by case analysis on the last edge of the path (no,...,mni/41), yielding:

3.7. VALID PATHS 59

e case [call]: by the inductive hypothesis, we have X((no,...,ni")) =o:ny: v’ : ny,
with |T/| = W({niy1,...,n4:)) — 1. Hence, the following transition occurs:

)2((1’10,. .. ,Tlil)) =0:Nnq i Ny Mir — Ny

X({no,...,nirg1)) =o:ni it ing i N

If we define T =1’ : nys, then X((no,...,Niry1)) = 0:Ni :T:Nirg1, and:
It =T+ 1 =W((Miyr,...,) = T+ 1T =W((Nig1,..,Nirgr)) — 1
e case [check]: by the inductive hypothesis, we have X({no,...,ni/)) =0o:ni: v’ ny,

with |t/ = W({nit1,...,ni/)) — 1. Hence, the following transition occurs:

X{no,...,ni)) =0o:mi it ing M -2 Mg

)Z((TL(),...,TLU_H)) =0:Nny :T’Zni/_,_]

If we define T = 1’, then X({no,...,Nir41)) = 0:1ny :T:Myr41, and:
Tl =T =W((nigr, ..., i) = T =W((nigr, ..., i) — 1

e case [return]: by the inductive hypothesis, X({no,...,ni’)) = o :ny : v’ : nys, with
[t'| = W({nit1,...,ni/))—1. Now, since 7 is a valid path and ni =3 ny, by the proof
of lemma 3.7.3 it turns out that w({(ni41,...,ni-41)) > 1. Since ny: — nirgq, we
then have w({niy1,...,ni/)) > 1. Therefore |t'| > 0, so we can write T/ = 1" : ni»
for some 1’ € X and i"” € i+ 1..i’ — 1. The following transition occurs:

X({noy.- o,)) =o0:n s’ e i Ny 9 Mg

X((Mo, ... npgn)) =0t ingg
If we define T = 1", then X((no,...,Miry1)) =0:ni:T:Nyy1, and:

|T| = ‘T”‘ = |T’|_1 :W(<ni+1y---)ni')) —-1-1 :W((ni+1)-")ni'+1>) —1

Lemma 3.7.5. The evaluation of ¥ is total on valid entry paths, i.e.:

eI — Joel fogo

entry
Proof. We prove the stronger result:
Relll = 3JoeZX fiogzo:n

The proof is carried out by mathematical induction on the length of the valid entry path.
For the base case, if n € Ngpiry and @ = (n) € Tly, then 7T —5 [n] by the Xentry rule. For
the inductive case, let 7t = 7' : n' : n, with &’ possibly empty. By the inductive hypothesis
applied to &’ : n’, it follows that:

Ain' ey = 3Jo'eZ @:n' =50 :n’

Now we proceed by case analysis on the edge (n/,n):

60 CHAPTER 3. PROGRAM MODEL

T

np: call np: call

N

Ny return

N\

Nn3: return Ng4: return

Figure 3.6: Control flow graph for counterexample 3.7.6

e case [call]: if n' — m, then the X .. rule is applicable, and we obtain:

' =30’ n—n

i in—=go in'in
Then, the result is proved by letting 0 = ¢’ : n".
o case [transfer]: if n' --» n, we can apply the X¢rqns rule, yielding:

iin' =350’ n' s n

i imn—ogotn
Here the result is proved by letting 0 = ¢”.

e case [return]: if n' — n, write @ = (no,...,n;), with n’ = n; and n = nyy; for
some j > 0. By the inductive hypothesis, we have that:

(no,...,ny) =5 0’ 1y

Since 7t is valid, it must be niy 24 n; for some i < j. Then, X must be defined also
on {ng,...,Mi), i.e. a state 0” € ¥ exists, such that:

<T10,...,Tli> —% o” Ny

Now, lemma, 3.7.4 ensures 0’ = ¢ : n;. Then, we can apply the X eturn Tule, yielding:

Here the result is proved by letting 0 = o”.

Counterexample 3.7.6. Validity is not necessary for X to be defined.

3.7. VALID PATHS 61

Proof. To see why, consider the control flow graph in Fig. 3.6, and take the concrete
path @ = (no,nz,n4). Now, this path is not valid, because, with regard to the return
edge ny — ng4, we have ng 2z ny but ng /~+ ng. However, X(7) is defined, because
<T10,T12) —% Mo, n2] by)Zentry and Xcau, and <T10,T12,T14) —% [n4] by Xreturn - O

Theorem 3.7.7.

GFo:n = Elﬁeﬁﬁ. X(M) =0:n

Proof. The proof is carried out by induction on the derivation used to estabilish G - o : n.
For the base case, if 0 = [] and n € Nepsry, then (n) € ﬁ}{ and X((n)) = [n]. For the
inductive case, we proceed by case analysis on the last rule used to derive G F o : n,
yielding:

o case [call]:
{n')=call n'—n
where 0 =0':n'

o':n' > o:n"in
By the inductive hypothesis applied to o’ : n'/, we have:

A7t e ﬁﬁ, () =o' :n'

Since {(n') = call and n’ — n, the path A: n is in ﬁ}’t, and:

X(@)=0":n" n'—n

(i:n)=0":m":n

=<

e case [check]:
{(n') = check(P) o:n'FJDK(P) n'-—-sn

o:n' > o:n
By the inductive hypothesis applied to 0 : ', we have:
e, x(7A) =o:n'
Here we have £(n') = check(P) and n/ --» n, hence 7 : n € TT¥, and:

Y !

XA =0:n" n'-—-sn

X(ft:n)=o0:n

e case |return|:
[| {(m) =return n'--» n

o:n':mpo:n
By the inductive hypothesis applied to o : ' : m, we have:
Jrelly,. x(A)=0:n':m

By lemma 3.5.16, we have m € p(n'), hence n' --+ m implies that m — n is a
return edge. Now, lemma 3.6.13 ensures n' &=z m, then the path 7 : n is still valid.
Therefore, :n € TTY, and:

X(M)=o:n:m m= n

X(ft:n)=o0:n

62 CHAPTER 3. PROGRAM MODEL

Lemma 3.7.8. The evaluation of « is total on valid paths, i.e.:

Fell = 3Imell. T —g T

Proof. The proof is carried out by mathematical induction on the length of the valid path.
For the base case, if 71 = (n) € TV, then 7@ —4 (n) by the first rule of «. For the inductive
case, let T = (no,...,nk). We then proceed by case analysis on the last edge of the valid
path:

o cases [call, transfer]: by the inductive hypothesis, we have (ng,...,nx_1) —« 7 for
some abstract path 7t € T,y n, _,. Then, the following transition occurs:

(Mo,...,Mk—1) 2o (Ng_1,nk) €E

(Mo, . vy i) = 702 N

e case [return]: assume ng_; — ny. Since 7t is a valid path, it must be Ny 27 N1

and ny» --+ my for some {* < k— 1. By lemma 3.7.2, (ng,...,ni~) is a valid
path, too: hence, by the inductive hypothesis, we find an abstract path 7t such that
(no,...,ni+) =« 7. Therefore, the following transition occurs:
a({No,...,Mix)) =T MNi» Sz N1 Nis - N
CX((TL(), v ank)) =TTIMNgk
O

Theorem 3.7.9. Let 7t be a valid entry path. Then:

x(m) = xlafmn))

Proof. The proof is carried out by mathematical induction on the length of . For the
base case, if T = (n) and n € N¢pypy, then x((n)) = (n) and x((n)) = [n] = x((n)). For the
inductive case, let T = (no,...,ny). We proceed by case analysis on the last edge (nx_1, n)
of 7t

e case [call]: by lemma 3.7.2, since (no, ..., ny) is valid, then (nog,...,ng_1) is a valid
path, too. Therefore, both ¥({no,...,nk_1)) and «({no,...,Nx_1)) are defined. By
definition of ¥ and «, we have:

)Z((Tl.o,...,nk_ﬁ) =0 Mk—1 — Nk

X({Noy...,Nk)) =0 : Ny

oc((no,...,nk_1)) =7 MNk—1 — Nk

x({no, ..., Nk)) = 7Nk

By the inductive hypothesis, X({no,...,nk—1)) = 0 = x(7). Then, by definition of x:

X(m) =0 ng_1—ng

X(m:ng) =o0:ny

3.7. VALID PATHS 63

e case [transfer]: again, by lemma 3.7.2, (ng,...,nk_1) is a valid entry path. Then,
both x({no,...,nk_1)) and «({no,...,nyx_1)) are defined, and we have:
X((no,..., Mk 1)) =01 My 1 - Nk
X((noy ..., nxk)) = 0:ng
al(no,...,Mk—1)) =7 mNng_1 ——» Nk
al{ng,...,nk)) =7: Nk

By the inductive hypothesis, X({1no,...,nk_1)) = 0 :nx_1 = x(7). Then:

X(M) =0:ng_1 Mg —* g

x(m:ng) = o0:ng

e case [return]: again, by lemma 3.7.2, (no,...,nk_1) is a valid path, then:
X((No, ... ,Nk—1)) =0 Mgt M1 Nk & Nk
X((no,...,nk)) = 0 ng
(X((‘I’Lo, e ,ni_x)) =T M= <:>7=[MNk—1 MNi» ——* Nk
(X((TLO, HR ,le)) =TI Mk
Actually, (no,...,ni+) is a valid entry path, too: hence, by lemma 3.7.5, we have
x({no,...,ni+)) = o' : ni for some state o' € . Then, by hypothesis ni+ 2z ny_1,

lemma 3.7.4 ensures that:
)~((<n0)---,ni*,---vnk—1>) =0’ inpinie

Now, since the evaluation of ¥ is deterministic (lemma 3.6.8), and we have already
assumed X({no,...,Mk_1)) = 0: Ny : Ny_1, it must be 0 = 0’ and 1 = i*. Then, by
the inductive hypothesis, we have X({no,...,ni«)) = 0: ni~ = x(n). Therefore:

X(M) =0 N Ny - My

x(m:ng) =o0:ng

Lemma 3.7.10. Let 7t be a valid path. Then:

ne;m = mep(n)

Proof. Let @ = (no,...,nk), n =ny, m =n; for some 0 < i < j < k. Consider the subpath
= (ng,...,ny) € ﬁni‘nj. By lemma 3.7.3, 7* is a valid path: hence, by 3.7.8 and 3.6.18,
we can compute its abstraction * = x(7*) € Iy, n;. Here we can write 7 = n; : 7 for
some 7 € Ty, n;, because i # j implies 7* is non-empty. Now, W(7t*) = w(7*) is ensured
by theorem 3.6.19, and, by hypothesis ni &z nj, we know w(7w*) = 2. Then:

w(m) = w(r*) —wni,nipr) = WR) -1 =1

In conclusion, we have that ni — nit1, and I € Ty, | n;. w(7r) = 1. Then, by definition
3.5.15, it turns out that nj € p(ni), i.e. m € p(n). O

64 CHAPTER 3. PROGRAM MODEL

3.8 Traversable paths

Definition 3.8.1. Let c € £, and n,n’,m € N. We definen: X x ¥ — E as:

n([l, ml) = (Lnyn) ifn € Nenry

Nno:n,o:n:n') = (m,n') iff(n)=call and n —n’
n(o:n,o:n’) = (n,n') if {(n) =check(P) and n --+ n’
Nno:m:m,o:n') = (n,n') if{(m)=return and n -+ n’

In any other case, n is left undefined.
Lemma 3.8.2.

o' >0o:m = dmn)ek. n(c,o:n)=(mn)

Proof. If ¢' =[], n € Nentry and 0 = [n], then (Ln,n) € Eenery and n([],) = (Ln,n).
Otherwise, we proceed by case analysis on the rule used in transition o’ > o :n, yielding:

e case [call]:
{n')=call n'—n
where 0 =0':n’

o':n'>o:n':in
Here n(o':n',0':n':n) = (n',n) € E.

e case [check]:
L(n') = check(P) o:n'FJDK(P) n'--sn

o:n' > o:n
Heren(o:n’,o0:n)=(n',n) € E.

e case |return|:
[| {(m) =return n’' --» n

o:n':mpo:n
Heren(o:n':m,0:n)=(n’,n) € E.

O

Definition 3.8.3. Let 0 € £, and n,n’,m € N. We define 7] : £ x £ — E as:

A(ll, 1) = (Ln,n) if 1 € Nepyry

No:n,o:n:n') = (n,n') iff(n)=callandn—n'
N(o:n,o:n’) = (n,n') if {(n) = check(P) and n --» n’
No:m:m,o:n') = (mn') if{(m)=return and m — n’

In any other case, 1 is left undefined.

3.8. TRAVERSABLE PATHS 65

Definition 3.8.4. A concrete path T = (ny,...,ny) is traversable if a derivation:
] > oo > oy > - D> ox
exists such that n([], 0o) = (LN, Mo), and:
Vie 0.k—1. f(oy, 0141) = (M, Nip1)

We denote with T the set of all traversable paths, and with ﬁfl the set of all
traversable paths leading to n (clearly, only entry paths can be traversable).
We write ﬁT(G) and ﬁfl(G) when we want to make clear that the control flow

graph under consideration is G.

Lemma 3.8.5. Let 7t be a concrete entry path. Then 7t is traversable iff:

Vie0.k—1. x((no,...,ni)) > x((no,...,Mit1)) (3.16)

Proof. For the if part, define 63 = X({no,...,n;) for i € 0..k. Then, by (3.16), we have
that o; > 0347 for each i € 0.k — 1. Now we prove that fj(0i, 0311) = (ni,ny41), for each
i€ 0.k — 1. We proceed by cases on the last rule used to derive X((no,...,Ni+1)):

o case [call]:
(no,...,ni) —)5(o:miy Ny — Nip1

<TL(),. ..,TL1+1> —% 0 My M4
Here, £(n;) = call implies fi(o : Ny, 0: Ny : Nip1) = (M, Nig1).

e case [transfer]:
Moy oy M) =5 01 My ——3 Ny

(Noy . vy Mig1) =5 0 Mg
Here, £(ni) = check(P) for some permission P, hence fj(0 : ni, 0: Nit1) = (N, Nip1)-

e case [return):
Moy.voyMy) D OIMITHY T4 = Tt

(Mo, ...y Mit1) —% 0 :Mip

Here, £(ni) = return implies fi(o: m: i, 0: Nip1) = (N, Nig1).

Moreover, we have 1i([], 00) = (Ln, o) because X({no)) = [no] and ng € Nepsry: therefore,
the requirements in definition 3.8.4 are fulfilled, and the concrete path 7t is traversable.

For the only if part, assume og D> - - - [> 0y is a derivation such that f([], 09) = (L, o) and
(01, 0i+1) = (ni,ni41) for each 1 € 0..k — 1. By mathematical induction on the length of
7, we prove that o; = X({no,...,mni)) for each i € 0..k — 1. For the base case, if i = 0, then
X({no)) = [no]: this does the work, because 7i([l, 00) = (Ln, o) implies 09 = [ng]. For the
inductive case, we assume the statement is true for an arbitrary i € 0..k — 2; then, we show
it also holds for 1+ 1. We proceed by case analysis on the edge (i, mi11):

66 CHAPTER 3. PROGRAM MODEL

e case [call]:
<Tlo, P ,TL:L) —))~(o:miy Ny — Nip1

<TLo,...,TLi+1> —% 0Ny M4

By the inductive hypothesis, we have 0; = 0 : n;. Since fi(0;, 0i41) =Ny — Nyq1,
by definition 3.8.3 it must be 0i11 =0 :ny Ny

e case [transfer]:
Moy vvy, M) =g 0iMi M - Ni

(Mo, .oy Nig1) = O Nigg

By the inductive hypothesis, we have 0; = 0 : ny. Since fj(0i,0141) = Ny --+ N4,
by definition 3.8.3 it must be 0i 11 = 0: Ny41.

e case [return):
(Mo,...,Ni) =g 0:mMing Ny = Nig

(Mo, ..y Mig1) =g O Tt
X

By the inductive hypothesis, 0; = 0 : m : n;. Since fi(0;,0i41) = Ny — mniy1, by
definition 3.8.3 it must be 0y41 = 0: Nyq1.

o

Theorem 3.8.6. Let 7t be a traversable path. Then, 7t is valid.
Proof. Let @ = (ny,...,nk), and n; < nj;1 for some j < k (otherwise 7 is clearly valid).
Since 7t is traversable, by lemma 3.8.5 it follows that:

x((no,...,n5)) > X((no,...,Nj41)) (3.17)
Now, the last rule used to derive X({(no,...,nj+1)) give rise to the following transition:

X((no,...,my))=0:m:ny; My = Ny
X((no,...,nj41)) =0:njm

By lemma 3.6.6, it must be m = n; for i = @(|o]). Then, by lemma 3.6.13, it follows that
Ny =i Nyj_1. Moreover, the transition (3.17) takes the form:

f(n;) =return mny --» M4

o:mi:n; > 0:Mjq

Therefore, we also have n; --» nj41, which actually proves that 7 is valid. O

3.8. TRAVERSABLE PATHS 67

{P} ¢

ng: call —— = mnj: check(P?)

Y Y

Nn3: return <«—— N : return

Figure 3.7: Control flow graph for counterexample 3.8.7

Counterexample 3.8.7. Not all valid paths are traversable.

Proof. Consider the control flow graph in Fig. 3.7. The concrete path & = (ng,n1,n2,n3)
is valid, because ng 2z n, and ng --+ n3. However, 7 is not traversable: in fact, no

transition can occur on state [ng, 1], because [ng,nq] ¥ JDK(P'). O

68

CHAPTER 3. PROGRAM MODEL

Chapter 4

Data Flow Analysis

Data Flow Analysis (DFA) is a static technique for predicting safe and com-
putable approximations to the set of values that the objects of a program may
assume during its execution. These approximations are then used to analyze
properties of programs in a safe manner: if a property holds at static time,
then it will always hold at run-time. The vice-versa may not be true: the anal-
ysis may “err on the safe side”. The properties are then interpreted in such a
way that an analysis remains correct even when it produces a larger property
than ideally possible. This corresponds to producing a valid inference in a
program logic for partial correctness. However, DFA and other static program
analysis techniques are generally more efficient than program verification, and
for that reason more approximate, because the focus is on the fully automatic

processing of large programs.

Data flow analysis techniques have been widely used since the early days
of optimizing compilers, and they still represent an active field of study in
computer science. The first successful effort in endowing DFA with a solid
theoretical basis is due to Kildall [Kil73], whose work, subsequently refined by
Kam and Ullman [KU76, KU77], still constitutes the approach to DFA which

is mainly practiced nowadays.

In what follows, we will give a brief introduction to DFA, using the notation
and terminology of [NNH99]. However, our approach will be slightly different
from those mentioned above, in order to better fit with our program model

and the analyses we will build upon it.

70 CHAPTER 4. DATA FLOW ANALYSIS

4.1 Basic definitions

In the most general setting, a data flow analysis problem is just a combination
of a control flow graph G, a property space L, which describes the data flow
information associated to G by the analysis, a safety test ¢ : L — Bool, which
characterize the solutions of the problem, and a partial order C, which tells

when a solution is more precise than another. !

The fized point approach to data flow analysis states that the solutions for a
data flow problem are the fixed points of a given transfer function f : L — L,
that is 1 = f(1) implies ¢(1) is true. Therefore, according to the informal
meaning given to C, the most precise solution for a data flow problem is just
the least fixed point of its transfer function.

Transfer functions actually specify abstract versions of the semantics of
control flow graphs. By the moment, we do not require that transfer func-
tions are defined compositionally (i.e. the abstract semantics of a graph is
constructed from the abstract semantics of its nodes).

