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Abstract. Several models based on process calculi have addressed the definition
of linguistic primitives for handling long running transactions and Service Level
Agreement (SLA) in service oriented applications. Nevertheless, the approaches
appeared in the literature deal with these aspects as independent features. We
claim that transactional mechanisms are relevant for programming multi-step
SLA negotiations and, hence, it is worth investigating the interplay among such
formal approaches. In this paper we propose a process calculus, the committed
cc-pi, that combines two proposals: (i) cc-pi calculus accounting for SLA nego-
tiation and (ii) cJoin as a model of long running transactions. We provide both a
small- and a big-step operational semantics of committed cc-pi as labelled tran-
sition systems, and we prove a correspondence result.

1 Introduction

Service Oriented Computing (SOC) is an emerging paradigm in distributed computing.
Services are autonomous computational entities that can be described, published, and
dynamically discovered for developing distributed, interoperable applications. Along
with functional properties, services may expose non-functional properties including
Quality of Service (QoS), cost, and adherence to standards. Non-functional parame-
ters play an important role in service discovery and binding as, e.g., multiple services
able to fulfill the same user request (because they provide the same functionality) can
still be differentiated according to their non-functional properties. Service Level Agree-
ments (SLAs) capture the mutual responsibilities of the provider of a service and of its
client with respect to non-functional properties, with emphasis on QoS values.

The terms and conditions appearing in a SLA contract can be negotiated among
the contracting parties prior to service execution. In the simplest case, one of the two
parties exposes a contract template that the other party must fill in with values in a
given range; in case of failure, no agreement is reached and a new negotiation must be
initiated. However, in general, arbitrary complex scenarios involving distributed trans-
actions may occur: (i) third parties may take part to or just exert some influence on a
negotiation, (ii) negotiations can be nested, (iii) if a commit cannot be achieved, com-
pensation mechanisms may be activated, e.g. clients may relax their own SLA require-
ments and providers may add further service guarantees until an agreement is reached.

Several approaches have appeared in the literature for specifying and enforcing SLA
contracts [14, 10, 7, 2] and for modelling and analysing long running transactions in the
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context of name passing calculi [5, 11, 4]. However, such theories treat these two issues
as independent features. By contrast, we claim that transactions can be conveniently
employed for programming SLA negotiation scenarios. In this paper, we propose the
committed cc-pi calculus (committed cc-pi), a language for specifying SLAs that also
features coordination primitives tailored to multi-party negotiations. More specifically,
committed cc-pi extends cc-pi [7] with the transactional mechanism of cJoin[5] for han-
dling commits and aborts of negotiations along with possible activations of compensa-
tions. We remind that, unlike compensatable flows [8, 6], the approaches in [5, 11, 4]
rely on a notion of compensation that is essentially an exception handling mechanism.

The cc-pi calculus [7] is a simple model for SLA contracts inspired by two basic
programming paradigms: name-passing calculi (see e.g. [12]) and concurrent constraint
programming [13]. More in detail, cc-pi combines synchronous communication and a
restriction operation à la process calculi with operations for creating, removing and
making logical checks on constraints. The constraint systems employed in cc-pi are
based on the c-semiring structures [3], which are able to model networks of constraints
for defining constraint satisfaction problems and to express fuzzy, hierarchical, or prob-
abilistic values.

cJoin [5] is an extension of the Join calculus [9] with primitives for distributed
nested commits. The two key operations of cJoin are: the “abort with compensation”,
to stop a negotiation and activate a compensating process; and the “commit”, to store a
partial agreement among the parties before moving to the next negotiation phase.

Before introducing committed cc-pi, we single out the transactional primitives of
cJoin and add them to the pi-calculus. This intermediate step highlights the interplay of
compensating transactions with a channel-based interaction mechanism that is different
from Join and it is intended to make the treatment of constraints easier to understand.

Synopsis. In §2 we highlight the main features of cc-pi, and in §3 we briefly recall cJoin
and we present a transactional extension of the pi-calculus inspired by cJoin. In §4 we
introduce the committed cc-pi calculus by giving its syntax and operational semantics
in terms of labelled transition system and we show some examples of modelling trans-
actional SLA negotiations. In §5 we define a big-step semantics of committed cc-pi and
we prove a correspondence result.

2 Constrained-based SLA negotations

The cc-pi calculus integrates the Pi-F calculus [15] with a constraint handling mecha-
nism. The Pi-F calculus is a variant of the pi-calculus whose synchronisation mecha-
nism is global and, instead of binding formal names to actual names, it yields an explicit
fusion, i.e., a simple constraint expressing the equalities of the transmitted parameters.
cc-pi extends Pi-F by generalising explicit fusions to arbitrary constraints and by adding
primitives like tell and ask, which are inspired by the constraint-based computing
paradigms. We defer a technical treatment of the syntax and semantics of the cc-pi to
§4, where we will give a formal presentation of an extended version of cc-pi including
transactional features. Here, we simply overview the main principles of the calculus.