The other approach to data flow analysis is the meet over all paths ap-
proach. Roughly, it consists of two steps: first, the abstract semantics of each
traversable path is computed; then, the results of the previous step are mixed
to obtain the abstract semantics of the whole graph. Since, due to the presence
of loops, it may happen that an infinite number of paths must be taken into
account, the meet over all paths approach is in general not effective.

In what follows, we will mainly focus on the fixed point approach: this
choice is motivated by the fact that, under given conditions, this approach
will always find solutions for data flow problems, while mantaining the same

accuracy of the meet over all paths approach (see e.g. theorem 4.3.7).

Definition 4.1.1. A data flow analysis is a triple (L, F, u) where:
e the partial order L = (£, C) is a property space;
e FC{f|f:L — L}isa family of transfer functions;

e L is a mapping from control flow graphs to transfer functions.

'Tn what follows, we estabilish that 1o C 1; means “ly is more precise than 17”.

4.1. BASIC DEFINITIONS 71

According to the informal definition sketched above, a control flow graph G,
together with a data flow analysis (L, F, u), instantiates a data flow problem
(G, L, u(G)). We say that 1 € L is a solution for the problem DFP = (G, L, f)
(for brevity, a DFP-solution), if 1 € fix(f), where fix(f) ={le L |l=f(1) }.

In the general case, the specification of a data flow analysis per se is not
worth troubling about: actually, it is not even known whether a data flow
problem has a solution or not. Therefore, in what follows we will put con-
straints on the structure of the property space and the transfer functions, in
such a way that, for any control flow graph, a solution indeed exists and it is
(efficiently) computable.

The following definition estabilishes sufficient conditions for which a DFA

fulfills the first requirement, and part of the second one.

Definition 4.1.2. A data flow analysis is monotone if:

e the property space satisfies the ascending chain condition, i.e. any in-
creasing chain [y C 13 C --- C lgx C --- of elements of L eventually

stabilises, that is:
Jko € N. Vk > ko. lx = 1y,

Moreover, we require L to be endowed with a bottom element 1.
e JF is a family of monotone functions, that is:
LCV = f(U) Cf(1)
for any f € Fand 1,1’ € L.

It is evident that any instance of a monotone data flow analysis always

admits a solution. In fact, by the ascending chain condition, the chain:
le C f(Le) C© fA(Le) - T f¥Le) T o=

eventually stabilises to the least fixed point of f.

Although this suggests an algorithm which actually computes the least
solution for any monotone data flow problem, we are not able to give any es-
timate of its computational complexity: this happens because no assumptions

about the structure of the property space and the transfer function were made.

72 CHAPTER 4. DATA FLOW ANALYSIS

4.2 Data flow frameworks

By looking at archetypical examples of data flow analyses [ASU86, Muc97,
NNH99], it turns out that most of them are based on property spaces and

families of transfer functions of the form:
L = NU{J_N}—)LN F = Ep—)f}'p_ (41)

where Ly is a local property space and Fg C {f | f : Ln — Ln]} is a family
of local transfer functions. Actually, this means that data flow information is
homogeneously distributed among nodes; each edge is then associated with a
transfer function, telling how the information propagates through the graph.
Moreover, a confluence operator | | : L3, — L is needed, in order to specify
how different guesses 1;(n),..., lk(n) for the analysis at node n are combined
into a single guess l(n) = | [{lLi(n)[ie 1.k}

Without loss of generality, in what follows we will only consider forward
analyses, where the information propagates in the same direction as the control
flow. Backward analyses only require minor adjustments (e.g. changing the
direction of edges) to be handled by the iteration-based algorithms described
below. On the other hand, different kinds of algorithms (e.g. structure-based)

would require substantial effort to be adapted to the backward case.

Definition 4.2.1. A data flow framework is a quadruple (Ln, Fe, 1g, L), where:

o Ln = (LN, U, Ley) s a join semi-lattice, i.e a non-empty set with a
binary join operator Ll : Ln X Ln — Ln, which is idempotent, com-
mutative and associative. Moreover, Ly is required to contain an unit

element L, such that, for any 1 € On:

J_L |_|l = 1 = 1-|—|J—LN

N

e Fr C{f|f:Ln — Ln}is closed under composition, and contains the

identity function idg, =g4¢ Ax : Ln. X;
e L is a mapping from edges to local transfer functions;

e L € Ly is the solution for the isolated entry node Ly.

4.2. DATA FLOW FRAMEWORKS 73

Theorem 4.2.2. A data flow framework is a data flow analysis.

Proof. The global property space £ and the family F of global transfer functions can be
reconstructed from Ly and Fg as shown by equation (4.1). The global mapping u is:

WG) = Ae:E,. pele)

To complete the construction, it suffices to observe that the join operator LI actually induces
a partial order C on L. This is made evident by defining:

lc v iff Ul = U O

Again, given a control flow graph G and a data flow framework (L, Fe, ue, 1),

we can instantiate a problem (G, Ly, fg, 1), where:

o= {fomn) 1 n = On (M) € By A fimmn) = He(m,n) }
is the set of local transfer functions associated with the edges of the graph.

Definition 4.2.3. A data flow framework (Ln, Fe, pe, 1) is monotone if Ly
satisfies the ascending chain condition, and all transfer functions in F¢ are

monotone (with respect to the partial order induced by the join operator).

Theorem 4.2.4. A monotone framework is a monotone data flow analysis.

Proof. To prove that the ascending chain condition is satisfied by the global property space,
consider the increasing chain of elements of L:

LELLC - ClLC -
By the construction in (4.1), the global property space L is pointwise ordered by:
icv iff YneNU{ln} ln) C 1U'(n)
Since the ascending chain condition holds for Ly, we have that:
vn € N. Jk,, € N. Vk > ky. lg(n) = 1k, (n)

Then, if we choose ko = max {k, | n € N}, we obtain li(n) = lk, (n) for any k > ko and
n € N. Therefore, we also have lx = li, for any k > ko. To conclude, we prove that the
global transfer function is monotone. By monotonicity of local transfer functions, we have:

ICUV = VYmeN. I(m) C U(m)
= V(m, TL) € F—p- f(m,n](um)) E f(m,n](ll(m))
= || fmwm) C fimm (1 (m))

(m,n)€E, (m,n)€E,

= f() E f(1)

Definition 4.2.5. A monotone framework is distributive if:

faut) = fU u)

for each transfer function f € Fg and 1,1’ € Ly.

74 CHAPTER 4. DATA FLOW ANALYSIS

4.3 Solutions and their properties

So far, we have not specified what the solutions for an instance of a data
flow framework are. According to the two approaches to data flow analysis
presented above, we distinguish between two classes of solutions.

The fized point strategy iteratively approximates the least solution of a
system of equations, which specifies the relation between the solution at node

n and the solutions at its predecessors (i.e. those m such that (m,n) € E,).

Definition 4.3.1. A fized point solution for an instance (G, L, f, L) of a data
flow framework is a solution of the equation system DFA=(G):

L lfTI,ZJ_N

DFA(n) = |_| fimn)(DFA(m)) otherwise

(m,n)€E,
We write | = DFA=(G) when 1 € L is solution to the equation system. The
MFEP solution is then defined as the least solution to DFA=(G), i.e.:

MFP = |—|{16L|1)=DFA=(G)}

The global transfer function f is reconstructed from the set fg¢ of local
transfer functions as follows:

f() = M. if n= 1y then telse | | fimm(l(m))
(m,n)ek,

The meet over all paths strategy directly mimics possible program execu-
tions: for each node n in the control flow graph, the solution at n is obtained
by joining the abstract semantics of all traversable paths reaching n. Less
accurate solutions are obtained by considering approximations to the set of
traversable paths (e.g. valid paths or concrete paths).

In order to formally specify this class of solutions, we first need to define

the transfer function of a path:

Definition 4.3.2. The transfer function of a path 7t (either abstract or con-
crete) is defined as:

. { idy if 7T = ()

f(nkq.nk) S Of(no,m] Of(LN,Tlo) if = <n0> T ,le>

4.3. SOLUTIONS AND THEIR PROPERTIES 75

Definition 4.3.3. The meet over all traversable paths (MTP) solution for an

instance (G, Ln, fg, 1) of a data flow framework is defined as:

MTP(n) = | | /(1)

feTly

If we agree the empty path reaches the entry node Ly (ie. () € TT.),
then we yield the correct solution at Ly, i.e. MTP(Ly) = idg (1) = L

Since, in our program model, it is always possible to statically test whether
a path is traversable or not (in the sense of definition 3.8.4), the procedure of
ruling out non-traversable paths can be substituted by an appropriate defini-

tion of the transfer functions. This gives rise to the following definition:

Definition 4.3.4. The meet over all valid paths (MVP) solution for an in-

stance (G, L, fg, 1) of a data flow framework is defined as:

MVP(m) = || £

ey

However, the MFP solution if often a rather coarse approximation of the
MVP solution. In fact, by definition 4.3.1, the MFP solution propagates the
information at the exit of a method to all of its callers, regardless of the calling
sequence (i.e. it is context insensitive). More accurate approximations can be
obtained by considering fixed point solutions over different property spaces.

Context sensitive analyses are subject of investigation in [SP81].

At best, the MFP solution can aim at approximating the meet over all
paths solution, which guesses the analysis at node n by combining the pieces

of data flow information collected through all paths reaching n.

Definition 4.3.5. The meet over all paths (MOP) solution for an instance

(G, LN, fe, V) of a data flow framework is defined as:

MOP(n) = || &

7€ Ty UTTn

It can be shown [KU77] that the MOP solution is not always computable.

76 CHAPTER 4. DATA FLOW ANALYSIS

Theorem 4.3.6. Consider the MTP, MVP, MOP and MFP solutions to an

instance of a monotone framework. We have:

MTP C MVP C MOP C MFP

Proof. First of all, note that all solutions coincide on the isolated entry node Ly, i.e.
MTP(Ln) = MVP(Ln) = MOP(Ln) = MFP(Ln) = . Then, from now on we will always
consider n # L. For the first inequality, observe that, by theorem 3.8.6, any traversable
path is also a valid path, i.e. TT}, CTT2. Then, since XCY = | |XC |]Y, we have:

MTP(n) = || fx(0 © |] /(1) = MVP(n)

ft e TIT, fte Ty

For the second inequality, it suffices to observe that, by definition 3.7.1, any valid path is
also a concrete path. Then TTY, C 1T, C T,y U TT;, and:

MVP(m) = || &0 C || /&) = MOP(n)

fefiy TE T Ul
For the last inequality, we need the following auxiliary definition:

MOP¢(n) =[] /(v (4.2)

me T, U,
|t|<k

For any k € N, MOPy is an approximation of the MOP solution, where only paths whose
length is less than k are considered. Clearly, MOPy C MOP for any k. Moreover, we have:

MOP(n) = | | MOPy(n) (4.3)
keN

In fact, consider the increasing chain:
MOPy(n) E MOP¢(n) C ... E MOPg(n) C ...

By the ascending chain condition, there is a ko € N such that MOPy(n) = MOPy, (n) for
any k > ko. This means that, to yield the MOP solution at node n, it suffices to look at
paths whose length is less than k. Then, MOP(n) = MOPy,(n) = | |, .y MOPx(n). Now,
equation (4.3) enables us to prove the inclusion MOP C MFP by showing that:

Yk € N. MOPy(n) C MFP(n)

We proceed by mathematical induction on the length k. For the base case, MOPy(n) is
the least upper bound over an empty set of paths: by convention, this equals to L, and

4.3. SOLUTIONS AND THEIR PROPERTIES 77

clearly 1., C MFP(n). For the inductive case, assume MOPy (n) E MFP(n). Then:

MFP(n) = f(MFP(n)) by def. 4.3.1
= | fimm) (MFP(m)) by def. f
(m,n)€E,
.| |_| fim,n) (MOPy(m)) by ind. hyp., monot. f
(m,n)€E,
= |_| f(m,n](|_| fTE(L)) by def. MOPy
(m,m)€Epy m e, Ullm
|l <k

J |_| (l_l f(m,n](fn(t))) by monot. f

(M,M)EEp e My UTl

|mtl<k
= U (U fmm) u L o (R0)) by assoc. U
(m,n)eE, me Ty =R
|mt|<k |mtl<k
.| |_| (|_| f(m,n)(fn(L))) U |_| (I_I f(m,n)(fn(t))) as E)Eg Ep
(m,n)€E 7T E Ty (m,n)eE el
|t|<k |7tl<k
= || #~0) u |] =W by def. f
' €Ty ' €M
|7t |<k+1 || <k+1
= |_| frer (1) by assoc. LI
n €My UTTy
|| <k+1
= MOPk+1 (TL) by def. MOPk

O

It can be proved [KU77] that no algorithm can compute the MOP solution
for all monotone data flow frameworks: however, for the class of distributive

frameworks, the following coincidence theorem holds:

Theorem 4.3.7. The MOP and MFP solutions coincide for any distributive
framework, provided the graph is connected (i.e. TT,, # & for each n € N),

and one of the following conditions holds:

fmesn = Llg foreach mymeN (4.4a)

fm-sn = Llg, foreach m,n € N such that {(m) = call (4.4b)

Proof. First of all observe that, if f is distributive and X is non-empty, then:

LX) = |]rw (4.5)

lex

78 CHAPTER 4. DATA FLOW ANALYSIS

Now, assume that condition (4.4a) is satisfied. Then, it follows that:

() C fam (V)

for any concrete path 7t. Since, with the above, the transfer function of a concrete path is
always more precise than the transfer function of an abstract path, we also have that:

L] =0 c |] &W (4.6)
ﬁEﬁn TTETT
Next we calculate:
MOP(n) = || (v by def. 4.3.5
neﬂnuﬁn
= |_| f=(1) U |_| fr(U) by assoc. U
TE TIn neﬁn
= || £&W by (4.6)
e Tln

|_| (|_| fom,m) (fn(L))) by def. fr

(m,n)EE m e Ty

= 1 S (L #0) by (4.5)
(m,n)eE 7 E TTm

= U S (L #W) by (4.4a)
(m,n)€E, 7T E Tm

= 1 (U A0 0 | #W) by (4.6)
(m,m)€E, TE Ty TE Ty

= | f(m’n](|| fn(t)) by assoc. U
(Mn)EE, meTpUiln

= || fimmn (MOP(m)) by def. 4.3.5
(m,n)€E,

Therefore, MOP is solution to the data flow equations. Since, by definition 4.3.1, MFP is
the least solution to such equations, we have MFP C MOP. On the other hand, by theorem
4.3.6 it follows MOP C MFP: hence the equality is proved.

Similar arguments can be used to prove that the MOP and MFP solutions coincide if
the hypothesis (4.4b) is satisfied. O

Context-sensitive versions of this theorem can be found in [SP81] and [KS92].

The next section presents a polynomial-time iterative algorithm that com-
putes the MFP solution to the instance of monotone framework given as input.

Other classes of algorithms for data flow analysis are described in [MR90].

4.4. THE WORKLIST-ITERATION ALGORITHM 79

4.4 The Worklist-Iteration algorithm

Algorithm 2: Worklist-Iteration solution for monotone frameworks

Input: an instance of a monotone framework DFP = (G, L, fg, U)-
Output: the MFP solution for DFP.

WORKLIST-ITERATION(G, L, fe, U)
1 W« nNIL
2 Analysis[1n] 1
3 for each (m,n) in E, do
4 W « Cons((m,n), W)
5 for each n in N do
6 Analysis[n] « L.
7 while W # NIL do
8 (m,n) « HEAD(W)
9

W « TAIL(W)
10 if fimn) (Analysis[m]) Z Analysis[n]
11 then Analysis[n] «— Analysis[n] U fimn)(Analysis[m])
12 for each (n,n’) in E, do
13 W « Cons((n,n’), W)

Theorem 4.4.1. The worklist-iteration algorithm always terminates, and it
computes the MFP solution to the instance of monotone framework given as

input. More precisely, for each n € N U{ Ly}, we have:

MFP(n) = Analysis[n]

Proof. We first carry out the proof of termination of the algorithm. The bounded for
loops at lines 3-4 and 5-6 trivially terminate: actually, they are executed |E,| and |N| times
respectively. The worklist W contains |E,| elements when the while loop at lines 7-13 starts.
Each iteration of the while loop removes an element from the worklist (line 9), and may
add up to |E,| new elements (lines 12-13).

An edge (n,n') can be added only if f,,)(Analysisim]) 1 Analysis(n] for some node m,
or they are incomparable (line 10). In both cases, the new value assigned to Analysis[n] at
line 11 is strictly greater than its previous one. In fact, the inequality:

Analysism] L Analysis[n] U f(;, n)(Analysisim])
is implied by the more general result:
Vgl = 1rC lul

The non-strict inequality 1 C 1 U 1’ is always true, because, by definition of C, this is
equivalent to 1L (11U 1') = (1U 1), which holds by associativity and idempotency of LI.

80 CHAPTER 4. DATA FLOW ANALYSIS

Strictness is proved by contradiction. Assume 1 =1U1’. By definition of C, this is the same
as saying 1’ C 1, which clearly contradicts hypothesis 1’ IZ 1.

Now, any strictly increasing chain must be finite. To see why, suppose, by contradiction,
that ly C 13 C --- C g C --- is an infinite strictly increasing chain. Then, since 1; C li4q
clearly implies 1; C iy for any 1 € N, by the ascending chain condition we find an index
ko € N such that Vk > ko. lx = li,, which contradicts our hypothesis about strictness.
Therefore, each edge can be inserted into the worklist only a finite number of times: this
causes the worklist to be eventually exhausted, and the algorithm to terminate (note that
we have not used the fact that the analysis is monotone).

The proof of the correctness result is split in two parts: first, we prove that, for each
node n, the inclusion relation Analysisin] C MFP(n) is invariant for the while loop; then,
we will conclude by showing that, on termination of the loop, also the converse inequality
MFP(n) C Analysisin] will hold.

For the first part, observe that, after the initialisation for loop at lines 5-6, we have
Analysis[Lny] = « = MFP(Ly), and Analysisin] = L, C MFP(n) for each n # Ln.
Therefore, the inequality holds when the while loop is entered. Next, we show that the
inclusion is preserved after each iteration of the loop. When the condition of the if statement
at line 10 is false, the array Analysis is left unchanged. Otherwise, only the value of Analysis[n]
is updated, and we have:

Analysis[n] « Analysisn] U fim n)(Analysisfm]) by the assignment at line 11

C MFP(n) U fim n)(Analysis[m]) by hyp. Analysisin] C MFP(n)
C MFP(n) U fimmn) (MFP(m)) by monotonicity of fim n)
C MFP(n) U || fimmn) (MFP(m)) by def. C and U
(m,n)€E,
= MFP(n) U MFP(n) by def. MFP
= MFP(n) by idempotency of LI

For the second part, note that the inequality:
V(m,n) € Ep. Analysism] 3 fi;n n)(Analysisim]) (4.7)

is ensured at the exit of the while loop. In fact, whenever the condition of the if statement
at line 10 is false for some (m,n) € E,, the assignment at line 11 manages to estabilish the
inequality Analysis[n] 3 f(;n n)(Analysis[m]), because:

Analysisi] U fim n)(Analysisim]) 3 fim n) (Analysisim])

trivially follows by definition of LI and 0. Actually, after the value of Analysis[n] has been
updated, it may happen that Analysisin’] 2 fi; n+)(Analysisin]) for some (n,n’) € E,.
However, once the assignment at line 11 has been performed, the inner for loop at lines
12-13 takes care of inserting all edges (n,n’) € E, in the worklist: then, the inequality
Analysisn'] 3 fin, n)(Analysis[n]) will eventually be re-estabilished in a subsequent iteration
of the while. Hence, the inequality (4.7) is satisfied at the exit of the loop. By definition
of | |, from (4.7) it follows that, for any n € N:

Analysisn] 3 |_| fem,n) (Analysis[m])
(m,m)EE,

Then, Analysis turns out to be a prefized point of the global transfer function f. By the
Knaster-Tarski theorem on minimum fixed points, monotonicity of f implies that MFP is
just the least prefixed point of f. Thus:

Analysisin] O MFP(n) O

Chapter 5

Static analyses

In the previous chapters, we have seen that stack inspection plays a crucial
role in the Java security model. We have studied an abstract representation
of Java programs, which includes a formalization of stack inspection.