Underlying constraint system. The cc-pi calculus is parametric with respect to named
constraints, which are meant to model different SLA domains. Consequently, it is not
necessary to develop ad hoc primitives for each different kind of SLA to be modelled.
A named constraint c is defined in terms of c-semiring structures and comes equipped
with a notion of support supp(c) that specifies the set of “relevant” names of c, i.e. the
names that are affected by c. The notation c(x,y) indicates that supp(c) = {x,y}. In this
work, we leave such underlying theory implicit and we refer the interested reader to [7,
3]. For our purposes, we simply assume usual notions of entailment relation (` ), of
combination of constraints (×) and of consistency predicate (see e.g. [13]). Moreover,
we will only consider crisp constraints (instead of the more general soft constraints), i.e.
we will assume a constraint system leading to solutions consisting of a set of tuples of
legal domain values. As an example the constraint c(x,y) = (7≤ x≤ 9)×(15≤ y≤ 18)
specifies that the names x and y can only assume domain values in the range [7, . . . ,9]
and [15, . . . ,18]. Assuming a constraint d(x,y) = (6≤ x≤ 8)×(17≤ y≤ 19), the result
of combining c and d is the intersection of their respective possible values, i.e. the
constraint e(x,y) = c(x,y)×d(x,y) = (7≤ x≤ 8)× (17≤ y≤ 18). We say a constraint
to be inconsistent when it has no tuples, and we write 0 for the inconsistent constraint.

In cc-pi, the parties involved in a negotiation are modelled as communicating pro-
cesses and the SLA guarantees and requirements are expressed as constraints that can
be generated either by a single process or as a result of the synchronisation of two pro-
cesses. Moreover, the restriction operator of the cc-pi calculus can limit the scope of
names thus allowing for local stores of constraints, which may become global after a
synchronisation. A single process P = tell c.Q can place a constraint c corresponding
to a certain requirement/guarantee and then evolve to process Q. Alternatively, two pro-
cesses P = p〈x̃〉.P′ and Q = p〈ỹ〉.Q′ that are running in parallel (P |Q) can synchronise
with each other on the port p by performing the output action p〈x̃〉 and the input action
p〈ỹ〉, respectively, where x̃ and ỹ stand for sequences of names. Such a synchronisation
creates a constraint induced by the identification of the communicated parameters x̃ and
ỹ, if the store of constraints obtained by adding this new constraint is consistent, other-
wise the system has to wait that a process removes some constraint (action retract c).

Example 1. Consider a user that is looking for a web hosting solution with certain guar-
antees about the supplied bandwidth and cost. We assume the client and the provider to
communicate over channel r the information about the requested bandwidth, and over
channel p the information about the price of the service. The constant rb stands for the
minimal bandwidth accepted by the client, while ob represents the maximal bandwidth
offered by the provider. Moreover, the provider fixes the price uc as the cost for any
unit of bandwidth, and the client the maximal cost c it is intended to pay for the service.
Then, the whole system can be modelled by the following two processes: one describing
the behaviour of the client Clientrb,c(r, p) and the other the provider Providerob,uc(r, p).

Clientrb,c(r, p)≡ (bw)(cost)(tell (bw ≥ rb).r〈bw〉.tell (cost ≤ c).p〈cost〉)

Providerob,uc(r, p)≡ (bw′)(cost′)(tell (bw′ ≤ ob).r〈bw′〉.tell (bw′ ∗uc = cost ′).
p〈cost′〉)



The client starts by fixing the constraint about the minimal requested bandwidth, then it
contacts the provider by communicating on channel r and, after that, it fixes the maximal
cost it can afford and synchronises on p. The provider behaves similarly, by fixing an
upper bound ob on the offered bandwidth, accepting a request from the client over r
and, then, fixing the cost of the service and synchronising with the client.

Consider the following system composed of a client and two providers.

S ≡ (r)(p)Client4Gb,$100 | Provider6Gb,$20 | Provider3Gb,$15

The client requests at least 4 Gigabytes (Gb), while one provider offers at most 6Gb
and the other 3Gb. As expected, after each party has placed its own constraint on the
required/offered bandwidth, the client can synchronize only with the first provider (the
interaction with the second one is not possible since the constraints bw ≥ 4Gb, bw′ ≤
3Gb, bw = bw′ are inconsistent). As a next step, the first provider and the client fix
the constraints about the cost of the service, the synchronisation over p takes place,
and the negotiation succeeds. The released constraints are the agreed parameters of the
contract. If we consider a domain of integer solutions, the contract is either the solution
bw = bw′ = 4Gb and cost = cost ′ = $80, or bw = bw′ = 5Gb and cost = cost ′ = $100.
Note that tell prefixes handle local stores of constraints, while synchronisations allow
to identify variables belonging to different stores, thus yielding a global store.

3 Compensating transactions

cJoin is a process calculus that provides programming primitives for handling transac-
tions among interacting processes. The communication primitives of cJoin are inherited
from the Join calculus [9], which is a process calculus with asynchronous name-passing
communication, while the transactional mechanism is based on compensations, i.e., par-
tial execution of transactions are recovered by executing user-defined programs instead
of providing automatic roll-back. So, in addition to the usual primitives of Join, cJoin
provides a new kind of terms of the form [P : Q], denoting a process P that is required to
execute until completion. In case P cannot successfully complete, i.e., when P reaches
the special process abort, the corresponding compensation Q is executed.

The main idea in cJoin is that transaction boundaries are not permeable to ordinary
messages, so that a transactional process [P : Q] can only compute locally. However, a
limited form of interaction is allowed with other transactional processes: in this case,
after the interaction, the transactional processes become part of the same larger trans-
action, and hence all parties should reach the same agreed outcome, i.e., if some party
commits (resp. aborts) then all of them commit (resp. aborts).

Rather than providing the formal definition of cJoin, below we focus on its trans-
actional primitives. To this purpose, we present committed pi, an extension of the pi-
calculus with the transaction mechanism introduced in cJoin. This choice aims to show
the interplay of compensating transactions with the channel-based process communi-
cation of pi-calculus (and of cc-pi), thus making the transactional extension of cc-pi
presented in §4 more straightforward.



3.1 From cjoin to committed pi

Assume an infinite, countable set of names N , ranged over by a,b,x,y,z, . . . and a set
of process identifiers, ranged over by D. The syntax of committed pi processes is given
in Figure 1(a). As in the pi-calculus, a process is either the inert process 0, the parallel
composition P|P′ of two processes, a guarded choice Σiαi.Pi where αi.Pi is either (i)
an agent x(ỹ).P that accepts a message on channel x and then continues as P, (ii) the
synchronous emission of a message x〈ỹ〉 with continuation P, or (iii) the internal choice
τ.P. The process (νx)P defines the private channel x. A defining equation for a process

identifier D is of the form D(x̃) def= P where the free names of P are included in x̃.
Then, for any process D(ỹ) we require |x̃|= |ỹ|. In addition, committed pi provides two
primitives for handling transactions: [P : Q] for defining a transactional process P with
compensation Q, and abort for indicating an aborted transaction.

We write (νx1 . . .xn)P as an abbreviation for (νx1) . . .(νxn)P. When x̃ = x1 . . .xn and
n = 0, (νx̃)P stands for P. We abbreviate z〈ỹ〉.0 by z〈ỹ〉 and we write M for a process
consisting only on sent messages, i.e. M = x1〈ỹ1〉| . . . |xn〈ỹn〉. M is 0 when n = 0. The
reduction semantics is the least relation satisfying the rules in Figure 1(c) (modulo the
the usual structural equivalence rules in Figure 1(b)). Free and bound names (written
f n(P) and bn(P)) are defined as usual.

Rules (COMM), (TAU), (PAR), and (RES) are the standard ones for the synchronous
pi-calculus. Rule (TRANS) describes the internal computations of a transactional pro-
cess, in which the compensation Q is kept frozen. Rule (TR-COMP) handles the case of
a transaction that aborts, which causes the remaining part of the transactional process
to be removed and the associated compensation Q to be activated. Instead, rule (COM-
MIT) defines the behaviour of a transaction that commits. A transaction commits when
it produces a set of output messages M, each of them followed by 0, i.e., there are no
remaining computation inside the transaction. At this point, all produced messages M
are released and the associated compensation is discarded. Last rule (TR-COMM) de-
scribes the interaction among two transactions. In particular, when one transactional
process sends a message that is received by another transactional process both transac-
tional scopes are merged into a larger one containing the remaining parts of the original
transactions and its compensation is the parallel composition of the original ones.

Example 2. Consider the typical scenario in which a user books a room through a hotel
reservation service. The ideal protocol can be sketched as below.

C≡ request〈data〉.offer(price).accept〈cc〉
H≡ request(details).offer〈rate〉.accept(card)

The client starts by sending a booking request to the hotel, which answers it with a
rate offer. After receiving the offer, the client accepts it. Nevertheless, there are several
situations in which parties may be forced/inclined not to complete the execution of the
protocol (e.g., the hotel has no available rooms for the requested day, or the client does
not obtain convenient rates).

Client≡ [request〈data〉.offer(price).(accept〈cc〉+ τ.abort) : alt(h).Q]
Hotel≡ [request(details).(offer〈rate〉.accept(card)+ τ.abort) : alt〈hotel〉]



P ::= 0 | P|P | Σiαi.Pi | (νx)P | D(ỹ) | [P : Q] | abort
α ::= x(ỹ) | x〈ỹ〉 | τ

(a) Syntax

P | 0 ≡ P P ≡ Q if P ≡α Q
P | Q ≡ Q | P (νx)(νy)P ≡ (νy)(νx)P

(P | Q) | R ≡ P | (Q | R) (νx)P | Q ≡ (νx)(P|Q) if x 6∈ f n(Q)
P+Q ≡ Q+P (P+Q)+R ≡ P+(Q+R)

(νx)0 ≡ 0 D(ỹ)≡ P{ỹ/x̃} if D(x̃) def= P
(b) Structural equivalence

(COMM)

x(ỹ).P+P′ | x〈z̃〉.Q+Q′ → P{z̃/̃y}|Q
(TAU)

τ.P+Q → P

(PAR)
P → P′

P|Q → P′|Q
(RES)

P → P′

(νx)P → (νx)P′

(TRANS)
P → P′

[P : Q] → [P′ : Q]

(TR-COMP)

[abort|P : Q] → Q
(COMMIT)

[M : Q] → M

(TR-COMM)

[(νx̃)y(ṽ).P1 +R1 |P′1 : Q1] | [(νz̃)y〈w̃〉.P2 +R2 |P′2 : Q2] → [(νx̃z̃)P1{w̃/̃v}|P′1 |P2 |P′2 : Q1 |Q2]
if y 6∈ x̃∪ z̃ and x̃∩ f n(P2|P′2) = /0 and z̃∩ f n(P1|P′1) = /0

(c) Reduction Semantics

Fig. 1. Syntax and Semantics of the committed pi calculus

The above protocol allows the client to abort the transaction after receiving an offer
(for instance when the offer does not satisfy her expectations). Alternatively, the hotel
may abort after receiving a request (for instance when no rooms are available). We
illustrate the use of compensations by making the component Hotel to generate the
single message alt〈hotel〉 to provide the client with an alternative hotel to contact. The
compensation of Client is a process that receives a message on the port alt and then
behaves like Q, which stands for the process that contacts the alternative hotel h.