Based on this information, in this chapter we develop two families of data
flow analyses, which aim at discovering what permissions are granted/denied
to code in all possible executions.

We prove that all the analyses are safe, in the sense that they never predict
program behaviours that do not correspond to any actual execution; then, we

show how these analysis can be used to optimize the Java bytecode.

82 CHAPTER 5. STATIC ANALYSES

5.1 The Denied Permissions Analysis

We say that a permission P is denied to a state o if o ¥ JDK(P). Purpose of
the Denied Permissions Analysis (DP for short) is that of finding, for each node
of a given control flow graph, which permissions are certainly denied to any
state reaching that node. We require the analysis to be safe, in the sense that
it never claims that a permission P is denied to a node n when an execution

[]>---> 0:n exists such that o : nF JDK(P).

Definition 5.1.1. The sets of permissions denied, respectively, to a state o

and to a node n, are defined as:

{P € Permission | 0 ¥ JDK(P)} ifGFo
Alo) =

6] otherwise

Given any control flow graph G, a DP analysis is specified by means of an
equation system DP=(G). We say that & is a DP-solution if § = DP=(G).

Definition 5.1.2 (DP-soundness). A DP-solution 6 is sound if:
Pedn) = VoeX.GFo:n = o:nkFJDK(P)
Lemma 5.1.3. Let 0 be a sound DP-solution. Then, for each node n € N:

5(m) € An)

Proof. Let P € 8(n), where 8 is a sound DP-solution. If n is not G-reachable, then A(n)
is the intersection of an empty collection of permission sets, which, by definition, equals to
the universal set Permission. Therefore, P is trivially contained in A(n).

Otherwise, if n is G-reachable, by definition 5.1.2 we have that o : n ¥ JDK(P) for any
G-reachable state 0 : n. Actually, by definition 5.1.1, this means that P € A(o : n) for any
state o : n such that G F o :n, that is:

P € ﬂ Alo:n) O
GFomn

Definition 5.1.4. A DP-solution § is non-trivial if:

P ¢ Perm(n) =— P e€j(n)

5.1. THE DENIED PERMISSIONS ANALYSIS 83

Definition 5.1.5 (DP-completeness). A DP-solution § is complete if:
Pgomn) — doe€eXl.Gro:n A o:nt JDK(P)
Lemma 5.1.6. Let 6 be a complete DP-solution. Then, for each n € N:

5(n) O A(n)

Proof. Let & be a complete DP-solution, and P € A(n). If n is not G-reachable, then A(n)
is the intersection of an empty collection of permission sets, which, by definition, equals to
the universal set Permission. Therefore, the inclusion relation holds if also &(n) equals to
Permission. By contradiction, assume P € d(n) for some permission P. Then, by definition
5.1.5, at least one G-reachable state o : n must exist. This clearly contradicts our hypothesis
that n is not G-reachable.

Otherwise, if n is G-reachable, by definition 5.1.1 and assumption P € A(n), we have
that o : n ¥ JDK(P) for any G-reachable state o : n. By contradiction, assume P ¢ &(n):
then, by definition 5.1.5, at least one G-reachable state o : n exists such that o : n + JDK(P).
This raises a contradiction with hypothesis o : n ¥ JDK(P). O

Example 5.1.7. Consider the e-commerce application of Fig. 3.1. The optimal
DP-solution is shown in Table 5.1. Since the value of analysis does not matter

for unreachable nodes, they are tagged with unreach.

n d(n)
Mo (%]
n unreach
n; — Ny { Ploan) Pread) Pwrite}
ns { Pcanpay> Pcredit) Pdebit) Ploan) Pread) Pwrite }
ng unreach
nzy —ng { Ploana Pread> Pwrite}
TNo (%)
N0 —MNi12 { Ploana Pread) P’write}
N3 —MNyg %
N5 — Nig { Ploan) Pread> Pwr‘ite}
ny7 — Nig unreach
N9 { Ploan) Pread) Pwrite }
N0 — Ny %
n22 { Ploan, Pread> Pwrite }
N3 —Nyg 9

Table 5.1: The optimal DP-solution for the e-commerce application.

84 CHAPTER 5. STATIC ANALYSES

5.2 The Granted Permissions Analysis

We say that a permission P is granted to a state o if o = JDK(P). The Granted
Permissions Analysis (GP for short) will give, for each program node, a safe
approximation of the set of permissions that are certainly granted to any state

reaching that node.

Definition 5.2.1. The set of permissions granted, respectively, to a state o

and to a node n, are defined as:

{P € Permission | o JDK(P)} ifGF o
o) = .
6] otherwise

rm) = () T(o:n)

GFon
Given any control flow graph G, a GP analysis is specified by means of an
equation system GP=(G). We say that 7y is a GP-solution if v = GP=(G).
Definition 5.2.2 (GP-soundness). A GP-solution vy is sound if:
Peyin) — VoeX.GFo:n — o:nt JDK(P)

Lemma 5.2.3. Let 'y be a sound GP-solution. Then, for each node n € N:

y(n) € T(n)

Proof. Let P € y(n), where v is a sound GP-solution. If n is not G-reachable, then I'(n)
is the intersection of an empty collection of permission sets, which, by definition, equals to
the universal set Permission. Therefore, P is trivially contained in I'(n).

Otherwise, if n is G-reachable, by definition 5.2.2 we have that o : n F JDK(P) for any
G-reachable state o : n. Actually, by definition 5.2.1, this means that P € I'(0: n) for any
state o : n such that G F o :n, that is:

P € ﬂ lNo:n) O
GFomn
Definition 5.2.4. A GP-solution vy is non-trivial if:
P € Perm(m) A Privin) = P e€y(n)
Definition 5.2.5 (GP-completeness). A GP-solution y is complete if:

Pégdy(n) =— 3JoeXl.GFo:n A o:n¥FJDK(P)

5.2. THE GRANTED PERMISSIONS ANALYSIS 85

Lemma 5.2.6. Let 'y be a complete GP-solution. Then, for each n € N:

y(n) O T(n)

Proof. Let y be a complete GP-solution, and P € I'(n). If n is not G-reachable, then I'(n)
is the intersection of an empty collection of permission sets, which, by definition, equals to
the universal set Permission. Therefore, the inclusion relation holds if also y(n) equals to
Permission. By contradiction, assume P ¢ y(n) for some permission P. Then, by definition
5.2.5, at least one G-reachable state ¢ : n must exist. This clearly contradicts our hypothesis
that n is not G-reachable.

Otherwise, if n is G-reachable, by definition 5.2.1 and assumption P € I'(n), we have
that o : n F JDK(P) for any G-reachable state o : n. By contradiction, assume P ¢ y(n):
then, by definition 5.2.5, at least one G-reachable state o : n exists such that o : n ¥ JDK(P).
This raises a contradiction with hypothesis 0 : n F JDK(P). O

Theorem 5.2.7. Let § a sound DP-solution and 'y a sound GP-solution. Then,
for any G-reachable node n € N:

y(n) € 8(n)

Proof. Assume P € y(n), but also P € §(n). This is a contradiction, because, if G F o : n,
then DP-soundness ensures o : n ¥ JDK(P), while GP-soundness states o : n + JDK(P). O

Example 5.2.8. The optimal GP-solution for example 3.1.2 is in Table 5.2.

n y(n)
Mo { Pcanpaya Pcredit) Pdebit) Ploana Preada Pwrite }
ny unreach
n; —MNy { Pcanpay) Pcredita Pdebit }
MNs %)
g unreach
nz; —mg { Pcanpay» Pcredita Pdebit }
Mo { Pcanpay> Pcredit) Pdebit) Ploana Preada Pwm’te }
Mo — M2 { Pcanpay> Pcredita Pdebit }
N3 — Mg { Pcanpay> Pcredit) Pdebit) Ploana Preada Pwrite }
N5 { Pcanpay) Pcredit) Pdebit }
N6 16}
nyy —Nig unreach
MNi9 { Pcanpay) Pcredit) Pdebit }
MN2o — MN21 { Pcanpay> Pcredit) Pdebit) Ploan) Pread) Pwrite }
nz2 { Pcanpaya Pcredita Pdebit }
N3 —MNog { Pcanpay) Pcredit) Pdebit) Ploana Preada Pwrite }

Table 5.2: The optimal GP-solution for the e-commerce application.

86 CHAPTER 5. STATIC ANALYSES

5.3 The DP? Analysis

Dpoin (TL) = U DPoout(m) Tl)
(m,n)€E
Perm(n) if e—mn
DPO(m,n) = DPO,u(m) N Perm(n) if m—n
DPotruns (m) fm--+n
Perm(m) if Priv(n)
DPocall(n) =
DP9, (n) otherwise
%} if kill®(n)
DPotra,ns (n) = DPoin (TL) U { P} lf f(n) = CheCk(P) and “killo (TL)
DP9, (n) otherwise

kill’(n) =g4¢ £(n) = check(P) and P ¢ Perm(n)

Table 5.3: The DP° Analysis.

The DP? analysis is defined in Table 5.3 by means of the complemented analysis

DPO w.r.t. Permission. The intuition follows on how a solution is built.

e the permissions non-denied at the entry of a node are the union of those

(non-denied) at the exit of all its callers.

e a call node generates non-denied permissions only if it is privileged; oth-

erwise, it propagates the non-denied permissions at its entry.

e a check node n enforcing a permission P kills all the permissions at its en-
try if P ¢ Perm(n); otherwise, it propagates the non-denied permissions

at its entry, and generates the permission it enforces.
e return nodes have no outgoing edges, so they are irrelevant here.

e permissions non-denied at node n always belong to Perm(n).

5.3. THE DP° ANALYSIS 87

Lemma 5.3.1. Let (85, Souty Scall, Strans) = DPO(G). Then:
P€dpu(m) N Permn) = o¥F JDK(P)

for any G-reachable state o : n.

Proof. The proof is carried out by contradiction, assuming ¢ - JDK(P). Then, we proceed
by induction on the derivation used to estabilish G - ¢ : n. The base case corresponds to
our single axiom:

ne Nentry

0>]

For n € N¢piry, we have that P € 8;,(n) = P € dous(Ln,n). Then P ¢ Perm(n), and
it cannot be, at the same time, P € Perm(n). Hence, the premises of the lemma are never
satisfied, and the implication trivially holds. For the inductive case, we proceed by case
analysis on the last rule used to derive o : n, yielding:

e case [call]:
{n')=call n'—n
where 0 =0¢':1’

o''n'"po':n':n

By definition of DP?,, P € 8;,(n) = P € 8,ut(n',n), that is P € d.u(n’) or
P ¢ Perm(n). The latter option is prevented by our assumptions about P, then only
the former one is considered. If —=Priv(n’), then P € §;,(n’); assumption o’ : n' F
JDK(P) imposes P € Perm(n'), hence we can apply the inductive hypothesis to deduce
o' ¥ JDK(P). This prevents the JDK. rule to be applicable, and a contradiction
arises with assumption ¢’ : n' F JDK(P). Otherwise, if Priv(n'), then it should hold

P ¢ Perm(n'), contradicting again assumption ¢’ : n' - JDK(P).

e case [check]:
{(n') = check(P) o:n'FJDK(P) n'--+n

o:n' > o:n

Here P € i, (n) == P € d4rans(n’) and, by the premises of the > pecr rule, we also
have P’ € Perm(n'). Then, it must be P € §;,(n'), and the inductive hypothesis can
be applied to obtain a contradiction o ¥ JDK(P).

e case |return|:
[| {(m) =return n'--»n

o:n':mp>o:n

Here, P € 8;,(N) = P € d4rans(n'). By lemma 3.4.4, it must be £(n’) = call, and
again it turns out that P € 8;,(n'). Since both n and n' carry the same permissions,
we also have P € Perm(n) = P € Perm(n’). By lemma 3.4.1, any derivation of
o:n':mis of the form:

D> ---p>po:n'p>---p>o:n':m

Therefore, we can apply the inductive hypothesis to 0 : n’, and a contradiction arises
by noticing that the inductive hypothesis yields o ¥ JDK(P).

O

88 CHAPTER 5. STATIC ANALYSES

Theorem 5.3.2. Let (8in, Sout, Scatls Strans) = DP®(G). For any n € N, define:

Then § is a sound DP°%solution.

Proof. Let o : n be a G-reachable state, and P € 8.u(n). By contradiction, assume
o : n F JDK(P). This clearly implies P € Perm(n): otherwise, neither the JDK. nor the
JDKpriy rules are applicable. Then we have to distinguish between two cases:

e if —~Priv(n), then P € §;,(n), and by lemma 5.3.1 it follows o ¥ JDK(P). This prevents
the JDK, rule to be applicable, hence a contradiction arises with our assumption
o:n+ JDK(P).

e if Priv(n), then P ¢ Perm(n). Again, this contradicts o : n + JDK(P).

O

Example 5.3.3. Consider the e-commerce application of Fig. 3.1. By direct

computation of the analysis at n,, we obtain:

Sin(M2) = Bout(Mo,M2) U Bour(M3,M2) U ous (Mg, M2)

= (Bca(no) N Perm(mz)) U Siruns(M3) U Byrams (M)
(8in(10) N Perm(my)) U 8in(n3) U §5(14)

= (Perm(ng) N Perm(my)) U Sou(n2,m3) U Sou (M2, Ma)
{ P canpay> Peredits Paevit } U Otrans (M2)

- {Pcanpaya Pcredita Pdebit } U S'm (nZ)

This recursive equation is satisfied by any superset of { Panpay, Peredity Paesit J:
since the property space for DPO is partially ordered by C, this is just the
MFP solution at n,. Actually, this is the most accurate DP-sound solution:
in fact, no permissions can be granted to an execution stack having n, as top

element, outside those associated to the protection domain of n, (Client).

6m(n5) = ut(n03n5) U 3out(‘nG>‘n5) = (Scall(nO) N ®) U gtmns(‘n’é;)

5
= gm(‘nG) = gout(TL5>n€) = gtmns(TL5) = 6m(n5)

This recursive equation is satisfied by any set, so the MFP solution at ns is &.

Again, this is the most accurate DP-sound solution: in fact, no permissions

5.3. THE DP° ANALYSIS 89

can be granted to an execution stack having ns as top element, because the

protection domain of ns (Unknown) does not carry any permission.

6in(n16) = gout(TL4)n16) U gout(nS>T116) = gct/Lll(TL4)) gcall(nS)
= Sm(TL4) U 3m(TLS) = Sout(nlyn4)) gm(nS)
= St1"ans(‘|12) U g'm(nS) = Sm(‘nZ) U Sm(nS)

By the previous computations, we have that this equation is satisfied by any
superset of { Pcanpay, Peredit, Paesit }. Therefore, taking the complement of the
MFP solution, it follows that all the permissions except { Peanpay, Peredit, Pdebit)
belong to 8(nyg). Actually, Pyen € 8(M46), too: then, it is not necessary to
perform stack inspection in order to enforce the security check at n;g, because,

by the soundness result for the DP° analysis, we know it will always fail.

The full MFP solution to DP? for the e-commerce example is in Table A.1.

Theorem 5.3.4. DP° is a monotone data flow analysis.

Proof. In order to minimize the notational effort, we only work on the complemented anal-
ysis DP9, since its monotonicity clearly implies monotonicity of DP°. The global property
space for the complemented analysis is the pair L = (L, C), where:

L = Lin X Lout X £'ca,ll X Ltrans

The sets L, Lcatry Lirans are total function spaces from N to P(Permission), while L,
is a total function space from E to P(Permission). In symbols:
Lin,Lcatly Ltrans = N — P(Permission)
Loyt = E — P(Permission)

Since, for any control flow graph, each of the sets N, E and Permission is finite, then also
Lins Lcatt; Lirans and L,y are finite, with cardinality:

|£’zn| = |Lcall| = |£Jtrans‘ = 2“\”- |Permission|

|L t‘ _ 2|E\ - |Permission|
ou =

Assuming that P(Permission) is partially ordered by the subset relation C, a standard
construction equips each of these spaces with a pointwise order. More precisely, we have:

Lin C lzln = VneN. l,n) C ll’n(n)

Lw C 1, = Vimn)€eE ly(mmn)Cl (mmn)
Leant C léau = VneN lun) C 1:;@11(11)

l‘trans E llgrans = VTL € N ltrans (TL) (_: ltlrans (TL)

With the above, our function spaces Ly, Lout, Lecatls Lirans turn out to be finite partial
orders. Since L is their cartesian product, it follows that L is a finite partial order, too:
even more so, it fulfills the ascending chain condition. Actually, £ has cardinality:

5| = 2(3IN|+|E|) - [Permission|

90 CHAPTER 5. STATIC ANALYSES

The bottom element of £ is Lp = (Lg,., Lo, Loous Lomme), Where:

J-Lin) J-Lmu) J_Ltmﬂs = J-N—)’P(Permission) = Mm:N. @
J_Laut = J—E—)’P(Permission] = }\(mv Tl) :E. o

If we prove that, for any control flow graph, the global transfer function it is associated with
is monotone, we can take F to be the space of monotone functions over L. Now, given a
control flow graph G, the transfer function f = u(G) is defined by the equation system in
Table 5.3 as a quadruple:

f = (fzn) fout) fcallv ftrans)

By definition of monotonicity, we have for prove that, for any 1,1’ € L:
IClV = fHEf)
So, let’s assume 1 C 1’. By definition of the C relation, we have to deal with four cases:

e fin(L)C fir (1"). Let n € N. We have:

fm(l)(n) = U 1out(Tn)n)
(m,n)eE

fmnm) = J Uulmm)
(m,n)€E

Here hypothesis 1 C 1’ ensures that, for any (m,n) € E, it is lyye(m,n) C 1/, (m,n),

and the inequality is preserved by the union operator on sets.
o fout(1) C fouz(1'). Here we have to distinguish between the three kinds of edges. Let
(m,n) € E. If #— n, then m = 1y, and the inequality trivially holds, because:
fout(l)(m)n) = Perm(n) = fout(ll)(mv TL),

Otherwise, if m — n, then:

fout(l) (m, TL) = 1ca,ll(rn) n Perm(n)
fout()(m,n) = 1,,,(m)N Perm(n)

!

!i(m) for any node m € N.

Here the inequality holds, as 1 C 1’ ensures lgq;(m) C 1
Otherwise, if m --+ n:

four((mM,M) = ligans(mM)
four) (m,m) = 1., (M)

Again, f preserves the inequality, because 1 C 1’ ensures lygns (M) C 14,4, (M).

o foan(l) C feau(l'). There two cases, according to . being privileged or not. In the
first case, we have:

fcall(l)(n) = Perm(n) = fcall(ll)(n)
and the inequality trivially holds. In the other case, we have:

fcall(l)(n) = 1in(n)
fean()(n) = 1,(m)

Hypothesis 1 C 1’ implies 1;, (n) C 1/, (n), hence the inequality is preserved.