The process Client|Hotel behaves in committed pi as follows. When both trans-
actions communicate through the port request for the first time they are merged in a
unique larger transaction, whose transactional process and compensation correspond
respectively to the parallel composition of the residuals of the original transactions and
to the parallel composition of the original compensations, as shown below

Client|Hotel → [offer(price).(accept〈cc〉+ τ.abort)
| (offer〈rate〉.accept(card)+ τ.abort) : alt(h).Q | alt〈hotel〉]

¿From this moment the system may evolve as usual. Assuming the hotel sends an offer
and the client replies with a confirmation, the system commits the transaction as follows

→ [(accept〈cc〉 + τ.abort) | accept(card) : alt(h).Q | alt〈hotel〉]
→ [0 : alt(h).Q | alt〈hotel〉]
→ 0



Otherwise, if we assume that the client refuses the offer then the system evolves as
follows and activates the compensation of both parties.

→ [(accept〈cc〉 + τ.abort) | accept(card) : alt(h).Q | alt〈hotel〉]
→ alt(h).Q | alt〈hotel〉

4 Committed cc-pi

In this section we enrich cc-pi with the transactional mechanism described above. Be-
fore introducing the extended calculus, we show an example that motivates the addition
of compensating transactions for modelling SLA negotiations.

Example 3. Consider the system shown in Example 1. Suppose that the client is in-
tended to pay a maximal cost $60 instead of $100. The new system is as follows.

S′ ≡ (r)(p)Client4Gb,$60 | Provider6Gb,$20 | Provider3Gb,$15

The evolution of S′ is as in the original system until the first provider and the client place
their own constraints on the cost (as before the client cannot synchronise with the other
provider). Then, the negotiation between the client and the first provider fails, because
the constraints cost ≤ c, bw′ ≤ ob and cost = cost′ are inconsistent, and the system
is stuck. Later in §4.3, we will see how to model this scenario using the transactional
mechanism of committed cc-pi.

4.1 Syntax

The syntax of committed cc-pi processes is specified in Figure 2(a). Assume the infinite
set of names N , ranged over by x,y,z, . . . and a set of process identifiers, ranged over
by D. We let c range over the set of constraints of an arbitrary named c-semiring C .

The syntax of the calculus is the same as for the cc-pi except for the inclusion of
a transactional primitive which is inspired by committed pi. The τ prefix stands for a
silent action, output x〈ỹ〉 and input x〈ỹ〉 are complementary prefixes used for commu-
nications. Unlike other calculi, the input prefix is not binding, hence input and output
operations are fully symmetric and the synchronisation of two complementary prefixes
x〈ỹ〉 and x〈z̃〉, rather than binding ỹ to z̃, yields the name fusion ỹ = z̃. Prefix tell c
generates a constraint c and puts it in parallel with the other constraints, if the resulting
parallel composition of constraints is consistent; tell c aborts otherwise. Prefix ask c
is enabled if c is entailed by the set of constraints in parallel. Prefix retract c removes
a constraint c, if c is present. Unconstrained processes U are essentially processes that
can only contain constraints c in prefixes tell c, ask c, and retract c. As usual,
0 stands for the inert process and U |U for the parallel composition. ∑i πi.Ui denotes
a mixed choice in which some guarded unconstrained process Ui is chosen when the
corresponding guard πi is enabled. Restriction (x)U makes the name x local in U . A

defining equation for a process D(ỹ) is of the form D(x̃) def= U where |x̃| = |ỹ| and the
free names of U must be included in x̃. The transaction primitive [P : Q].U defines a



Prefixes π ::= τ
∣∣ x〈ỹ〉

∣∣ x〈ỹ〉
∣∣ tell c

∣∣ ask c
∣∣ retract c

Unconstrained Processes U ::= 0
∣∣ U |U

∣∣ ∑i πi.Ui
∣∣ (x)U

∣∣ D(ỹ)
∣∣ [P : Q].U

Constrained Processes P ::= U
∣∣ c

∣∣ P|P
∣∣ (x)P

(a) Syntax

P|0 ≡ P P+Q ≡ Q+P (x)(y)P ≡ (y)(x)P

P|Q ≡ Q|P (P+Q)+R ≡ P+(Q+R) P|(x)Q ≡ (x)(P|Q) if x 6∈ fn(P)

(P|Q)|R ≡ P|(Q|R) D(ỹ)≡U{ỹ/x̃} if D(x̃) def= U (x)0 ≡ 0

[(x)P : Q].U ≡ (x)[P : Q].U if x 6∈ fn(Q,U)

(b) Structural equivalence

(TAU)

C |τ.U τ−→C |U
(OUT)

C |x〈ỹ〉.U x〈ỹ〉−→C |U

(INP)

C |x〈ỹ〉.U x〈ỹ〉−→C |U

(TELL)

C |tell c.U τ−→C |c |U if C |c consistent
(ABT-TELL)

C |tell c.U abr−→ 0 if C |c not consistent

(ASK)

C |ask c.U τ−→C |U if C ` c
(RETRACT)

C |retract c.U τ−→ (C− c) |U

(COMM)