5.3. THE DP° ANALYSIS 91

® firans(1) C firans(1'). There are three cases. If kill°(n), then £(n) = check(P) but
P ¢ Perm(n). Thus:

ftruns (U(TL) =0 = ftrans(ll)(n)
Otherwise, if {(n) = check(P) and P € Perm(n), then:

frrans (M) = Lin(n) U{P}
ftrans(ll)(n) = I{n(n)U{P}

Here IC 1" = L;»(n) C 1, (1), and this suffices for the C relation to be preserved.
The last case (n is a call) is just as above, after having discarded the singleton {P }.

O

Although we have proved that the DP® analysis admits solutions for each
of its instances, we are not given any effective method to compute them yet.
Therefore, we now show that the data flow analysis DP® = (L, u) con-
structed above can be turned into a distributive framework (L, Fe, U, U).
This enables us to use a standard worklist-iteration algorithm to efficiently

solve any instance of the DP? analysis.

Theorem 5.3.5. DPC is a distributive data flow framework.

Proof. Again, for simplicity, we consider the complemented analysis DP°. We have to build
a quadruple (Ln, Fe, 1e, 1) satisfying the requirements in definitions 4.2.1 and 4.2.5.

The local property space is a triple (Ln, U, Lo,), where L = P(Permission), the
join operator U is the binary union on sets, and L, is the empty set (which is an unit
for L, since aU1l =1=1U®). Since U is idempotent, commutative and associative, this
definition actually makes Ly a join semi-lattice. By the fact that Permission is finite for
any control flow graph, it clearly follows that Ly satisfies the ascending chain condition.

Moreover, a standard construction equips Ln with a complete lattice structure:

Ln = <LN) C, |_|v |—|a Lo TLN)

where the partial order C is the inclusion relation C on sets, and each subset X of Ly
has least upper bound | | X = [JX and greatest lower bound []X = (| X. Furthermore, the
bottom element is 1, =| |9 = @, and the top element is T, =[] LN = Permission.

Given a control flow graph G, the set of local transfer functions fg = ug(G) is defined
in Table 5.4. Again, if each f € fe is distributive regardless of G, we can take Fg to be the
space of distributive functions over L. By definition of distributivity, we have for prove
that, for any 1,1' € Ln and (m,n) € Eg:

fommy (MUY = frmn (V) U fammn (1)
We have to deal with four cases:
e case [entry]: if e#— n, then fo, (1) = Perm(n) for any 1 € Ln. Thus:
foun(lUV) = Perm(m) = fon(l) U forn(l)

follows by idempotency of L.

92

CHAPTER 5. STATIC ANALYSES

foon(l) = Perm(n)
Perm(m) if Priv(m)
fm—n() = Perm(n) N
1 otherwise
%] if kil°o(1, m)
frnsn(l) = LU {P} if£&(m)= check(P)and —kill®(1, m)
1 otherwise
fmon(l) = 1}
killo(1,n) =g4ef L(n) = check(P) and P ¢ Perm(n)

Table 5.4: Local transfer functions for the DP® Analysis.

e case [call]: if m — n, we have two sub-cases, depending on m being privileged or

not. In the first case, fi,——n(l) = Perm(n) N Perm(m) for any 1 € L. Then:
fm—n(LUL) = Perm(n) N Perm(m) = frnn(1) U frn—n(l')
follows by idempotency of LI. Otherwise, if m is not privileged:
frn—n(lUl) = Perm(m) N (1UL")

= (Perm(m) N 1) U (Perm(m) N ')
= fmn(l) U fm—m(ll)

follows by distributivity of N over U.

case [transfer]: if m -—» n, we have three sub-cases, because the predicate kill® only
depends on m. If kill°(1, m) then £(m) = check(P) but P ¢ Perm(m). Therefore:

fm——+ n(l u ll) =g = fm——»n(l) U fm——-) n(ll)
follows by idempotency of L. Otherwise, if £(m) = check(P) and P € Perm(m):

frn—sn (L) (tutl) u {P}

= (Lu{P}) u (Vu{P})

= fmﬁa n(l) u fm”+ n(ll)
follows by associativity and idempotency of U. The last case (m is not a check node)
is just as above, after having discarded the singleton { P }.

I

case [return]: if m — mn, then f, <, (1) = @ for any 1 € L. Therefore:

fm‘—)n(“—lll) =g = men(U U fm‘—)n(ll)

follows by idempotency of L.

5.3. THE DP° ANALYSIS 93

O

Lemma 5.3.6. Let (8, 8out, Scall, Strans) be the MFP solution to DPC. Then:

P€bdin(n) = P& Perm(n)

for any n € N.

Proof. Let f be the global transfer function for the complemented analysis DP°. Then we
know that the MFP solution to DP? is the least upper bound of the (finite) chain:

lg C f(le) T f2(le) -+ C fMLe) = f4(Ly)
Now let 1 = fi(Lz) for some index i € N. If we define:
¢(l) = VneN.Pely(n) = P e Perm(n)

then we can use a straightforward mathematical induction to prove ¢ is true on the least
DPO-solution. The base case asks for ¢(Lg): this is trivially true, since 1, (n) = @ for
any node n € N. For the inductive case, assume ¢(1) is true: we prove that this actually
implies ¢(f(1)). Take P € f;, (1)(n). Then, we have:

Pe U 1ou,t (my T'L)

(m,n)€EE

Now, in order to prove that V(m,n) € E. P € l,y¢(m,n) = P € Perm(n), we have to
distinguish between the three kinds of (abstract) edges:

e if «#— n, then P € Perm(n), and the statement clearly holds.
e if m — n, by monotonicity of f and definition of f,,; we have:
Lowt(M,n) C fout((m,n) = leeu(m)N Perm(n)

hence P € Perm(n).

e if m --+ n, then:
1o1tt(ﬂ1r)n) c fout(l)(mvn) = ltra,ns(ﬂ‘-) c ft’rans(l)(m)

In this case we have just two possibilities: P € 1;,(m), or P = P'if £(m) = check(P’).
In the first case, the hypothesis ¢(1) implies P € Perm(m), and we can deduce
P € Perm(n) by the fact that both m and n lie in the same protection domain. The
second case can only happen if P’ € Perm(m), and the same argument used above
still works.

O
Lemma 5.3.7. The MFP solution to DP? is non-trivial.
Proof. Let § be the greatest DP%-solution for G and n a node. Since, by duality, & is the

least DPO-solution, lemma 5.3.6 tells P € gi_n(n) = P € Perm(n). This indeed implies
non-triviality of 8, as P € doqu(n) = P € 6;,(n) V P € Perm(n). O

94 CHAPTER 5. STATIC ANALYSES

(P} 1

Nn3: return

Figure 5.1: Control flow graph for counterexample 5.3.8

Counterexample 5.3.8. Not all DP%solutions are non-trivial.

Proof. Consider the control flow graph in Fig. 5.1. By direct computation, we have:

gin(nl) = gout(nO)T'lvl) U Sout(nZyTh) = (Scall(nO) N {P}) U 3trans(T‘LZ)
(3in(no) N {P}) U 8in(na) = ({P} N {P}) U dout(ni,m2)

= {P}) Strans(n]) = {P}) gm(ﬂ])

Note that the equation &;,,(n1) = {P}U 8 (1) is solved by any superset of { P}. Define:

(no) = {P}
8ny) = {P,P'} fori=1.3

Then, & is a trivial fixed point solution to DP°: in fact, P’ ¢ Perm(n;) but P’ ¢ §(n;). O

5.4. THE GP° ANALYSIS 95

5.4 The GP° Analysis

GPo,(n) = [GPY(m,m)
(m,n)€EE
Perm(n) if e—n
GPY,(m,n) = ({GP°,(m)NPerm(mn) ifm-—n
GP?mns(m) ifm--»mn
Perm(n) if Priv(n)
GPOu(n) =
GP?,(n) otherwise
o if kill0(n)
GPY,..(n) = {GPO(n)U{P} ifL(n)=check(P)and —kill°(n)
GPY (n) otherwise

Table 5.5: The GP® Analysis.

The GPP analysis is defined in Table 5.5 and explained below.

the permissions granted at the entry of a node are those granted at the

exit of all its callers.

call nodes generate granted permissions only if they are privileged; oth-

erwise they propagate those at their entry points.

a check node m enforcing a permission P Kkills all the permissions at its
entry if P ¢ Perm(n); otherwise, it propagates the granted permissions

at its entry, and generates the permission it enforces.
return nodes have no outgoing edges, so they are irrelevant here.

permissions granted at node n always belong to Perm(mn).

96 CHAPTER 5. STATIC ANALYSES

Lemma 5.4.1. Let <Yin>’Yout>YcallaYtrans>): GPO(G) Then:
Pe€vywn) = oF]JDK(P) A P €& Perm(n)

for any G-reachable state o : n.

Proof. We proceed by induction on the derivation used to estabilish G I ¢ : n. The base
case corresponds to our single axiom:

ne Nentry
[l > [n]

Here rule JDKy ensures that [] - JDK(P) for any permission P, and P € Perm(n) is due
to the fact that P € y;,(n) = P € you(Lln,n) = Perm(n) when n € Ny For the
inductive case, we proceed by case analysis on the last rule used to derive o : n, yielding:

o case [call]:
{n')=call n'—n

where o =0':n'
o':n'>o:n":n

By definition of GPY,, P € yin(n) = P € You(n',n), that is P € yeanu(n') and P €

Perm(n). If =Priv(n'), then P € vy, (n'), so we can apply the inductive hypothesis

to deduce o’ F JDK(P) AP € Perm(n'): then rule JDK. ensures ¢’ : n' F JDK(P).

Otherwise, if Priv(n’), then P € Perm(n’'): in this case, ¢’ : n’ - JDK(P) is ensured

by rule JDK ppiy .

e case [check]:
{(n') = check(P’) o:n'FJDK(P') n'--»n

o:n' > o:n

Here P € yin(N) = P € Yyans(n') and, by the premises of the > .pecr, Tule, we also
have P’ € Perm(n'). There are two cases: P € y;,(n') or P = P'. In the first case, we
can apply the inductive hypothesis to deduce o F JDK(P) and P € Perm(n’). Observe
that, by the protection domain constraint, n’ --+ n implies Perm(n') = Perm(n),
thus we can deduce P € Perm(n). In the second case, o : n' - JDK(P) is assumed
in the premises of the D> pecr rule. As check nodes are not privileged, this can be
derived only by rule JDK, whose premises are just o - JDK(P) and P € Perm(n').

e case |return|:
[| {(m)=return n’--» n

o:n':mp o:n

Here P € Yin(n) = P € Yyans(n'). As, by lemma 3.4.4, it must be {(n') = call,
then P € v;,(n'). By lemma 3.4.1, any derivation of o: n':m is of the form:

0> --->o:n' > --->o:n":m

Therefore, we can apply the inductive hypothesis to ¢ : n’, obtaining o F JDK(P)
and P € Perm(n'). Again, this implies P € Perm(n), since both n and n' lie in the
same protection domain.

O

5.4. THE GP° ANALYSIS 97

Theorem 5.4.2. Let (Yin, Youts Yeall, Yirans) = GP°(G). For any n € N, define:

YM) = Yeu(n)

Then 7 is a sound GP°solution.

Proof. Let o :n be a G-reachable state, and P € y.q;(n). We have to distinguish between
two cases:

e if =Priv(n), then P € v;,(n). Lemma 5.4.1 tells o F JDK(P) and P € Perm(n): but
these are exactly the premises of rule JDK., therefore ¢ : n + JDK(P).

e if Priv(n), then P € Perm(n). Here, 0 : n - JDK(P) is ensured by rule JDK py.
O

Example 5.4.3. Consider the e-commerce application of Fig. 3.1. By direct

computation of the analysis at n,3, we obtain:

Yin(N23) = Yout(No,M23) M Vour(M13,123) N Yout(N20, N23)
= (Yeau(mo) N Yeau(miz) N Year(n2o)) N Perm(nys)
= Perm(ng) N Perm(ny3) N Perm(my)

{ Pcanpay) Pcredit> Pdebit> Ploan) Pread> Pwrite }

This equation admits an unique solution, i.e. the set of permissions associated
with the protection domain Bank. Since P4 € y(n3), the soundness result

for the GP? analysis ensures that the security check at ny; will always succeed.

An analogous result holds for the analysis at node nys:

Yin(M2s) = Vour(M1a,M25) N Your(M21, N25)
= (Year(1s) N Year(n21)) N Perm(nys)

= Perm(mny4) N Perm(ny)

= { Pcanpay) Pcredit) Pdebit) Ploan) Pread) P'write }
The full MFP solution to GP° for the e-commerce example is in Table A.1.

Theorem 5.4.4. GP° is a distributive data flow framework.

Proof. The proofis exactly the same as the proof of theorem 5.3.5, because the local transfer
functions for the GP? analysis are just those defined in Table 5.4. The local property space
is dual to the space for the GP° analysis: now U is the binary intersection on sets, while
1z, is the universal set Permission. O

98 CHAPTER 5. STATIC ANALYSES

Lemma 5.4.5. Let (Yin, Yout, Yeatts Yirans) = GP°(G). Then, for any n € N:

Pcvyu(m) = P € Permn)
Proof. Let & = (8in, 8 out, Ocail, Otrans) be the MFP solution to DP?, and assume P € vy, (n).

AsVin(M) C Yean(n) regardless n being privileged or not, theorem 5.2.7 ensures P € 5.4 (n).
Then, since & is non-trivial by lemma 5.3.7, we deduce P € Perm(n).

Lemma 5.4.6. Any GP°solution is non-trivial.

Proof. Let (Yin,Yout>YecatlyYirans) = GP°(G) Then, for any privileged node n, we have
exactly Ycq(n) = Perm(n). O

5.5. THE DP' ANALYSIS 99

5.5 The DP' Analysis

DP1m(n) = U DP]out(m\n)

(m,n)EE

Perm(n) if e—mn

DP',ut(m,n) DP' ou(m) N Perm(n) if m—n

DpP! trans(m) ifm--»n

- Perm(m) if Priv(n)
DP! call(n) =

DP1;,(n) otherwise

(@ if kill' (n)
J DPTow(m,n) if {(n) = check(P) and —kill' (n)
DP? =
trans(n) = \ (m,n)eE
PEDP! y (m,m)

DP,,(n) otherwise

Kill'(n) =g4; £(n) = check(P) and P ¢ DP1,,(n)

Table 5.6: The DP' Analysis.

The DP! analysis is defined in Table 5.6. In only differs from the DP° analysis

in the the set of non-denied permissions propagated through check nodes.

In the DP? analysis, a check node n propagates all the permissions at its
entry, unless the permission it enforces does not belong to Perm(n). This is a
main source of degradation, as example 5.5.1 shows.

The DP' analysis let a check node propagate the permissions of any caller
that may pass the check. As we will see, this leads to strictly more accurate

solutions than those achievable by the DP° analysis.

100 CHAPTER 5. STATIC ANALYSES

[Po,P1] /L{Pz}\{ Po,Ps}

» y N

Nng: call ni: call ny: call

{Po,Pth,Ps%

y

n3: check(P)

v

14: check(P3)

Figure 5.2: Control flow graph for example 5.5.1

Example 5.5.1. Consider the control flow graph in Fig. 5.2. By direct com-

putation of the DP? analysis at n4, we obtain:

Oim(ns) = Ouans(nz) = 8% (n3)

= %ut(no,M3) U 8%y (1, n3) U 8%y (n2,n3)

= 8% (no) U 8% (1) U 8%, (ny)

= {Po,P1} U {P1,P2} U {Po,P3} = {Po,P1,P2,P3}

Observe that, since P3 ¢ 5°(ny), this solution is imprecise, because it does not

predict that the check at ng will always fail. Next, we calculate:

8wt (Moyn3) = 8'in(mo) = {Po,P1)}
8w (my,mz) = 8'(ny) = {Py,P2}
8wt (M2,m3) = 8'i(my) = {Po,P3}

Then, according to the DP! analysis, the permissions non-denied to ng are:

gm(n4) = 6_1tmns(n3) = U {6_]out(m)n3)|P1 egout(m>n3)}
(m,n3)€E

= gout(n'())n'3) U g0’(“5(“‘1)113) = {P03P1)P2}

This shows that the DP! analysis is stricly more accurate than the DPC.

Theorem 5.5.3 will ensure that DP' enjoys the soundness property, too.

5.5. THE DP' ANALYSIS 101

Lemma 5.5.2. Let (84, Souty Scatl, Strans) = DPT(G), and:
D=0y > oy > - -D>oxy=0:M
be a derivation. Then:

P € dou(n(ox_1,0¢)) N Perm(n) = ok JDK(P)

Proof. The proof is carried out by contradiction, assuming ¢ F JDK(P). Then, we proceed
by induction on the length of derivation [] [> - -- > ox—1 > 0 : n. The base case corresponds
to our single axiom:

ne Ne’n,try

[l > [n]

Forn € N¢piry, we have defined n([], [n]) = (Ln,n). AsP € §,u(Ln,m) = P & Perm(n),
P is prevented from being in Perm(n). Hence, the premises of the lemma are never satisfied,
and the implication trivially holds. For the inductive case, we proceed by case analysis on
the rule used to derive ox—1 > 0:mn, yielding:

e case [call]:

{n')=call n'—n

where ox_1=0=0¢":n’
ol:n'>o':n":n

Here n(ox_1,0x) =n(o’:n',o':n':n) = (n',n) € Egay, hence P € §,p:(n',n) =
P € b.au(n') or P ¢ Perm(m). The latter option is prevented by our assumptions
about P, then only the former one is considered. If =Priv(n'), then P € §;,(n'), and,
using lemma 3.8.2, we obtain P € 8,,:(n(ox—2,0' : n')). Now, assumption ¢’ : n'
JDK(P) implies P € Perm(n'), so we can apply the inductive hypothesis to deduce
o' ¥ JDK(P). This prevents the JDK, rule to be applicable, and a contradiction
arises with assumption ¢’ : n' F JDK(P). Otherwise, if Priv(n'), then it should hold
P ¢ Perm(n'), contradicting again assumption o’ : n’ - JDK(P).

e case [check]:
{(n') = check(P') o:n'FJDK(P') n'—-»mn

o:n' > o:n
Here n(ox_1,0k) =n(o:n',0:n) = (n',n) € Eyrgns, then P € 8yt (n',n) =
P € b4ans(n’). As both n and n' lie in the same protection domain, assumption
P € Perm(n) also ensures P € Perm(n'). Now, it can be shown that:

P e () Souw(m,n’) (5.1)

(m,m')eE
P'@85u(m,mn’)

As check nodes are not privileged, by rule JDK< we know that o : n' - JDK(P')
can only be true if o F JDK(P'). Then, by applying contrapositively the inductive
hypothesis, we deduce that P’ & 8,u¢(n(0x—2,0k—1)) N Perm(n'). Now, premise o :
n' F JDK(P') of the 1> cpeck, rule requires P’ € Perm(n'). Therefore, it is indeed P’ ¢
Sout(M(0k—2,0k—1)): by equation (5.1), this implies P € 8pyt(n(0k—2,0x—1)). Apply-
ing again the inductive hypothesis, we finally obtain a contradiction o ¥ JDK(P).

102

CHAPTER 5. STATIC ANALYSES

e case [return):

{(m)=return n’--» n

o:n':mpo:n
Here, n(ox_1,0%x) =n(o:n':m,0:n) = (n',Nn) € E4rgns: thus, P € §ope(n',n) =
P € b4rans(n'). By lemma 3.4.4, it must be £(n’') = call, then it turns out that
P € 8;n(n'). Now, lemma 3.4.1 states that 3i € 1.k—2. 0; = 0: n': by lemma 3.8.2,
we then have that P € 8,4:(n(0i—1,0 : n')), and, again, assumption P € Perm(n)
implies P € Perm(n') as both n and n’ carry the same permissions. Hence, the
inductive hypothesis can be applied to yield o ¥ JDK(P).

O

Theorem 5.5.3. Let (8in, Sout, Scatty Strans) = DP'(G). For any n € N, define:

6 (TL) = 6call (Tl)

Then & is a sound DP'-solution.

Proof. Let ¢ : n be a G-reachable state, and P € 8.y(n). By contradiction, assume
o : n + JDK(P). This clearly implies P € Perm(n): otherwise, neither the JDK. nor the
JDKpriy rules are applicable. Then we have to distinguish between two cases:

e if =Priv(n), then P € §;,(n). Consider a derivation [] > -+ > 0x_1 > 0 : n.

By definition of DP},, we then have P € 8,4 (n(0x_1,0:n)), and by lemma 5.5.2 it
follows o ¥ JDK(P). Since the JDK. rule is not applicable in this case, a contradiction
arises with our assumption o : n F JDK(P).

o if Priv(n), then P ¢ Perm(n). Again, this contradicts o : n + JDK(P).

O

Example 5.5.4. Consider the e-commerce application of Fig. 3.1. Proceeding

as in example 5.3.3, for the MFP solution at n, and ns we obtain:

Sin (nZ) - { Pcanpay) Pcredita Pdebit}

Sin (TL5) = O

Now, by direct computation of the analysis at edges (n3,ny;) and (ng, nqq):

Sout(M3,M11) = Sean(nsz) N Perm(ny;) = 8ip(nz) N Perm(ny)
= Bou(nz,nz) N Permmy;) = Byans(n2) N Perm(nyy)
= 8i(n2) N Permmi1) = {Pianpays Peredit Pdevit }
Sout(Me,M11) = Beau(ne) N Perm(nyy) = din(ng) N Perm(nyy)
= Sou(Ns,ng) N Permmi1) = Syans(Ms) N Perm(ny)
= din(ns) N Perm(ny;) = @

5.5. THE DP' ANALYSIS 103

This shows that the security check at ny; may be passed by executions reaching
Ny through (n3,myy), whereas the check will always fail for any execution

flowing through (ng,ny7). This is ensured by by lemma 5.5.2, because:
Pacvit € dout(Ng,M11) N Perm(myy) = 0:ng ¥ JDK(Pgepsr)

for any derivation [] > --- > 0 : Mg > 0 : ng : Ny, and this clearly implies
that o: Mg : N1 ¥]DK(Pdebz’t)-
The full MFP solution to DP! for the e-commerce example is in Table A.1.

Theorem 5.5.5. DP' is a monotone data flow analysis.

Proof. The property space for DP? is exactly the same as that for the DP? analysis. Let
f be the DPT transfer function, and 1 C 1'. The proof of monotonicity for f differs from
the relative proof for the DPO analysis in just one case, i.e. firans(l) T firans(l’) when
£(n) = check(P) and —kill' (n):

Jirans()(n) = U Lout (M, M) by def. firans
(m,n)ekE
PELlout(m,m)
c U tulmmn) by hyp. Lour C Uy
(m,n)EE
Pel! . (m,m)

out

c Y tummn by hyp. lout C Ly
(m,n)EE
Pel! ,(m,m)

out

= ftrans (ll) (‘I‘l) by def. ftmns

Theorem 5.5.6. DP! is a monotone data flow framework.

Proof. Again, it is worth considering the complemented analysis DP'. The local property
space is a triple (Ln,U, Lg,), where:

LN = P(Permission) x P(Permission)

The two components of the product represent the data flow information at the entry and at
the exit of a node, respectively. The join operator LI is defined in a coordinatewise fashion:

(10,11) U <1(I)vl‘4) = <1‘0) l‘(I)) LU 1‘4)

The bottom element is 1 »,, = (&,). Since U is idempotent, commutative and associative,
this definition actually makes LN a join semi-lattice. By the fact that Permission is finite
for any control flow graph, it clearly follows that Ly satisfies the ascending chain condition.
Again, a standard construction equips Ln with a complete lattice structure:

Ln = (LN) c, |_|v |_|v J-LNv TLN)

104 CHAPTER 5. STATIC ANALYSES

f(m,n]((lo’h)) = (f(omyn)v f(ln'n])((10,11))
(o)) = Perm(n)
Perm(m) if Priv(m)
MR (loslh)) = Perm(n) N {
14 otherwise
'r(r)L——-) n((lo)h)) = l1
fr?t‘—)n((l())l])) == %]

fomm Loy 1)) = where 1 = f2, . ({lo, 1))

m,n)

{ o if kil (14, n)

ly otherwise

kit (i,n) =g4ef () =check(P) and P ¢1

Table 5.7: Local transfer functions for the DP! Analysis.

The partial order C is the determined coordinatewise:
<1o,11) E <16,H) iﬁlo g 16 and 11 g H

and the other components of the lattice are defined in the obvious manner.

Given a control flow graph G, the set of local transfer functions fg = ug(G) is defined
in Table 5.7. If each f € fg is monotone regardless of G, we can take Fe to be the space of
monotone functions over Ln. So, let (lo,11) C (1),1]) be two arbitrary elements of Ln. By

definition of monotonicity, we have for prove that, for any (m,n) € E,:

f(m‘n](aO)l])) E f(m,n]((l(l))l‘”)

For the f(?n n) component, we have to deal with four cases:

e case [entry]: if e— n, then fO_, (1) = Perm(n) for any 1 € L. Thus:

foonlo, 1)) = Perm(n) = £0_,, ({15, 14))

e case [call]: if m — n, we have two cases, depending on m being privileged or not.

In the first case, £f0__,, (1) = Perm(n) N Perm(m) for any 1 € Ln. Then:
fm—n((loyl1)) = Perm(n) N Perm(m) = fpn__,,({l5, 1)

Otherwise, if m is not privileged:

fr(r)b—m(a()vh)) - Perm(n) nhL C Perm(n) N H - T?L*m(a(l))u))

follows by hypothesis 1 C 17.

5.5. THE DP' ANALYSIS 105

e case [transfer]: if m --» n, by hypothesis 1y C 1], we have:
0 Lallol)) = L C Y o= £, (1)
e case [return]: if m — mn, then f2_, (1) = @ for any 1 € L. Therefore:
Incnlo) = & = fro,((15,1))

For the f ., component, let To = f8u.m)({lo, 1) and 10 = [m) ({15, 11)- Observe that, by
definition of kill', we have, for any 1,1’ € P(Permission):

Ict A kitl'(t,n) = kiu'(y,n)

By monotonicity of f°, we know 1o C IA(’): therefore, kill' (f(\’),n) = kill'(lp,n), and we
have to deal with the following cases:

o if kill' (1}, n), then it must be kill' (To, n), too. Thus:
fam (o) = @ = fl (15,1

o if kill' (o, n), but —kill' (1}, n), then:

framlo,) = @ T 1 = £l 154)
e otherwise, if —kill! (1o, n), then:
famo,) = To © 1 = fl 016U

Counterexample 5.5.7. The DP! analysis is not distributive.

Proof. By theorem 4.3.7, it suffices to show that the MOP and MFP solutions do not agree
for some instance of the DP! analysis. Consider the control flow graph in Fig. 5.3. First,
we compute the MFP solution. At the exit of node n;, we have:

unz2) = din(n2)
out (Tlo,nz) U 8out(n1,m2)
Scat(mo) N {Po,P1}) U (dcau(ni) N {Po,P1})
gz No) U 8in(n1)) N {Po,P1}
{Po} U{P1}) N {Po,P1} = {Po,P1}

5out (TLZ, TL3)

8 ca
5
=
(
(

Since Py € 8oyt (M2,13), then —kill' (n3), and:
MFP(n4) = 8in(na) = Bdout(nz,Ma) = OSprans(mz) = {Po,P1}

For the MOP solution, we have two (abstract) paths leading to na, i.e. Mo = (ng, n2,n3,M4)
and 7 = (n1,n2,n3,n4). Given a path (nog,...,nk), we write L —=n, lo —n, - Hn,
for the sequence (i, finy) (1), - fino,...ne)(V)). Then the values of fr,(1) and fr, (1) are
accumulated along the paths 7y and 7ty as follows:

L '—>no {PO} '—)nz {PO} '—)113 {PO}
L i, {P1} o, {P1} —n, %}

106 CHAPTER 5. STATIC ANALYSES

{Po}? {P1}?
v '
Nno: call np: call
{Po,P1}
A W4
ny: call

|

n3: check(Py)

\

N4: check(P)

Figure 5.3: Control flow graph for counterexample 5.5.7

Thus, the MOP solution at node ng4 is:
MOP(n4) = fro(t) U fr, (1) = {Po} U @ = {Po}
Since MFP(n4) # MOP(n4), the DP! analysis cannot be distributive. O

Theorem 5.5.8. Let 8° and &' be the MFP solutions for the DP° and DP'!

analyses, respectively. Then &' is more accurate than 8°, i.e.:

Proof. Let f and g be the global transfer functions for the complemented analyses DP°
and DP', respectively . We know that the MFP solutions for DP? and DP! are the least
upper bounds of the (finite) chains:

le C flle) T f2(Le) C C fHLle) = f7(Le)
lg C g(lg) C ¢%(Lg) C C g"(Lg) = g (Lly)
Now define:
o1y = 1° o

The base case ¢p(Lg,Lg) is true, as Lg, (n) =L, ,(mn) =1g, ,(n) =1g,..M) =2
for any n,m € N, and clearly @ O @&. For the inductive case, we will prove:

C=fle) A U=g(Lg) A o011 = b(f2(1°),91")

This clearly implies that g"(1') T £2%(1°) = f*(1°). Note also that we are allowed to prove
just ¢(f(1°), g(1")) whenever possible. In fact, by monotonicity of f, we have:

200 = fraty a0 9

provided 1° = fi(Lz). Now, assume ¢(1°,1"). By definition of the C relation, we have to
provide a proof for each of the following four cases:

5.5. THE DP' ANALYSIS 107

e gin (1) C £, (1°). Here we have:

0 = J Bulmm)
(m,n)eE

g = |J Uulmmn)
(m,n)eE

Here hypothesis ¢(1°,1") ensures 19,,(m,n) D 1! ,(m,n) for any (m,n) € E, and the
inequality is preserved by the union operator on sets.

e gout(1") C f,u:(1°). Here we have to distinguish between the three kinds of edges. If
e— n, then:
four(1°)(m,n) = Permm) = fou(1')(m,)

If m — n, then:

four(12)(m,n) = lga”(m)ﬂPerm(n)

gout(l])(m,n) = lla”(m)ﬂPerm(n)

and the inequality holds, because 1° J 1! ensures 1%,,,(m) D 1!,,,(m) for any node
m € N. Otherwise, if m --+ n:

fout(10)(mym) = 150 (m)
gout (1‘1) (m) n) = llrans (m)

Again the inequality is preserved, because 1° J 1! ensures 12 . (m) D 1],...(m).

e gear(1') C foau(1°). Here there are two cases, according to n being privileged or not.
In the first case, we have:

fau(1®)(n) = Perm(n) = geu(l')(n)

and the inequality trivially holds. In the other case, we have:

fan(1°)(n) = 13, (n)
geau(l')(n) = 1, (n)

Assumption 1° J 1! implies 19, (n) D 1), (n), hence the inequality is preserved.

¢ Girans(1') C fZuns(1°). The most interesting case is £(n) = check(P) and —kill' (n).
In such case, lemma, 5.5.9 ensures P € Perm(n), hence we have also —kill°(n). Thus:

gtra,ns(11)(TL) = U llut (m) TL) by def. Gtrans

(m,n)ek

Pellm(m,n]

= U llut(m, n) U {P} by a property of U
(m,n)EE

Pellm(m,n]

C U llut(m, n) U {P} by a property of U
(m,n)eE

c U Butmmnyuipr) by hypothesis 1%, 31!,
(m,n)EE

= fn(1%)(n) U {P} by def. fir

= ftmns (f(lo))(n) by def. ftmns

108 CHAPTER 5. STATIC ANALYSES

Otherwise, if £(n) = check(P) and kill'(n), we have P ¢ 1} (n). Here we have to
distinguish between two cases, i.e. P € Perm(n) or not. In the first case, we have:

ftrans(lo)(n) = 1?7;(“)) {P}) g = gtrans(l])(n)

If P ¢ Perm(n), then kill®(n) holds too. Thus:

ftmns(lo)(n) = J = gtrans(l1)(n)

The last case £(m) = call involves firans (1°)(n) =19, (M) and girans (1) (M) = 1], (0),
hence assumption ¢(1°,1') does the job.

O

Lemma 5.5.9. Let (8;n, 8out, Scalls Otrans) be the MFP solution to DP'. Then:

Pedyu(n) = P& Perm(n)

for any n € N.

Proof. The proof is similar to the proof of theorem 5.3.6. O

Lemma 5.5.10. The MFP solution to DP! is non-trivial.

Proof. The result easily follows from 5.5.9, as it is shown in 5.3.7. O

5.6. THE GP! ANALYSIS 109

5.6 The GP' Analysis

GP,(n) =[] GPlu(mmn)
(m,n)EE
Perm(n) if e—mn
GPl,(mmn) = (GP! ,(m)nPerm(n) ifm-—n
GPZmns(m) ifm--+n
Perm(n) if Priv(n)
GPlum) =
GP] (n) otherwise

(o if kill' (n)

: () GPl.(m,n)U{P} if {(n) = check(P) and —kill'(n)
GPtrans(n) = 9 (m,n)eE

PEDP!,;(m,n)

GP) (n) otherwise

Table 5.8: The GP' Analysis.

The GP! analysis is defined in Table 5.8. In only differs from the GP°

analysis in the the set of granted permissions propagated through check nodes.

In the GPP analysis, a check node n propagates all the permissions at its
entry, unless the permission it enforces does not belong to Perm(n). This is a

main source of degradation, as example 5.6.1 shows.

The GP' analysis let a check node propagate both the permission it enforces
and the permissions granted to all the callers that may pass the check. Any
sound DP-analysis can be used to this purpose. As we will see, this leads to

strictly more accurate solutions than those achievable by the GP° analysis.

110 CHAPTER 5. STATIC ANALYSES

{Po,P1,P2} /L{,Ps}\{mmz,m

Ve S

Nng: call ni: call ny: call

{Po,Pth,Ps%

y

13: check(Pq)

v

14: check(P3)

Figure 5.4: Control flow graph for example 5.6.1

Example 5.6.1. Consider the control flow graph in Fig. 5.4. By direct com-

putation of the GP° analysis at 14, we obtain:

You() = Yoans(nz) = Y5, (n3) U {P}
= (You(no,m3) N ¥o(my,m3) N ¥, (nzm3)) U {Pq)}
= (y5mo) N vy (1) N y9,(m2)) U {Pq}
= ({Po,P1,P2} N {Po,P3} N {Py,P2,P3}) U {Py} = {Pq}

Observe that, since P, & y°(ny), this solution is imprecise, because it does not

predict that the check at ny will always succeed. By example 5.5.1, we have:

8wt (Moym3) = 8'in(mo) = {Po,P1}
o (ny,mz) = 8y(ny) = {P1,P2}
gout(TLZ)n.%) - gm(nZ) - {PO)P3}

Then, according to the GP' analysis, the permissions granted to n4 are:

Y:n(TM) = ’Y:],rans(n:i) - ﬂ {Y]out(m)nii) | P] € yout(m)nii)} U {Pl}

(TTL,TL3)EE

= (Ylut(“o»ns) N YLut(nZ)n3)) U{Pi} = {Py,P2}

This shows that the GP! analysis is stricly more accurate than the GP°.

Theorem 5.6.3 will ensure that GP' enjoys the soundness property, too.

5.6. THE GP! ANALYSIS 111

Lemma 5.6.2. Let <Yin)Y0ut>Ycall)Ytrans>): GP1(G), and:
=00 > 01> D> ox=0:n
be a derivation. Then:

P € You(M(ok—1,0¢)) = o+]JDK(P) A P& Perm(n)

Proof. We proceed by induction on the length of derivation [] > --+ > ox_7 > o:n. The
base case corresponds to our single axiom:

ne Nentry

] > [n]
For n € Neptry, we have defined n([], n]) = (Ln,n), 50 P € Yout(Ln,m) = P € Perm(n),
and o = [] F JDK(P) by rule JDKg. For the inductive case, we proceed by case analysis on
the rule used to derive ox_1 > 0:n, yielding:

e case [call]:

{n')=call n'—n

where ox_1=0=0¢":n’
ol:n' > o':n":n

Heren(ox_1,01k) =n(o’:n',¢':n':n) = (n',n) € Egqy, hence P € youe (n',n) =
P € Yeu(n') and P € Perm(n). If —Priv(n’), then P € y;,(n'), and, using lemma
3.8.2, we obtain P € y,yut(N(0k—2,0k—1))- Then we can apply the inductive hypoth-
esis to deduce o’ F JDK(P) and P € Perm(n’), thus obtaining ¢’ : n' F JDK(P) by
rule JDK.. Otherwise, if Priv(n’), then P € Perm(n'): in this case, ¢’ : n' F JDK(P)
is ensured by rule JDKppy -

e case [check]:
{(m') = check(P') o:n'FJDK(P') n'-—+n

o:n' > o:n

Here n(ox_1,0x) =n(o:n’',o:n) = (n',n) € Egrans, then P € youe(n',n) =
P € Yirans(n'). Now, it can be shown that:

Pe () Youlmmn’) u{P'} (5.2)

(m,m')eE
P,eéout(m»n—’]

If P = P/, then o : n’ + JDK(P) follows by the premises of the > pecr rule, and
this obviously implies P € Perm(n'). As check nodes are not privileged, o - JDK(P)
follows from rule JDK., and P € Perm(n) from the fact that n and n' carry the same
permissions. Otherwise, if P # P/, premise o : n’ + JDK(P') implies P € Perm(n'),
and rule JDK_ also states o - JDK(P'). Then, by applying contrapositively lemma,
5.5.2, it turns out that P’ ¢ 8,yt(N(0k—2,0k—1)). Therefore, by equation (5.2), it is
indeed P € Yout(n(ok_2,0k_1)), and, applying the inductive hypothesis, we finally
obtain o F JDK(P).

112 CHAPTER 5. STATIC ANALYSES

e case |return|:
[| {(m)=return n’--» n

o:n':mpo:n
Here, n(ox_1,0%) =n(o:n':m,0:1n) = (n',n) € Egpans: thus, P € your(n',n) =
P € Yians(n'). By lemma 3.4.4, it must be {(n') = call, then it turns out that
P € vin(n'). Now, lemma 3.4.1 states that 3L € 1.k — 2. 0y = o : n', and by
lemma 3.8.2, we then have that P € vy (1(0i—1,0 : n')). Therefore we can apply
the inductive hypothesis, obtaining o + JDK(P) and P € Perm(n'): again, P €
Perm(n') = P € Perm(n), as both n and n' lie in the same protection domain.

O

Theorem 5.6.3. Let (Yin, Youts Yeall, Yirans) = GP1(G). For any n € N, define:

YM) = Yeu(n)

Then 7y is a sound GP'-solution.

Proof. Lety = GP'(G), 6 : na G-reachable state, and P € yq;;(n). We have to distinguish
between two cases:

e if =Priv(n), then P € y;,(n). Consider a derivation [] > --- > ox_7 > 0:n. By
definition of GP] | we then have P € v, .:(n(okx_1,0 : n)), and by lemma 5.6.2 it

m?

follows o + JDK(P) and P € Perm(n). But these are exactly the premises of rule
JDK, therefore o : n F JDK(P).

e if Priv(n), then P € y;,(n) or P € Perm(n). In the former case, we showed above
that o :n F JDK(P); in the latter, this is ensured by rule JDK py, .