C |U x〈ỹ〉−→C |U ′ C |V z〈w̃〉−→C |V ′

C |U |V τ−→C | ỹ = w̃ |U ′ |V ′

if |ỹ|= |w̃| and C | ỹ = w̃ consistent and C ` x = z

(ABT-COMM)

C |U x〈ỹ〉−→ P C |V z〈w̃〉−→ Q

C |U |V abr−→ 0

if |ỹ|= |w̃| and C | ỹ = w̃ not consistent and C ` x = z

(PAR)

P α−→ P′ α 6= abr

P |U α−→ P′ |U

(ABT-PAR)

P abr−→ 0

P |Q abr−→ 0

(SUM)

C |πi.Ui
α−→U ′

C | ∑πi.Ui
α−→U ′

(RES )

P τ−→ P′

(x)P τ−→ (x)P′

(TRANS)

P τ−→ P′

[P : Q].U τ−→ [P′ : Q].U

(TR-COMP)

P abr−→ P′

[P : Q].U τ−→ Q

(TR-COMMIT)

[C : Q].U τ−→C |U

(TR-PAR)

[P : Q].U τ−→ P′

C | [P : Q].U τ−→C |P′

(TR-COMM)

C1 |U1
x〈ỹ〉−→ R1 C2 |U2

z〈w̃〉−→ R2 |ỹ|= |w̃| and C1 |C2 | ỹ = w̃ consistent and C |C1 |C2 ` x = z

C | [C1 |U1 : Q1].V1 | [C2 |U2 : Q2].V2
τ−→C | [R1 |R2 | ỹ = w̃ : Q1 |Q2].(V1 |V2)

(c) Labelled Semantics

Fig. 2. Syntax and Small-Step Semantics of the committed cc-pi calculus



transactional process P which evolves to U in case of a commit, while otherwise ac-
tivates the compensation Q. Constrained processes P are defined like unconstrained
processes U but for the fact that P may have constraints c in parallel with processes. We
simply write processes to refer to constrained processes.

4.2 Operational semantics

The structural equivalence relation ≡ is defined as the least equivalence over processes
closed with respect to α-conversion and satisfying the rules in Figure 2(b). Note that the
notion of free names fn(P) of a process P is extended to handle constraints by stating
that the set of free names of a constraint c is the support supp(c) of c. The structural
axioms can be applied for reducing every process P into a normal form (x̃)(C |U),
where C is a parallel composition of constraints and U can only contain restrictions
under prefixes, i.e. U 6≡ (ỹ)U ′.

Well-formedness. Let Ch⊆N be a set of channel names that can only be fused among
each other and let chn(P) be the set of channel names occurring free in P. P is well-
formed if there exists a process Q≡P such that every occurrence of transaction in Q has
the form (x1, . . . ,xn)[P′ : Q′].U , where (fn(P′,Q′)\ chn(P′,Q′))⊆ {x1, . . . ,xn}. For ex-
ample, P≡ (x)(tell (x = z) |(w)[y〈w〉.0 : Q].U) is well-formed, but R≡ (x)(tell (x =
y) | [y〈x〉.0 : Q].U) is not. Hereafter, we assume all processes to be well-formed.

Let A = {τ, x〈ỹ〉, x〈ỹ〉, abr |x,yi ∈ N for ỹ = 〈y1, . . . ,yn〉 } be a set of labels and
let α range over A. The labelled transition semantics of processes (taken up to struc-
tural equivalence ≡) is the smallest relation P α−→ Q, defined by the inference rules
in Figure 2(c), where: C stands for the parallel composition of constraints c1 | . . . |cn;
C consistent means (c1 × . . .× cn) 6= 0; C ` c if (c1 × . . .× cn) ` c; C− c stands for
c1 | . . . |ci−1 |ci+1 | . . . |cn if c = ci for some i, while C− c = C otherwise.

The choice of giving a labelled transition semantics rather than a reduction seman-
tics is stylistic and not relevant for our treatment. After this remark, the rules in Fig-
ure 2(c) essentially include the original rules of cc-pi plus the rules concerning the
transactional mechanism. Roughly, the idea behind this operational semantics is to pro-
ceed as follows. First, rearranging processes into the normal form (x1) . . . (xn)(C |U)
by applying the structural axioms. Next, applying the rules (TELL), (ASK), (RETRACT)
for primitives on constraints and the rule (OUT), (INP), possibly (SUM) and (COMM)
for synchronising processes. Finally, closing with respect to parallel composition and
restriction ((PAR), (RES)). More in detail, rule (TELL) states that if C |c is consistent
then a process can place c in parallel with C, the process aborts otherwise. Rule (ASK)
specifies that a process starting with an ask c prefix evolves to its continuation when c
is entailed by C and it is stuck otherwise. By rule (RETRACT) a process can remove c if
c is one of the syntactic constraints of C. In rules (COMM), we write ỹ = w̃ to denote the
parallel composition of fusions y1 = w1 | . . . |yn = wn. Intuitively, two processes x〈ỹ〉.P
and z〈w̃〉.Q can synchronise when the equality of the names x and z is entailed by C and
the parallel composition C | ỹ = w̃ is consistent. Note that it is legal to treat name equal-
ities as constraints c over C , because named c-semirings contain fusions. Rule (PAR)
allows for the closure with respect to unconstrained processes in parallel. This rule dis-
allows computations that consider only partial stores of constraints and, consequently,



it makes necessary to add the parallel composition of constraints C in several opera-
tional rules, such as (TAU) and (SUM), even though this might seem superfluous. The
remaining rules deal with transactions. Rules (TRANS), (TR-COMP), (COMMIT), and
(TR-COMM) serve the same purpose as the homologous rules of the committed pi. Note
that the well-formedness assumption ensures that C, C1 and C2 can only share channel
names. Rules (ABT-TELL) and (ABT-COMM) force an abort in case a process tries to
place a constraint that is not consistent with the parallel composition of constraints C.
Rules (ABT-PAR) extends the effect of an abort to the sibling processes. Unlike rule
(PAR), rule (TR-PAR) allows closure with respect to constraints running in parallel.
Note that such composition is legal in virtue of the well-formedness assumption which
ensures fn(C)∩ f n(P,Q) = /0.