O

Example 5.6.4. Consider the e-commerce application of Fig. 3.1. By direct

computation of the analysis at n,, we obtain:

Yin(M2) = Your(No,M2) N Your(N3,M2) N Your (N, M2)
= (Yeau(no) N Perm(mz)) N Yirans(M3) N Y irans (14)
= Yin(no) N Perm(mz) N vin(n3) N Vin(na)
= Perm(ng) N Perm(Mz) N You(N2,M3) N Yout(N2,M4)
= {Pcanpay Peredits Paevit } N Virans (M2)
= {Peanpay, Peredity Paevit } N Vin(N2)
This recursive equation is satisfied by any subset of { Piunpay, Peredits Paebit J:

since, regardless of some techical details, the property space for GP' can be

seen as partially ordered by D, this is just the MFP solution at n,.

5.6. THE GP! ANALYSIS 113

The set of permissions granted at the exit of nqy is:

Y trans (Tl]]) = m Y out (m) n) U { Pdebit }
(mmi1)€E
Paebit #dout (M,1L11)

Now, the only edges leading to nq; are (n3,mny1) and (ne,my1). By example

554, we have that Pdebit € 601“5 (Tlg,n]]), and Pdebit 5_‘(6out (TL3,TL]]). Then:

Ytrans(n11) = YOut(n3>n11) U {Pdebit} = Ycall(n3) U {Pdebit}
= Yin(n3) U {Paebis } = You(n2,m3) U {Pgepit }
= Ytrans(nZJ U {Pdebz’t} = an(nZ)) {Pdebit}

- { Pcanpay> Pcrcdit) Pdebit }

Therefore, the set of permissions granted at the entry of node ng is:

Yin(Ms) = You(M2,Mg) N Your(Miz,Ms) = Yeau(n2) N Yeau(Mi2)
= an(nZ) N Yin(n12) = an(nZ) N Ytrans(nll)
= { Pcanpay) Pcredit) Pdebit }
Since Pgnpay € Y(1ns), the soundness result for the GP' analysis ensures that

the security check at ng will always succeed. Note that this information was

not discovered by the GP° analysis.
The full MFP solution to GP! for the e-commerce example is in Table A.1.

Theorem 5.6.5. GP' is a monotone data flow framework.

Proof. The proof closely resembles the one of theorem 5.5.6, hence it is only sketched here.

The set of local transfer functions is defined in Table 5.9. A solution & to the DP!
analysis is used to specify how the information flows from the entry to the exit of nodes.

The local property space is dual to the space for the DP! analysis: set union is replaced
by set intersection, and the order relation C is replaced with D. O

Theorem 5.6.6. Let v° and y' be the MFP solutions for the GP® and GP'

analyses, respectively. Then vy' is more accurate than y°, i.e.:
1 0
y L v
Proof. The proof is similar to the one of theorem 5.5.8, then it is not carried out here. O

Corollary 5.6.7. Any GP'-solution is non-trivial.

114 CHAPTER 5. STATIC ANALYSES

f(m,n]((lovh)) = <f($n,n]’ f(]m,n))((10‘11))
2. (o, 11)) = Perm(n)

{Perm(m) if Priv(m)
£ (losh)) = Perm(n) N

L otherwise
fr(r)z——-b n(<10111>) = 11
fran(aOvh)) = %]
1] if ki’ (5(n),n)
(o)) —
f((zn’n) ((1p,17)) otherwise
Ku'(y,n) =g4ef {(n) =check(P) and P ¢1

Table 5.9: Local transfer functions for the GP' Analysis.

5.7. THE DP2 ANALYSIS 115

5.7 The D

P? Analysis

DPZout (m) TL) =

DP? call (TL) =

DPztrans (Tl) =

unreach if V(m,n) € E. DP2,,:(m,n) = unreach

U DP2,,:(m,n) otherwise

(m,n)eE
\ DP2,,; (m,n)#unreach

(unreach if DP2;, (m) = unreach

Perm(n) if e—mn
DP2,(m) N Perm(n) ifm—n

\ Dpztmns (m) ifm--»mn

((unreach if DP2,,(n) = unreach
Perm(n) if Priv(n)

| DP?,,(n) otherwise

unreach if DP2,,(n) = unreach or kill?(n)

J DPZu(m,n) if £(n) = check(P) and —kill*(n)

(m,n)eE
PEDP2Z,,;(m,n)

kiuz (TL) =def

DP2,,(n) otherwise

£(n) = check(P) and P ¢ DPZ;,(n), or
{(n) =call and Vm € p(n). DP2,,(m) = unreach

Table 5.10: The DP? Analysis.

The DP? analysis, defined in Table 5.10, improves the DP' analysis by intro-

ducing a special value unreach to represent unreachable nodes.

Contrary to the

previous analyses, the DP? analysis prevents unreachable

nodes from propagating permissions. As we will see, this leads to strictly more

accurate solutions than those achievable by the DP' analysis.

116 CHAPTER 5. STATIC ANALYSES

{Po] @ {P1] ¢
np: call ny: call

: P, P :

\\{ 0 1} //

Y T e Y
nq: return ng: check(Po) n3: return

Y
N5: return

Figure 5.5: Control flow graph for example 5.7.1

Three kinds of unreachable nodes are detected by the DP? analysis. Let
n be a node, and m one of its callers, i.e. (m,n) € E. We say that n is

DP-unreachable from m if one of the following conditions holds:

e m is DP-unreachable;

e m is a check against a permission P, and none of its callers has P among

its non-denied permissions;

e mis a call, m --+ n, and all possible return points of m, i.e. all nodes

in p(m), are DP-unreachable.

Then, we say that n is DP-unreachable if n is DP-unreachable from each
of its callers. However, this definition does not fully characterize the set of
unreachable nodes (i.e. nodes n for which no derivation [] > - -- > 0 : n exists),

as pointed out by example 5.7.1.

Example 5.7.1. Consider the control flow graph in Fig. 5.5, where we have
p(ng) ={ns} = p(nz). According to the informal definition given above, ns
is mot DP-unreachable, because the check at n4 can be passed by caller ng.
Consequently, also n3 in not DP-unreachable. However, n3 is unreachable
indeed: in fact, the only concrete path leading to ns is (n,, n4, ns, n3), which

is not traversable because [n,, ng] ¥ JDK(Py).

5.7. THE DP2 ANALYSIS 117

Lemma 5.7.2. Let (84, Souty Scall, Strans) = DP?(G), and:
=0y > 01> ->ox=0:1M
be a derivation. Then both the following statements hold:

dout(M(0%_1, 0%)) # unreach (5.3a)
P € dou(n(ox_1,0%)) N Perm(n) = o ¥ JDK(P) (5.3b)

Proof. The proof is carried out by contradiction: we assume that o - JDK(P) whenever
P € dout(M(0k—_1,0k))NPerm(n). Then, we proceed by induction on the length of derivation
[] > -+ > 0x_1 > 0:1n. The base case corresponds to our single axiom:

ne Nentry
[l > [n]

For n € Neptpy, we have defined n([], n]) = (Ln,n), hence 8,y (Ln,n) = Perm(n). Then
(5.3a) is true because Perm(n) # unreach, and (5.3b) trivially holds, as P € dyus(Ln,n) =
P ¢ Perm(n), and the premises of the implication are never satisfied. For the inductive case,
we proceed by case analysis on the rule used to derive ox_1 > 0 :mn, yielding:

e case [calll:

{m')=call n'—n
where ox_1=0=0¢":n’

o:n'>o':n:n
Here n(ox_1,0k) = n(o’ : n',0’ : n' : n) = (n',n) € E . By the inductive
hypothesis, it must be 8,y (N(0k_2,0" : ') # unreach, hence d;,(n') # unreach:
this actually implies 8,4 (Nn', M) # unreach, so the (5.3a) is estabilished.

For the (5.3b), P € d,u:(n',n) = P € doau(n’) or P ¢ Perm(n). The lat-
ter option is prevented by our assumptions about P, then only the former one is
considered. If —Priv(n'), then P € §;,(n'), and, using lemma 3.8.2, we obtain
P € dout(M(0k_2,0k_1)). Note that assumption ¢’ : n' F JDK(P) imposes P €
Perm(n'), so we can apply the inductive hypothesis to deduce o' ¥ JDK(P). This
prevents the JDK_ rule to be applicable, and a contradiction arises with assump-
tion o' : n' JDK(P). Otherwise, if Priv(n’), then it should hold P ¢ Perm(n'),
contradicting again assumption o’ : n’ F JDK(P).

o case [check]:
f(n') = check(P') o:n'FJDK(P) n'--»+n

o:n' > o:n

Here n(ox_1,0x) =1n(o:n',0:n) = (n',n) € Egygns. By the inductive hypothesis,
it must be d,u:(N(0k_2,0" : n')) # unreach, hence 8;,(n') # unreach. Therefore,
Strans(M') can be unreach only if P’ € 6;,(n'), i.e. V(m,n') € E. P! € doue(m,n').
If this happens, by lemma 3.8.2 we also have P’ € 8,4 (1(0k_2,0:1')), and premise
o : n' + JDK(P') implies P’ € Perm(n’'). Now the inductive hypothesis can be
applied to obtain ¢ ¥ JDK(P'): since n’ is not privileged, this is a contradiction.
Then it must be d4rans(n') # unreach, and the (5.3a) is estabilished, because this
clearly implies 8,,:(n', 1) # unreach.

118 CHAPTER 5. STATIC ANALYSES

Now, for the (5.3b), we have that P € 8,,:(n',n) = P € S4rans(n’). As both
n and n' lie in the same protection domain, assumption P € Perm(n) also ensures
P € Perm(n'). Now, it can be shown that:

P € ﬂ Sout(m,n’) (5.4)

(m,n')eE
P'@80u(m,mn’)

As check nodes are not privileged, by rule JDK. we know that o:n'F JDK(P') can
only be true if o - JDK(P'). Then, by applying contrapositively the inductive hypoth-
esis, we deduce that P’ ¢ 8,4:(N(0k—2,0k—1)) N Perm(n’). Now, premise ¢ : n' F
JDK(P') requires P’ € Perm(n’): therefore, it is indeed P’ ¢ 8,ut(N(0k—2,0k—1))-
By equation (5.4), this implies P € 8,4:(n(0k—2,0k—1)), and, applying again the
inductive hypothesis, we finally obtain a contradiction o ¥ JDK(P).

e case |return|:
[| {(m) =return n'--» n

o:n':mp o:n

Here, n(ox_1,0k) = n(o : n' : myo : n) = (n',n) € Egyuns. By the inductive

hypothesis, it must be 84yt (1(0k_2, 0" : 1’ : M)) # unreach, hence &;,(m) # unreach.
Now, lemma 3.4.1 states that there is an index i < k such that oy = 0 : n’: hence,
the inductive hypothesis is also applicable to the derivation oy > --- > 0y, yielding
dout(M(0i_1,0" : n")) # unreach and d;,(n') # unreach. By lemma 3.4.4, it must
be £(n') = call, then the only case leading to dsrqns(N') = unreach is when Ym' €
p(n'). d;n(mM') = unreach: indeed, this cannot actually happen, as lemma 3.5.16
implies m € p(n') and we already know 8;, (m) # unreach. This proves the (5.3a).

For the (5.3b), we have that P € d,u:(n',n) = P € OSirans(n’). By lemma
3.4.4, it must be £(n') = call, then it turns out that P € 8;,(n’). Now, lemma
3.4.1 states that 3i € 1.k — 2. 01 = 0 : n': by lemma 3.8.2, we then have that
P € §out(m(0oi1,0:1')), and, again, assumption P € Perm(n) implies P € Perm(n’)
as both n and n' carry the same permissions. Hence, the inductive hypothesis can
be applied to yield o ¥ JDK(P).

O
Theorem 5.7.3. Let (8in, Sout, Scails Otrans) = DP?(G). For any n € N, define:

%} if 8;,(M) = unreach
8(n) = .
dcau(n) otherwise

Then & is a sound DP%solution.

Proof. The proof is exactly the same as the one of theorem 5.5.3. O

5.7. THE DP2 ANALYSIS 119

Lemma 5.7.4. Let (84, Souty Scatl, Strans) = DP?(G). Then, for any n € N:

din(n) =unreach — —Jo€X.GkFo:n
Proof. By contradiction, assume 8;,(n) = unreach and n is G-reachable, i.e. a derivation
=00 > 01 > D> oOok=0:n

exists. Now, lemma 5.7.2 ensures that 6,4:(N(0x_1,0 : n)) # unreach. Then, we have a
contradiction, as this would imply &;,(n) # unreach. O

Example 5.7.5. Consider the e-commerce application of Fig. 3.1. Proceeding

as in example 5.3.3, for the MFP solution at n, and ns we obtain:

Sin (nZ) - { Pcanpaya Pcredita P gepit }

6in (TL5) = J

By direct computation of the analysis at nig, we have:

Sin(Mis) = Sout(Ma, M) U Sout(Ns, M)
(8cau(na) U deau(ns)) N Perm(nyg)

= (§in(n4) U 8in(ns)) N Perm(nqe)
(8out(n2,M4) U @) N Perm(nyg)

= Birans(N2) N Perm(m)

= 8in(n2) N Perm(nyg)

- { Pcanpay) Pcredity Pdebit }

Since £(n16) = check(Pjoan) and Piun € 8in(Mig), it turns out that kill?(nqg).
Thus, Syqns(N1g) = unreach, and 8,,(My7) = unreach, too. By lemma 5.7.4,
this shows that node n;7 is unreachable.
Moreover, we have kill?(ns), because &;,(1n13) =unreach and p(ns)={ng}.
Then §;,(ng) = unreach, and lemma 5.7.4 tells that ng is unreachable, too.
Note that weaker information is obtained by the DP! analysis: in fact, it

just predicts that all permissions are denied to ng and n;;.

The full MFP solution to DP? for the e-commerce example is in Table A.1.

120 CHAPTER 5. STATIC ANALYSES

Theorem 5.7.6. DP? is a monotone data flow framework.

Proof. Consider the complemented analysis DP2. The local property space is a product:
LN = P(Permission) x P(Permission) x O

where O is the two-element cpo L C T. Similarly to the data flow framework constructed for
the DP' analysis, the first two components of the product represent the data flow information
at the entry and at the exit of a node. The last component tells whether the node is reachable
(T) or not (L). The join operator Ll is defined in a coordinatewise fashion:

(10,11,12) L (16,14‘1£) = (10 @] 16, 11 U 1{,12 L 1&)

where LUUl=1land TUl =T for any 1 € O. The bottom element is 1, = (&, d, L). Since
both the join operators of P(Permission) and O are idempotent, commutative and asso-
ciative, this definition actually makes L a join semi-lattice. By the fact that Permission
is finite for any control flow graph, it clearly follows that Ly satisfies the ascending chain
condition. Again, a standard construction equips Ln with a complete lattice structure:

LN = <£‘Ny Ea |_|) |_|v J-LN‘ TLN)
The partial order C is the determined coordinatewise:
<10,11,12> C <16,H,1§) iff 1() - 16 and 1, - 1{ and 1, C 1&

and the other components of the lattice are defined in the obvious manner. The solution for
the isolated entry node is defined as:

L = (9,9,T)

Given a control flow graph G, the set of local transfer functions fe = ue(G) is defined
in Table 5.11. If each f € fr is monotone regardless of G, we can take Fg to be the space
of monotone functions over L. So, let (o, 11,12) T (15,17,13) be two arbitrary elements of
Ln. By definition of monotonicity, we have for prove that, for any (m,n) € E,:

fimm (Lo, 1, 12)) T fimm) (Lo, 13, 15))
Consider the case 1; = L, first. We have:
(o1, 1)) = £l (ol 1) = f2 (o, 1) = @

Then fip o) ((lo, 1, L)) = Loy T fim,n) ({lg, 11, 15)), regardless of 13, 1; and 15.
Otherwise, let 1o = T: since we have assumed 1, C 1}, it must be 1, = T, too. Under
these hypotheses, the proof of monotonicity for the components f((:n,n] and f(ln’n] is identical

to the relative proof for the DP! analysis (theorem 5.5.6).
For the f(zm n) component, we have to deal with the following cases:

e if {(m) = call and m --+ n, then:
[(o1, T)) = L = f& (161, T
e if {(m) = check(P) and P ¢ 1], then P ¢ 15, because 1o C 1j by hypothesis. Thus:

f(zrn_yn]((l())l])—r)) = 1 = f(zm,n](ﬂé,l{,"l'))

5.7. THE DP2 ANALYSIS 121

f(m,n] ((10) L ’ 12))

(Foumy fommys Fommy Y(loy 1, 12))

f((;n,n) ((10,11 y J—)) = [%]
o, (L, T) = Perm(m)
Perm(m) if Priv(m)
fo—n((lo,l1,T)) = Perm(n) N
L otherwise
f7(n),——-)n(<10)11v T)) = 11
T(n),H'n,(a*O)th)) = [%]
f(Ln)n](<10\l1yL)) = 1%

f(]m,n;((lo,h,'r)) =

o if kill?(15,n)
where 1(’) = f(OTn,’n,] (<10) 11) T>)

1y otherwise
f(ZT)'L,n]((lO)l]vJ—)) = 1

if £(m)=call and m —-+ n,
f(zm,n] ((lo, 14, T)) = or {(m) = check(P) and P ¢ 1o

T otherwise

kill?(1,n) =g4ef L(n) =check(P) and P ¢1

Table 5.11: Local transfer functions for the DP? Analysis.

e if {(m) = check(P) and P € 1, but P ¢ 1o, then:
fom{los 1, ™) = L C T = fF (16,14, T))
e in the remaining cases, we have:

f(zm‘n]((lo,lh—'—)) =T = f(zm,n](ﬂ(')‘l{,—r))

122 CHAPTER 5. STATIC ANALYSES

Theorem 5.7.7. Let &' and &2 be the MFP solutions for the DP' and DP?2

analyses, respectively. Then &2 is more accurate than §', i.e.:

Proof. Let fe and ge be the sets of local transfer functions for the complemented analyses
DP' and DP2 respectively, as defined in tables 5.7 and 5.11. Moreover, let L1, and L3, the
local property spaces for DP! and DP2.

By looking at the proofs of theorems 5.5.6 and 5.7.6, it follows that, for each element
in LL, there is a counterpart in LZN carrying the same intuitive meaning. More precisely, if
(lo, 1) € L]L,, then the element (1o, 11, T) € LZN carries the same information relative to the
set of permissions non-denied at the entry (o) and at the exit (1) of the node. Besides, the
T component means that the node is reachable: this information is implicit in L}, because
the DP! analysis does not distinguish between reachable and unreachable nodes.

Now, assume we can prove that:

V(m,n) € Ep' g(m‘n](aO)lhT)) E (f(m,n]((l(’))l{)))—r) (55)

for any (l,1]) € Ln' and (1o,11, T) € Ln? such that 1o C 1y and 1; C 17. Since the
inclusion relation is preserved by greatest lower bounds, the global transfer functions satisfy:

g() T (f(1'),T)
for each 1 =An. (lp(n), 1 (n), T) and 1’ = An. (15(n), 15 (n)) such that:
vneN. lh(n) C ly(n) A Ln) C N
Since the MFP solutions for DPT and DP?2 are the least upper bound of the (finite) chains:

ler C flle) E f2(Leg) E -+ E fR(Leg) = f7(Ler)
lez C g(lgz) © ¢g%(Llg2) E -+ E gM(Lg2) = gM(Le2)

and, by (5.5), g*(Lz2) C f}(Lg1) for any i € N, we eventually conclude that 6% C 5.