4.3 Example: a Transactional SLA

We now model in committed cc-pi the scenario depicted in Example 1. The client and
the server can be sketched as follows.

Clientrb,c(r, p)≡ (bw)(cost)[tell (bw ≥ rb).r〈bw〉.tell (cost ≤ c).p〈cost〉.0 : Q].
U(bw,cost)

Providerob,uc(r, p)≡ (bw′)(cost′)[tell (bw′ ≤ ob).r〈bw′〉.
tell (bw′ ∗uc = cost ′).p〈cost′〉.0 : Q′].U ′(bw′,cost′)

The specification above is the same as the one given in Example 1 using cc-pi, apart
from the fact that here the sequences of actions taken by each party are within a trans-
actional scope and that they include compensating processes Q and Q′. Assume the
following system composed of a client and two providers.

S ≡ (r)(p)Client4Gb,$100 | Provider6Gb,$20 | Provider3Gb,$15

By executing the tell prefixes in all transactions we obtain the following derivation
(we abbreviate U(bw,cost) and U ′(bw′,cost′) with U and U ′ respectively).

S
τ−→
∗

(r)(p)(bw)(cost)[bw ≥ 4Gb | r〈bw〉.tell (cost ≤ $100).p〈cost〉.0 : Q].U
| (bw′)(cost′)[bw′ ≤ 6Gb | r〈bw′〉.tell (bw′ ∗$20 = cost ′).p〈cost′〉.0 : Q′].U ′

| (bw′)(cost′)[bw′ ≤ 3Gb | r〈bw′〉.tell (bw′ ∗$15 = cost ′).p〈cost′〉.0 : Q′].U ′

As in the non-transactional case, the client can synchronise only with the first provider.
Hence, the only possible reduction is

τ−→ (r)(p)(bw)(cost)(bw′)(cost′)
[bw ≥ 4Gb | bw = bw′ | bw′ ≤ 6Gb
| tell (cost ≤ $100).p〈cost〉.0 | tell (bw′ ∗$20 = cost ′).p〈cost′〉.0 : Q|Q′].(U |U ′)
| (bw′)(cost′)[bw′ ≤ 3Gb | r〈bw′〉.tell (bw′ ∗$15 = cost ′).p〈cost′〉.0 : Q′].U ′

Next, the provider and the client fix their constraints on the cost of the service, the
communication over p takes place, and the transaction can commit:

τ−→
∗

(r)(p)(bw)(cost)(bw′)(cost′)
bw ≥ 4Gb | bw = bw′ | bw′ ≤ 6Gb | bw′ ∗$20 = cost ′ | cost ≤ $100 |U |U ′

| (bw′)(cost′)[bw′ ≤ 3Gb | r〈bw′〉.tell (bw′ ∗$15 = cost ′).p〈cost′〉.0 : Q′].U ′



Consider now the variant shown in Example 3 in which the client is Client4Gb,$60 instead
of Client4Gb,$100. In this case, the system may evolve as before until the client and
the provider fix the constraint about variables cost and cost ′. Afterwards, when they
synchronise on p, the transaction aborts since the constraints are now not consistent.
In such case the compensations Q and Q′ are activated. Note that the precise definition
of the compensations may dictate the strategy followed by each participant during the
negotiation. For instance, for the client the compensation could be Clientrb,c+$10. That
is it may offer to pay more for the requested bandwidth, or alternatively Clientrb−1Gb,c

to request less bandwidth by offering the same price. Similarly, the provider may fix its
own negotiation strategy.

5 Big-Step Operational Semantics

In this section we introduce an alternative definition for the semantics of committed
cc-pi, which allows us to reason about transactional computations at different levels
of abstraction. In particular, the big-step semantics is intended to single out the com-
putations of a system that are not transient, or in other words, the states containing
no running transactions. Therefore, the big-step semantics provides a description of
the possible evolution of a system through stable states. Processes associated to sta-
ble states of the system are said stable processes. Formally, a process P is stable if
P 6≡ (x̃) [P1 : Q1].U1 |P2, i.e. P does not contain active transactions. We remark that
our definition of stable process is intentionally not preserved by weak bisimulation. In
case such property is required, an alternative characterization of stable process could
be given by slightly adapting the original semantics in order to make the beginning of
transaction executions observable.

A committed cc-pi process P is a shallow process if every subterm of the form
[P′ : Q′] occurs under a prefix τ. Moreover, we require U shallow for any definition

D(x̃) def= U . The main idea behind shallow processes is that of syntactically distinguish
transactional terms that have not been activated yet (i.e., those occurring after τ prefixes)
from those that are already active (i.e., non stable processes). For instance, the process
τ.[U : U ′] denotes a transaction that has not been activated, while the term [U : U ′] stands
for a transaction that is in execution.

Hereafter we assume all processes to be shallow. Moreover, we let PS and US range
over stable processes and stable unconstrained processes, respectively. We remark that
any process P can be straightforwardly rewritten as a shallow process by adding τ pre-
fixes before any transactions, without changing the meaning of the program.

The big-step or high-level semantics of processes is the smallest relation P τ⇒ Q
induced by the rules in Figure 3. Most rules are analogous to the small-step semantics.
The only rules that have been redefined are (TRANS) and (TR-COMM). In particular,
the new (TR-COMM’) allows the merge of transactions only when the synchronising
processes US1 and US2 are stable. Similarly, rule (TRANS’) requires internal reductions
to be high-level steps, i.e., reductions from stable processes to stable processes. Hence,
the reduction [PS : QS].US

τ

� [P′S : QS].US is not a high-level step, since it does not
relate stable processes. In addition, rule (SEQ) stands for the sequential composition of



(TAU)

C |τ.U
τ

� C |U

(OUT)

C |x〈ỹ〉.U
x〈ỹ〉
� C |U

(INP)

C |x〈ỹ〉.U
x〈ỹ〉
� C |U

(TELL)

C |tell c.U
τ

� C |c |U if C |c consistent

(ABT-TELL)

C |tell c.U
abr
� 0 if C |c not consistent

(ASK)

C |ask c.U
τ

� C |U if C ` c

(RETRACT)

C |retract c.U
τ

� (C− c) |U

(COMM)

C |U
x〈ỹ〉
� C |U ′ C |V

z〈w̃〉
� C |V ′

C |U |V
τ

� C | ỹ = w̃ |U ′ |V ′

if |ỹ|= |w̃| and C | ỹ = w̃ consistent and C ` x = z

(ABT-COMM)

C |U
x〈ỹ〉
� P C |V

z〈w̃〉
� Q

C |U |V
abr
� 0

if |ỹ|= |w̃| and C | ỹ = w̃ not consistent and C ` x = z

(PAR)

P
α

� P′ α 6= abr

P |U
α

� P′ |U

(ABT-PAR)

P
abr
� 0

P |Q
abr
� 0

(SUM)

C |πi.Ui
α

� U ′

C | ∑πi.Ui
α

� U ′

(RES )

P
τ

� P′

(x)P
τ

� (x)P′

(TRANS’)

PS
τ⇒ P′S

[PS : QS].US
τ

� [P′S : QS].US

(TR-COMP)

P
abr
� P′

[P : Q].U
τ

� Q

(TR-COMMIT)

[C : Q].U
τ

� C |U

(TR-PAR)

[P : Q].U
τ

� P′

C | [P : Q].U
τ

� C |P′

(TR-COMM’)

C1 |US1

x〈ỹ〉
� RS1 C2 |US2

z〈w̃〉
� RS2 |ỹ|= |w̃| and C1 |C2 | ỹ = w̃ consistent and C |C1 |C2 ` x = z

C | [C1 |US1 : QS1 ].V1 | [C2 |US2 : QS2 ].V2
τ

� C | [RS1 |RS2 | ỹ = w̃ : QS1 |QS2 ].(V1 |V2)

(SEQ)

P
τ

� P′ P′
τ

� P′′

P
τ

� P′′

(UP)

PS
τ

� P′S

PS
τ⇒ P′S

Fig. 3. Big step semantics



low-level steps, and rule (UP) states that a low-level step is a high-level step when the
involved processes are stable.

Example 4. We show the big-step reductions for the example given in Section 4.3. In
particular, we consider the shallow version of the processes Clientrb,c and Providerob,uc

(i.e., by adding the prefixes τ before transactional scopes). For instance, the following
system

S′ ≡ (r)(p)Client4Gb,$100 | Provider6Gb,$20 | Provider5Gb,$30

has the following two big-step reductions

S′
τ⇒ (r)(p)(bw)(cost)(bw′)(cost′)

bw ≥ 4Gb | bw = bw′ | bw′ ≤ 6Gb | bw′ ∗$20 = cost ′ | cost ≤ $100 |U |U ′

| Provider5Gb,$30

and
S′

τ⇒ (r)(p)(bw)(cost)(bw′)(cost′) Q | Q′ | Provider6Gb,$20

The first one describes the successful negotiation between the provider Provider6Gb,$20

and the client, while the the second one describes the failed negotiation between the
client and Provider5Gb,$30.

The remaining of this section is devoted to show that the small- and the big-step
semantics coincide for shallow processes. Next propositions are auxiliary results that
will be used for proving the main theorem.

Proposition 1. If PS
α−→ P and α = x〈ỹ〉,x〈ỹ〉, then P is stable.

Proof. By rule induction (using the fact that transactions occur only under τ prefixes in
shallow processes).

The following result assures that a derivation from a stable process PS that reduces
to a non stable process, which is able to perform an input, an output, or an abort action,
can be rewritten as a computation that executes the respective action first, and then starts
all the transactions.

Proposition 2. Let PS be a stable process. If PS
τ−→
∗

(x̃)RS|T and RS
α−→ R′ for α =

y〈z̃〉,y〈z̃〉,abr, then, there exists a stable process TS s.t. PS
τ−→
∗
(x̃)RS|TS

α−→ (x̃)R′|TS
τ−→
∗

(x̃)R′|T .