Therefore, we proceed with the proof of (5.5). For each (m,n) € Ep, let g0 .y, 9(1)

9lm.m) be the components of gm ny, and f3, ., fin) those of fim n)-

Since g(zm‘n]((lo,h , T)Y) E T trivially follows by definition of the cpo O, it suffices to
show that the inequality is satisfied by the first two components of f and g. The proof is
carried out by cases on the edge (m,n):

o if «#— n, then:
gg—)n(ao)l] ’ T)) = Perm(n) = foo—)n(a(l))u))
e if m — n, there are two cases. If m is privileged then:

gg1—>n(<10)11v-r>) = Perm(m) = fn%—)n(a(l)vl”)

and the inequality trivially holds. In the other case, we have:

o (o,) = L T = 2 ({151

5.7. THE DP2 ANALYSIS 123

e if m --» n, then:
(o, T = L T 4 = £, ({151)
e if m — mn, then:

gT?lHn(<lo’l1‘T)) = g = T?LHTL((I‘(I))H))

For the second component, let 1/(\) = g(om,n]((lo‘h , T) and 1/(\’) = f(?n,n]((l(’),l{). Observe
that, by definition of kill! and kill?, we have, for any 1,1’ € P(Permission):
Ict A kiltl'(,n) = kill’(,,n)
0

(m,n

kiu! (fz,,n) = kill2(lp,n), and we have to deal with the following cases:

By the part of the proof relative to g) and f(?n n) We know 1Ao C 1/(\'): therefore,

o if kill' (1}, n), then kill%({y,n), and:

Iy (L0, 11, 7)) = @ = £l (1, 4U)

o if kill2(To,n) but —kill! (1}, n):

P01, M) = @ C 1§ = flan({l5,1)
e in any remaining cases, we have:
Iy (0,11, T = To T 1g = flum (o, 10)

O

Lemma 5.7.8. Let (8;n, 8out, Scally dtrans) be the MFP solution to DP2. Then:

Pedy(n) = P& Perm(n)
for any n € N.

Proof. The proof is similar to the proof of theorem 5.3.6. O

Lemma 5.7.9. The MFP solution to DP?2 is non-trivial.

Proof. The result easily follows from 5.7.8, as it is shown in 5.3.7. O

124

CHAPTER 5. STATIC ANALYSES

{Po,P1} /\ {P1,P2}

Ng: call ni: call
{Po,P1,P2} {Po,P2}
Yo
ny: call n4: check(Py)
Y
n3: check(P2) -) Ms: return

Figure 5.6: Control flow graph for counterexample 5.7.10

Counterexample 5.7.10. The DP? analysis is not complete.

Proof. Consider the control flow graph G in Fig. 5.6, and let § the MFP solution to DP?(G).
By direct computation of the analysis (with some shortcuts), we obtain:

6in (le)

8i'n, (TL4)

Sout(Mo,M2) U Sowe(n1,n2) = Scau(no) U Seaulni)
{Po,P1} U {P1,P2} = {Po,P1,P2}

Sout(M2,m4) = Seau(nz,mna) N {Po, P2}

{Po,P1,P2} N {Po,P2} = {Poy,P2}

Sout(Ma,N5) = Bipans(Ma) = Bdoue(nz,ma) = {Po,P2}
Sout(2,M3) = Sprans(M2) = 8in(nz) = {Po,P1,P2}

Observe that, in order to estimate the analysis at n3, we have used the fact that ns €
p(n2) and 6;,(ns5) # unreach: this means that the return node at ns is reachable, and the
information can flow from the call at n, to nsz, where the control transfers after the return.

Now, it is easy to show that the computed solution is sound. However, according to
definition 5.1.5, this solution is not complete. To see why, consider node ns. Actually,
there are only two (concrete) paths leading to ns, that is 7o = (ng,nz,n4,ns,n3) and
71 = (nq,nz2,M4,ns,n3). Only the first of these paths is traversable, through the derivation:

[l > ol > mo,n2] > [no,n2,n4] > Mo, n2,n5] > [N, n3]

On the contrary, the other path is not traversable. In fact, the derivation:

[] >] > [1,n2] > [n1,n2,n4]

is blocked, because [n1,n;,ng] ¥ JDK(Py). Now, we have that P, is denied to all executions
leading to n3: in fact, X(7) = [ng, n3] ¥ JDK(P,). Since, as we showed above, P, € 5(n3),
we deduce that the DP? analysis is not complete. O

5.8. THE GP? ANALYSIS 125

5.8 The GP? Analysis

(unreach if V(m,n) € E. DP2,,:(m,n) = unreach
GP;,(n) = ¢ ﬂ GPZ,,(m,n) otherwise
(m,n)eE

\ DP2,,: (m,n)#unreach

(unreach if GP2 (m) = unreach
Perm(n) if e—n
GPZ,(m,n) = <
GPZ,(m) N Perm(n) ifm-—n
\ GPZ .. (m) ifm-»mn
(unreach if GP2 (n) = unreach
GPZ,,(n) = < Perm(n) if Priv(n)

(GP2,(n) otherwise

unreach if GP2,(n) = unreach or kill?(n)

,) GPZ.(m,n)U{P} if (n) = check(P) and —kill?(n)
GPtrans(n) = < (m,m)eE
PEDPZ,,;(m,n)

[GPL(n) otherwise

Table 5.12: The GP? Analysis.

The GP? analysis, defined in Table 5.12, refines the GP' analysis by taking
into account the information about unreachable nodes computed by the DP?
analysis. As we will see, this gives rise to more accurate (but still incomplete)

solutions than those achievable by the GP' analysis.

126 CHAPTER 5. STATIC ANALYSES

Lemma 5.8.1. Let <Yin>’Yout>YcallaYtrans>): GPZ(G)a and:
=0y > 01> - > ox=0:n
be a derivation. Then both the following statements hold:

Yout(N(0%—1, 0%)) # unreach (5.6a)
P € vou(m(oxa,01)) = oFJDK(P) A Pe€ Perm(n) (5.6b)

Proof. We proceed by induction on the length of derivation [] > --- > ox_7 > o:n. The
base case corresponds to our single axiom:

ne Nentry
[l > [n]

For n € Neptry, we have defined n([], [n]) = (Ln,n), 80 P € Your(Ln,n) = P € Perm(n).
Then (5.6a) is true because Perm(n) # unreach, and (5.6b) also holds because, by rule JDKg,
o =[] F JDK(P). For the inductive case, we proceed by case analysis on the rule used to
derive ox_1 > 0:mn, yielding:

o case [call]:

{n')=call n'—n

where ox_1=0=0":n'
o:n'p>o:in‘in

Here n(ox-1,0k) = n(o’ : n';o’ : n' : n) = (n',n) € Eceu- By the inductive

hypothesis, it must be Y, (M(ok_2,0' : n')) # unreach, hence v;,(n') # unreach:

this actually implies y,u: (', 1) # unreach, so the (5.6a) is estabilished.

For the (5.6b), observe that P € you:(n',n) = P € yeau(n') and P € Perm(m). If
—Priv(n'), then P € y;,(n'), and, using lemma 3.8.2, we obtain P € 7y 5yt (1(0k_2, 0% _1))-
Then we can apply the inductive hypothesis to deduce ¢’ F JDK(P) and P € Perm(n'),
thus obtaining ¢’ : n' + JDK(P) by rule JDKL. Otherwise, if Priv(n'), then

P € Perm(n'): in this case, o' : n' I JDK(P) is ensured by rule JDK pyy .

o case [check]:
{(m') = check(P’') o:n'FJDK(P') n'-—-sn

o:n' > o:n

Here n(ox_1,0x) =n(o:n',0:n) = (n',n) € Egans. By the inductive hypothesis,
it must be yout(N(ox_2,0" : n')) # unreach, hence vy, (n') # unreach. Therefore,
Yirans(M') can be unreach only if P! € 8;,(n’), i.e. V(m,n') € E. P! € b,y (m,n').
If this happens, by lemma 3.8.2 we also have P’ € 8,4 (n(0okx_2,0 : n')). Since
check nodes are not privileged, by the premise o : n’ JDK(P') we deduce both
o+ JDK(P') and P’ € Perm(n'). Since, by (5.3b), it is also ¢ ¥ JDK(P'), we have a
contradiction. This proves the (5.6a).

For the (5.6b), note that P € you:(n',n) = P € Yyrans(n'). It can be shown that:

Pc) You(mmn') U {P'} (5.7)

(m,n’)eE
P'&8ou(m,mn’)

5.8. THE GP? ANALYSIS 127

If P = P/, then o : n’ + JDK(P) follows by the premises of the > peor rule, and
this obviously implies P € Perm(n'). As check nodes are not privileged, o - JDK(P)
follows from rule JDK., and P € Perm(n) from the fact that n and n' carry the same
permissions. Otherwise, if P # P, premise ¢ : n’ JDK(P') implies P € Perm(n’),
and rule JDK. also states o - JDK(P'). Then, by applying contrapositively lemma,
5.7.2, it turns out that P’ & §,ut(M(0k—2,0k—1)). By equation (5.7), it follows P €
Yout (M(0k—2, 0k—1)): then, by the inductive hypothesis, we finally obtain o - JDK(P).

e case |return|:
[| {(m)=return n'--» n

o:n':mpo:n
Here, n(ox_1,0k) = n(o : n' : myo : n) = (n',n) € Egyuns- By the inductive
hypothesis, it must be vt (N(0x_2,0" : n' : M)) # unreach, hence vy, (M) # unreach.
Now, lemma 3.4.1 states that there is an index 1 < k such that o; = 0 : n’: then,
the inductive hypothesis is also applicable to the derivation oo > --- > 0i, yielding
YoutM(0i—1,0" : ")) # unreach and y;,(n') # unreach. By lemma 3.4.4, it must be
{(Mm') = call, then Yipans(n') = unreach only occurs if y;, (m') = unreach for each
m’ € p(n'). However, this cannot happen, because lemma 3.5.16 implies m € p(n'),
and we already know that vy, (m) # unreach. This proves (5.6a).
For (5.6b), observe that P € y,u:(n',n) = P € Vians(n'). By lemma 3.4.4,
it must be £(n’) = call, then it turns out that P € y;,(n'). Now, lemma 3.4.1
states that 31 € 1.k — 2. 03 = o : n/, and by lemma 3.8.2, we then have that
P € YoutM(0i_1,0:1n')). Therefore we can apply the inductive hypothesis, obtaining
o - JDK(P) and P € Perm(n'): again, P € Perm(n') = P € Perm(n), as both n
and n' lie in the same protection domain.

O

Theorem 5.8.2. Let (Yin, Yout, Yealls Yirans) E GP?(G). For any n € N, define:

% if Vi, (M) = unreach
y(n) = _
Year(M) otherwise

Then 7y is a sound GP?-solution.
Proof. The proof is exactly the same as the one of theorem 5.6.3. O

Lemma 5.8.3. Let (Yin, Yout, Yeall, Yirans) = GP?(G). Then, for any n € N:

Yin(M) = unreach — —dJoe€eXl.GFo:n

Proof. This proof is exactly the same as the one of lemma, 5.7.4 O

Example 5.8.4. Consider the e-commerce application of Fig. 3.1. By direct

computation of the analysis at nz, we obtain:
Yin(N7) = You(Mo,N7) N Yous (M7, M7)

= (Ycall(nO) N Perm(n7)) N Ytrans(n7)

= { Pcanpay) Pcredit) Pdebit } M Yin (TL7)

128 CHAPTER 5. STATIC ANALYSES

This recursive equation is satisfied by any subset of {Piunpay, Peredits Paebit J:
since, regardless of some techical details, the property space for GP? can be

seen as partially ordered by D, this is just the MFP solution at n;.
The set of permissions granted at the entry of nyo is:
Yin (1119) = n Y out (TT'L, 11]9)

_ (TTL,TI] 9) €E
Sout (M,N19)F#unreach

Now, the only edges leading to mye are (nzy,my9) and (ni7,M9). Since, by

example 5.7.5, 8,,(N17) = unreach, it follows that:

Yin(n]‘?) = YOut(n7)n]9) = ’Ycall(n7) N Perm(n]‘?)

- an(n7) N PeI‘HI(TL]g) - {Pcanpayypcreditypdebit}

Since Pgreqiz € Y(M19), the soundness result for the GP? analysis ensures that
the security check at myo will always succeed. Note that this information was

not discovered by the GP' analysis.
The set of permissions granted at the entry of ng; is:
Yin (nﬂ) = n Yout(m) Tl]])

_ (TTL,TI] 1)GE
8 out (T, 111)Funreach

The only edges leading to nq7 are (n3,nqq) and (ng, nq7). By example 5.7.5, we
have that 8;,(Ng) = unreach: then, 8,4 (Mg, M11) = unreach, too. Proceeding

as in example 5.6.4, we find that Vi, (N2) = { Pcanpay, Pcredit, Paevit ;. Therefore:

Yin(M11) = Youw(M3,m11) = Year(nz) N Perm(myy)
= Yin(n3) N Perm(ny) = You(nz,m3) N Perm(ny)
= ytrans(nZ) N Perm(nn) = an(nZ) N Perm(n”)

= { Pcanpay> Pcredit> Pdebit }

Since P gepiz € Y(M11), the soundness result for the GP? analysis ensures that the
security check at ny; will always succeed. Again, observe that this information

was not discovered by the GP' analysis.

The full MFP solution to GP? for the e-commerce example is in Table A.1.

5.8. THE GP? ANALYSIS 129

Counterexample 5.8.5. The GP? analysis is not complete.

Proof. Consider a slight variation of the e-commerce example of Fig. 3.1, where the only
difference is that permission Pj,,, is now granted to the protection domain Client. The set
of permissions not denied at the exit of nq¢ is:

Etrans (n16) = U gout(‘rny n16)

(m_,n1 6)EE
Proan€8out (M, M 16)

Now, by direct computation of the DP? analysis at (n4,116), we have:

dout(Ma,M1s) = Odcau(na) N Perm(mig) = din(ng) N Perm(nig)
dout(N2,n4) N Perm(nig) = Odtrans(nz2) N Perm(mig)
= 5in(n2) N Perm(“]G) = {Pcanpayypcredit\PdebityPloan}

On the other hand, from example 5.7.5 we know that Sout(Ns5,M16) = &. Moreover, since
Ploan € 0in(Mni6), it follows that 6;,(Mn17) # unreach. Thus:

6in(‘n]8) gout(n]7y‘nl8) = gtrans(‘n17) = Sin (Tl]7)
= 5out(n16yn17) = 6trans(n16) = dout (TL4,TL15)
= {Pcanpay) Pcredity Pdebit) Ploan }

Since n1g € p(ns) and &, (N1g) # unreach, we have —kill?(ns), although node ng is actually
unreachable. Then v;,(ng) = Yirn(ns), and:

Yin(M11) = Yout(M3,M11) N Yout(Ne,M11) = Yeau(nz) N Yeau(ne) N Perm(nqq)
= Yin(N3) N Yin(ne) N Perm(mi1) = VYin(N3) N Yin(ns) N Perm(niy)
= Ymn3) N @ N Permny) = &

Therefore, it seems that no permission is granted to node mnjq, and the security check
enforced by that node is indeed necessary. By looking more closely the set of executions
that may reach ny1, we find that this is not true: in fact, the only reachable state having
N1 as top node is ng : N3 : N7 F JDK(Pgepiz). Thus, the GP? analysis is not complete. [J

Theorem 5.8.6. GPZ is a monotone data flow framework.

Proof. The proof closely resembles the one of theorem 5.7.6, hence it is only sketched here.

The set of local transfer functions is defined in Table 5.13. A solution & to the DP?
analysis is used to specify how the information flows from the entry to the exit of nodes.

The local property space is dual to the space for the DP? analysis: set union is replaced
by set intersection, and the order relation C is replaced with D. The last component of the
property space, that is the cpo O, is left unchanged.

O
Theorem 5.8.7. Let y' and y? be the MFP solutions for the GP' and GP?
analyses, respectively. Then y? is more accurate than ', i.e.:
2 1
v L vy
Proof. The proof is similar to the one of theorem 5.7.7, then it is not carried out here. O

Corollary 5.8.8. Any GP?-solution is non-trivial.

130

CHAPTER 5. STATIC ANALYSES

fim.n) (Lo, 11, 12))

f(en,n](<]’o’l1) J—))

f.o—)n(U'O)l'l) T))
fr?t—)n((lovl'l) T))

fr(r)z——-r n(<10v11) T))

f’r(r)z;)n(<]'0)l1)T>)

fomm ((Loy 11, 1))

fonmy ({Loy 11, T))

f[zmqn](<10)l'|) J—))

f(zmqn](<10)l'|) T))

(Foumys Frmmys Fonmy) Yoy 11, 12))

%]
Perm(n)

Perm(m) if Priv(m)

1 otherwise

Perm(n) N {

Ly
[%]
[%]
2 if kill2(§(n),n)
f(‘in,n) ({lo, 11, T)) otherwise
1

if £(m)=call and m —-» n,

+ or {(m) = check(P) and P ¢ 5(n)

T otherwise

Table 5.13: Local transfer functions for the GP? Analysis.

5.9. OPTIMIZED STACK INSPECTION 131

5.9 Optimized stack inspection

The correctness results proved in the previous sections shed light on a possible
optimization of the stack inspection algorithm. First of all, class files must be
enriched with the results of the GP and DP analyses: this is done by mapping
fragments of bytecode to nodes, and each node n to the pair (§(n), y(n)).

We require that both & and vy are sound and non-trivial analyses.

When an access control decision has to be made against a permission P, the
call stack (with nodes in place of protection domains) is examined top-down
as follows. Assume n to be the currently scanned node. If P € §(n), then an
AccessControlException is thrown. Otherwise, if P € y(n) the algorithm

succeeds. If neither case occurs, the search goes on.

This optimized stack inspection algorithm is shown if Fig. 5.7. A formal
specification is given in Fig. 5.14, and it is proved to yield the same results of
the standard JDK.

Algorithm 3: Optimized stack inspection

CHECK-PERMISSION(P, 0, 8,7)
1 while o # NIL do

2 n « pop(0)

3 if Pe d(n)

4 then throw “access control exception”
5 if P e y(n)

6 then return

Figure 5.7: The optimized stack inspection algorithm.

132 CHAPTER 5. STATIC ANALYSES

— [JDKE]
[l = JDK*(P)
P¢bd F JDK*(P

¢ d(n) ok JDK*(P) DK

o:nkF JDK*(P)

P e

y(n) DK

o:nF JDK*(P)

Table 5.14: Specification of the optimized access control policy.

Theorem 5.9.1 (Correctness of JDK*). Let G be a control flow graph and

o a reachable state. Then, for any permission P:

o JDK(P) 4= otk JDK*(P)

Proof. The proof for the forward implication is carried out by induction on the derivation
o JDK(P). Case analysis on the last applied rule yields:

e case [JDKgl: here o =[], and [] F JDK*(P) is deduced by rule JDKZ%,.

e case [JDKL] : here 0 = ¢’ : n, and the premises of the rule ensure P € Perm(n) and
o' F JDK(P). Applying the inductive hypothesis, we deduce o’ - JDK*(P). Now
assume, by contradiction, that P € 6(n). Since & is DP-sound, this would imply that
o' :n ¥ JDK(P), contradicing our assumption ¢’ : n - JDK(P). Therefore, it must be
P ¢ 5(n), and the rule JDK} can be applied to obtain ¢ : n F JDK*(P).

e case [JDKp.y] : here 0 = 0’ : n, and the premises of the rule state P € Perm(n) and
Priv(n). Since v is non-trivial, this implies that P € y(n), and the JDK}, rule then
yields ¢’ : n JDK*(P).

For the backward implication, assume o F JDK*(P). Again, we proceed by induction on the
depth of the call stack. Case analysis on the last applied rule gives:

e case [JDK%]: here o =[], and [] F JDK(P) is deduced by rule JDKg.

e case [JDK}] : here 0 = ¢’ : n, and the premises of the rule say that P ¢ d(n)
and o' F JDK*(P). By applying the inductive hypothesis, we obtain ¢’ F JDK(P).
Moreover, as 6 is non-trivial, we know that P € Perm(n): then the rule JDK. can be
used to deduce ¢’ : n + JDK(P).

e case [JDK}] : here 0 = ¢’ : n, and by premise we have P € y(n). Since y is GP-sound,
this indeed implies ¢’ : n + JDK(P).

O

Chapter 6

Conclusions

In this thesis we developed two families of Data Flow Analyses for the Java
bytecode. The Granted Permissions Analysis computes a safe approximation
of the set of permissions which are always granted to bytecode at run-time.
Specularly, the Denied Permissions Analysis approximates the set of permis-
sions which are always denied. The analyses provide us with the basis for

reducing the run-time overhead due to stack inspection.

Here, we focussed on Java bytecode: however, the same techniques can be
applied to programming languages whose security architectures rely on stack

inspection to enforce the dynamic check of permissions (e.g. Cf [Wil00]).

The extension of our proposal to the full access control policy requires the
control flow graph construction algorithm to single out the program points
where new threads can be generated. This step seems to be the hard part of

the job. Indeed, we feel that our analyses only require slight modifications.

Our program model does not handle the dynamic linking features of Java.
Actually, the whole program is available prior the construction of its control
flow graph. The extension of our approach to cope with dynamic linking re-
quires substantial efforts. The first step consists in linking dynamically the
relevant graphs. Then the available solutions for the various program frag-
ments have to be combined. Some preliminary work on data flow analysis
taking care of dynamic linking can be found in [RRL99, SBCO00].

134 CHAPTER 6. CONCLUSIONS

Appendix A

An e-commerce example

grant codeBase
permission

};

grant signedBy
permission
permission
permission
permission
permission
permission

};

grant signedBy
permission
permission
permission

};

"file:{java.home}/1lib/ext" {
java.security.AllPermission;

llBankll {
BankPermission
BankPermission
BankPermission
BankPermission
VarPermission
VarPermission

"Client" {

BankPermission
BankPermission
BankPermission

public class Ecommerce {
public static void main(String[] args) {
BankAccount account =

"CaIlpay" ;
"debit";
"credit";
"loan";
"read";
"write";

"Callpay" ;
"debit";
"credit";

new BankAccount (1000);

new Spender (account).start();
new Saver(account) .start();
new Robber (account).start();

136 APPENDIX A. AN E-COMMERCE EXAMPLE

public abstract class Client extends Thread {
public abstract void transact();

public void run() {
while(true) tramsact();

}

public class Spender extends Client {
private BankAccount account;
private final int AMOUNT = 10;

public Spender (BankAccount account) {
this.account = account;

}

public void tramsact() {
if (account.canpay(AMOUNT)) account.debit (AMOUNT) ;
else account.loan(AMOUNT);

public class Saver extends Client {
private BankAccount account;
private final int AMOUNT = 10;

public Saver (BankAccount account) {
this.account = account;

}

public void transact() {
account.credit (AMOUNT) ;
}

public class Robber extends Client {
private BankAccount account;
private final int AMOUNT = 9999;

public Robber(BankAccount account) {
this.account = account;

}

public void transact() {
account.loan (AMOUNT) ;
account.debit (AMOUNT) ;

137

import java.security.x;

public class BankAccount {
private Permission canpay = new BankPermission('"canpay", null);
private Permission debit = new BankPermission("debit", null);
private Permission credit = new BankPermission("credit", null);
private Permission loan = new BankPermission("loan", null);
private ControlledVar balance;

public BankAccount(int initBalance) {
balance = new ControlledVar(initBalance);

3

public boolean canpay(final int amount) {
AccessController.checkPermission(canpay) ;
Object res = AccessController.doPrivileged(new
PrivilegedAction() {
public Object run() {
return new Boolean(balance.read() > amount);
}
b
return ((Boolean) res).booleanValue();

¥

public void debit(final int amount) {
AccessController.checkPermission(debit) ;
if (this.canpay(amount)) {
AccessController.doPrivileged(new
PrivilegedAction() {
public Object run() {
balance.write(balance.read() - amount);
return null;

B
}

public void credit(final int amount) {
AccessController.checkPermission(credit);
AccessController.doPrivileged(new
PrivilegedAction() {
public Object run() {
balance.write(balance.read() + amount);
return null;
}
B
}

public void loan(final int amount) {
AccessController.checkPermission(loan) ;
credit (amount) ;

138 APPENDIX A. AN E-COMMERCE EXAMPLE

import java.security.*;

public class ControlledVar {
private Permission read = new VarPermission("read", null);
private Permission write = new VarPermission("write", null);

private int var;

public ControlledVar(int initValue) {
var = initValue;

}

public void write(int newValue) {
AccessController.checkPermission(write) ;
var = newValue;

}

public int read() {
AccessController.checkPermission(read) ;
return var;

0 1 2
n 80(n) Y°(n) 51(n) v'(n) 52(n) v-(n)
No A .. Permission
Permission Permission
ni unreach
nz
ns { Pcanpaya Pcredita Pdebit } { Pcanpayy Pcredita Pdebit } { Pcanpayy Pcredit: Pdebz’t }
Ny
n %)
> & &
ne unreach
ny { Pcanpaya Pcredita Pdebit } { Pcanpayy Pcredita Pdebit } { Pcanpayy Pcredit; Pdebz’t }
ng { Pcanpayy Pcredity Pdebit } %] { Pcanpayy Pcredz’t) Pdebz't } { Pcanpaya Pcredz’ta Pdebit }
no Permission Permission Permission Permission
nio { Pcanpayy Pcredity Pdebit } % { Pcanpay» Pcredz’t» Pdebz't } { Pcanpaya Pcredz’ta Pdebit }
nn { Pcanpagp Pcredity Pdebit } %] { Pcanpagp Pcredity Pdebit } %] { Pcanpayy Pcredita Pdebit }
niz { Pcanpagp Pcredity Pdebit } %] { Pcanpagp Pcredity Pdebit } { Pcanpayy Pcreditv Pdebit } { Pcanpayy Pcredita Pdebit }
nis3 Permission Permission Permission Permission Permission
n Permission Permission Permission Permission Permission
14
N5 { Pcanpayy Pcredity Pdebit } 1% { Pcanpayy Pcredity Pdebit } { Pcanpayy Pcredity Pdebit } { Pcanpayy Pcredit: Pdebit }
Nie { Pcanpay; Pcredit; Pdebit } %] { Pcanpay; Pcredit; Pdebit } %] { Pcanpayy Pcredity Pdebit } %]
niy { P canpay Peredit, Pdevit } & (%] & unreach unreach
nig { P canpays Peredit, Pdebit } 1% 1% 1% unreach unreach
ni9 { Pcanpagp Pcredity Pdebit } %] { Pcanpagp Pcredity Pdebit } %] { Pcanpayy Pcredita Pdebit }
n, Permission Permission Permission Permission Permission
0
no1 Permission Permission Permission Permission Permission
n22 { Pcanpayy Pcredz’t: Pdebit } 1% { Pcanpayy Pcredz’t: Pdebit } 1% { Pcanpayy Pcredit: Pdebz’t }
n e . « e « .
n23 Permission Permission Permission
24
nos o . o . o .
n Permission Permission Permission
26

Table A.1: Solutions to the analyses for the e-commerce application.

6€T

140 APPENDIX A. AN E-COMMERCE EXAMPLE

Index of symbols

N, 23
Ly, 23
£, 23
E, 23
— 1, 23
Ecau, 23
-—+ 1, 23
Eirans, 23
— 1,23
Eentry, 23
Nentry, 24
* 28
Y, 28
(=], 28
.28
>, 28
Fe, 28
Perm(), 29
Priv(), 29
Permission, 29
JDK, 31
(), 34
I, 34
Ty mes 34
M., 34
Mentry, 34

w, 35
w, 35
—x [, 36
@, 36
X, 39
N ezit, 41
p, 42
— 1,43
Ereturn, 43
E, 43
E,, 43
M, 44

i, 64
", 65
TIT, 65
L, 70
b, 70
C, 70
f, 70
F. 70
w, 70
fix, 71
1, 71
LN, 72
Fe, 72
U, 72
L, 72
Lpy, 72
L, 72
fe, 73
E, 74
fre, 74
A, 82
5, 82
r, 84
Y, 84

142 APPENDIX A. INDEX OF SYMBOLS

Bibliography

[ABLP93)

[ARS97]
[ASUS6]
[BILTO1]
[BLOO]

[CGQUS]

[Dea97]

[Dea99]

[ES99]

[FC98]

[FC99]

[FCO0]

[FGO1]

M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access
control in distributed systems. ACM Transactions on Programming Languages
and Systems, 4(15):706-734, September 1993.

Anurag Acharya, M. Ranganathan, and Joel Saltz. Sumatra: a language for
resource-aware mobile programs, 1997.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

F. Besson, T. Jensen, D. Le Métayer, and T. Thorn. Model checking security
properties of control flow graphs. Journal of computer security, 9:217-250, 2001.

Gaetano Bigliardi and Cosimo Laneve. A type system for JVM threads. Tech-
nical Report UBLCS-2000-06, June 2000.

Alessandro Coglio, Allen Goldberg, and Zhenyu Qian. Toward a provably-
correct implementation of the JVM bytecode verifier. Technical report, Kestrel
Institute, Palo Alto, July 1998.

Drew Dean. The security of static typing with dynamic linking. In Proceedings
of the Fourth ACM Conference on Computer and Communications Security,
Zurich, Switzerland, 1997.

Drew Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton
University, 1999.

Ulfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies:
a retrospective. In Proceedings of the 1999 New Security Paradigms Workshop,
Caledon Hills, September 1999.

Philip W. L. Fong and Robert D. Cameron. Proof linking: An architecture for
modular verification of dynamically-linked mobile code. In Proceedings of the
Sizth ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE’98), pages 222-230, Orlando, Florida, November 1998.

Philip W. L. Fong and Robert D. Cameron. Proof linking: Modular verifi-
cation of mobile programs in the presence of lazy, dynamic linking. In ACM
Transactions on Software Engineering and Methodology, June 1999.

Philip W. L. Fong and Robert D. Cameron. Java proof linking with multiple
classloaders. Technical Report SFU CMPT TR 2000-04, Simon Fraser Univer-
sity, August 2000.

Cédric Fournet and Andrew D. Gordon. Stack inspection: theory and variants.
Draft, August 2001.

144

[FMO8]

[FM99a]

[FM99b]

[GDDCY7]

[GHMO0]

[Gon99]

[HKKO0]

[HT98]

[JLT98a]

[JLT98D)

[Kil73]

[KLO9T]

[KS92]

[KU76]

APPENDIX A. BIBLIOGRAPHY

Stephen N. Freund and John C. Mitchell. A type system for object initialization
in the Java bytecode language. In Proceedings of the 1998 ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages & Applications
(OOPSLA ’98), volume 33(10) of SIGPLAN Notices, pages 310-327, Vancou-
ver, BC, Canada, October 1998. ACM Press.

Stephen N. Freund and John C. Mitchell. A formal framework for the Java byte-
code language and verifier. In Proceedings of the 1999 ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages € Applications
(OOPSLA ’99), volume 34(10) of SIGPLAN Notices, pages 147-166, Denver,
CO, November 1999. ACM Press.

Stephen N. Freund and John C. Mitchell. Specification and verification of Java
Bytecode subroutines and exceptions. Technical Note STAN-CS-TN-99-91, De-
partment of Computer Science, Stanford University, August 1999.

David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph
construction in object-oriented languages. In Proceedings of the 1998 ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages €
Applications (OOPSLA ’97), pages 108-124, 1997.

Etienne Gagnon, Laurie Hendren, and Guillaume Marceau. Efficient inference
of static types for Java Bytecode. In Jens Palsberg, editor, Static Analysis, 7th
International Symposium (SAS’2000), volume 1824 of LNCS, pages 199-219,
Santa Barbara, CA, June/July 2000. Springer-Verlag.

Li Gong. Inside Java 2 platform security: architecture, API design, and imple-
mentation. Addison-Wesley, 1999.

Manfred Hauswirth, Clemens Kerer, and Roman Kurmawytsch. A flexible and
extensible security framework for Java code. Technical Report TUV-1841-99-14,
Technical University of Vienna, May 2000.

Masami Hagiya and Akihiko Tozawa. On a new method for dataflow analysis of
Java Virtual Machine subroutines. In Giorgio Levi, editor, Static Analysis, 5th
International Symposium (SAS’98), volume 1503 of LNCS, pages 17-32, Pisa,
Italy, September 1998. Springer-Verlag.

T. Jensen, D. Le Métayer, and T. Thorn. Security and dynamic class loading in
Java: A formalisation. In Proceedings of the 1998 IEEE International Confer-
ence on Computer Languages, pages 4-15. IEEE Computer Society Press, May
1998.

T. Jensen, D. Le Métayer, and T. Thorn. Verification of control flow based
security policies. Technical Report 1210, IRISA, October 1998.

Gary A. Kildall. A unified approach to global program optimization. In Con-
ference Record of the ACM Syposium on Principles of Programming Languages,
pages 194-206, Boston, MA, October 1973.

Glinter Karjoth, Danny B. Lange, and Mitsuru Oshima. A security model for
Aglets. IEEE Internet Computing, 1(4), July/August 1997.

Jens Knoop and Bernhard Steffen. The interprocedural coincidence theorem.
In Proceedings of the 4th International Conference on Compiler Construction
(CC’92), volume 641 of LNCS, pages 125-140. Springer-Verlag, 1992.

John B. Kam and Jeffrey D. Ullman. Global data flow analysis and iterative
algorithms. Journal of the ACM, 23(1):158-171, 1976.

A.0. BIBLIOGRAPHY 145

[KUT77

[LGK*99]

[LY96]
[MF99]
[MR90]

[MS98]

[Muc97]

[Nip01]

[NNH99)

[NTS01]

[Oak01]
[PSS01]

[PV98§]

[QGC00]

[RGYS]
[RRL99]

[SA9S]

John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks.
Acta Informatica, 7(3):305-317, 1977.

C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers. User authentication
and authorization in the java platform. In 15th Annual Computer Security
Application Reference, pages 285—290. IEEE Computer Society Press, 1999.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

Gary McGraw and Edward W. Felten. Securing Java: Getting Down to Business
with Mobile Code. John Wiley & Sons, New York, NY, 1999.

Thomas J. Marlowe and Barbara G. Ryder. Properties of data flow frameworks.
Acta Informatica, 28(2):121-163, 1990.

Nimisha V. Mehta and Karen R. Sollins. Expanding and extending the secu-
rity features of Java. In Proceedings of the 7th USENIX Security Symposium,
January 1998.

S. Muchnick. Advanced compiler design & implementation. Morgan Kaufmann
Publishers, 1997.

Tobias Nipkow. Verified bytecode verifiers. In F. Honsell, editor, Founda-
tions of Software Science and Computation Structures (FOSSACS 2001), LNCS.
Springer-Verlag, 2001.

F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999.

Naoya Nitta, Yoshiaki Takata, and Hiroyuki Seki. Security verification of pro-
grams with stack inspection. In Proceedings of 6th ACM Symposium on Access
Control Models and Technologies (ACM SACMATZ2001), pages 31-40, Chantilly,
VA, May 2001.

Scott Oaks. Java Security. O’Reilly & Associates, Inc., second edition, 2001.

Francois Pottier, Christian Skalka, and Scott Smith. A systematic approach to
static access control. In David Sands, editor, Proceedings of the 10th European
Symposium on Programming (ESOP ’01), volume 2028 of LNCS, pages 30—45.
Springer-Verlag, April 2001.

Joachim Posegga and Harald Vogt. Java bytecode verification using model
checking, October 1998.

Zhenyu Qian, Allen Goldberg, and Alessandro Coglio. A formal specification of
Java™ class loading. In Proceedings of the 2000 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications (OOP-
SLA 2000), volume 35(10) of SIGPLAN Notices, pages 325-336, Minneapolis,
Minnesota, October 2000. ACM Press.

A. Rubin and D. Geer. Mobile code security. IEEE Internet Computing, 2(6),
November/December 1998.

Atanas Rountev, Barbara G. Ryder, and William Landi. Data-flow analysis of
program fragments. In ESEC / SIGSOFT FSE, pages 235-252, 1999.

Ramye Stata and Martin Abadi. A type system for Java Bytecode Subroutines.
In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’98), pages 149-160, San Diego, CA, January
1998. ACM Press.

146 APPENDIX A. BIBLIOGRAPHY

[Sar97] V. Saraswat. Java is not type-safe. Web page at:
www.research.att.com/"vj/main.html, 1997.

[SBCO0] Vugranam C. Sreedhar, Michael G. Burke, and Jong-Deok Choi. A framework
for interprocedural optimization in the presence of dynamic class loading. In
SIGPLAN Conference on Programming Language Design and Implementation,
pages 196-207, 2000.

[Sch98] Fred B. Schneider. Enforceable security policies. Technical Report TR98-1664,
Cornell University, January 1998.

[SHR*00] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Patrick Lam, Etienne Gagnon, and Charles Godin. Practical virtual method
call resolution for Java. In Proceedings of the 2000 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications (OOPSLA
2000), volume 35(10) of SIGPLAN Notices, pages 264-280, Minneapolis, MN,
October 2000. ACM Press.

[SM98] Insik Shin and John C. Mitchell. Java bytecode modification and applet security,
1998.

[SP81] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow
analysis. In Steven S. Muchnick and Neil D. Jones, editors, Program Flow
Analysis: Theory and Applications, chapter 7, pages 189-233. Prentice-Hall,
1981.

[SS00] Christian Skalka and Scott Smith. Static enforcement of security with types. In
Proceedings of the 5th ACM SIGPLAN International Conference on Functional
Programming (ICFP’00), pages 34-45, Montréal, Canada, September 2000.

[TPOO0] Frank Tip and Jens Palsberg. Scalable propagation-based call graph construc-
tion algorithms. In Proceedings of the 2000 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages & Applications (OOPSLA
’00), pages 281-293, 2000.

[WAF00] Dan S. Wallach, Andrew W. Appel, and Edward W. Felten. SAFKASI: a secu-
rity mechanism for language-based systems. j-TOSEM, 9(4):341-378, October
2000.

[Wal99] Daniel S. Wallach. A New Approach to Mobile Code Security. PhD thesis,
Princeton University, January 1999.

[Wal00] David Walker. A type system for expressive security policies. In Conference
record of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 254-267. ACM Press, 2000.

[WF98] Dan S. Wallach and Edward W. Felten. Understanding Java stack inspection.
In Proceedings of the 1998 IEEE Symposium on Security and Privacy, Oakland,
CA, May 1998.

[Wil00] C. Wille. Presenting Cf. SAMS Publishing, 2000.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.
Efficient software-based fault isolation. In Fourteenth ACM Symposium on Op-
erating Systems Principles, pages 203—-216, Asheville, December 1993.