Proof (sketch). Proof follows by induction on the length of the derivation PS
τ−→

n
(x̃)RS|T .

The base case (n = 0) is immediate by considering TS ≡ T (note that PS ≡ (x̃)RS|T and,
hence, T is stable). Inductive step follows by considering PS

τ−→ P. There are two main
possibilities: if P is stable, then the proof is immediate by inductive hypothesis. If P is
not stable, the only possibility for PS

τ−→ P is PS ≡ (z̃)τ.[Q : Q′].U |OS (by shallowness,
transactions occur only under τ prefixes). Consequently, P ≡ (z̃)[Q : Q′].U |OS. There
are three possibilities: (i) when OS

τ−→
∗ α−→ O′

S, then the proof follows by using induc-
tive hypothesis; (ii) when [Q : Q′].U τ−→

∗ α−→ O, then α occurs after the commit of the



transaction and U τ−→
∗ α−→ O, it follows by inductive hypothesis (since U is stable); (iii)

[Q : Q′].U |OS
τ−→
∗ α−→ O by applying at least once rule (TR-COMM). Also in this case

α may occur only after the commit of all joint transactions, which releases only stable
processes. Hence, the proof follows by inductive hypothesis.

Next proposition assures that all the possible states reached by the execution of a
pair of transactions that have no active subtransactions can be obtained by computations
that never merge transactions containing subtransactions.
Proposition 3. For any two shallow non nested transactions [PS1 : Q].U and [PS2 :
Q′].U ′, the following holds

C|[PS1 : Q].U |[PS2 : Q′].U ′ τ−→
∗

C|[P1 : Q].U |[P2 : Q′].U ′ τ−→C|[P : Q|Q′].(U |U ′)

implies

C|[PS1 : Q].U |[PS2 : Q′].U ′ τ

�
∗

C|[P′S1
: Q].U |[P′S2

: Q′].U ′ τ

� C|[PS : Q|Q′].(U |U ′)
τ

�
∗

C|[P : Q|Q′].(U |U ′)

Proof (sketch). The reduction step C|[P1 : Q].U |[P2 : Q′].U ′ τ−→C|[P : Q|Q′].(U |U ′) im-

plies that ∃x,z s.t. P1
x〈ỹ〉−→ P′1, P2

z〈w̃〉−→ P′2, C ` x = z, and P = P′1|P′2|ỹ = w̃. Note that P1
x〈ỹ〉−→

P′1 implies P1 ≡ (ṽ)RS1 |T1 and RS1

x〈ỹ〉−→ R′S1
. By Proposition 2, there exists a stable pro-

cess P′S1
s.t. PS1

τ−→
∗

P′S1

x〈ỹ〉−→ P′′1
τ−→
∗

P′1. By Proposition 1, P′′1 is stable. Similarly, for PS2 .
Hence, both transactions can be merged, obtaining C|[(ṽ)P′′1 |P′′2 |ỹ = w̃ : Q|Q′].(U |U ′).
Note P′′1 |P′′2 is stable and therefore the proof follows by taking PS ≡ (ṽ)P′′1 |P′′2 |ỹ = w̃.

Lemma 1. PS
τ−→

+
P′S implies PS

τ

� P′S.

Proof (sketch). Follows by induction on the length of the derivation PS
τ−→

n
P′S. Base

case (n = 1) is immediate by rule analysis. Inductive step (n = k) considers PS
τ−→ P τ−→

k

P′S. If P is stable, the proof is completed by applying inductive hypothesis. Otherwise,

the only possibility is P≡ (x̃)[QS : Q′
S].US|PS1 and PS

τ

� P (proved by structural induc-

tion over PS). Since P τ−→
k

P′S, there are three possibilities for completing the computa-
tion:

1. The transaction commits by itself, then QS
τ−→
∗
(ỹ)C. By inductive hypothesis QS

τ

�

(ỹ)C. By rule (UP) QS
τ⇒ (ỹ)C, by (TRANS’) [QS : Q′

S].US
τ

� [(ỹ)C : Q′
S].US, by

(COMMIT) [(ỹ)C : Q′
S].US

τ

� (ỹ)C|US, by (TR-PAR) and (PAR) [QS : Q′
S].US|PS1

τ

�

(ỹ)C|US|PS1 , and finally by (RES) (x̃)[QS : Q′
S].US|PS1

τ

� (x̃)(ỹ)C|US|PS1 . The proof
is completed by inductive hypothesis on (x̃)(ỹ)C|US|PS1

τ−→ P′S and rule (STEP).
2. The transaction aborts by itself, then QS

τ−→
∗

Q abr−→Q′. Then, by Proposition 2 there

exists Q′′ and Q′′′ stable s.t. QS
τ−→
∗

Q′′ abr−→Q′′′. By, inductive hypothesis QS
τ

�
∗

Q′′.
By (TRANS’) [QS : Q′

S].US
τ

� [Q′′ : Q′
S].US. By structural induction we can prove

that Q′′ abr−→Q′′′ implies Q′′ abr� Q′′′, and then by (TR-COMP) [Q′′ : Q′
S].US

τ

� Q′
S. The

proof is completed as in the previous case.



3. The transaction merges with some transaction activated by PS1 . The proof follows
by using repeatedly Proposition 3 for proving that merge of transactions can be
done with non nested transactions, and inductive hypothesis for proving that reduc-
tions inside transactions from stable to stable processes correspond to � reduc-
tions.

Theorem 1. PS
τ−→

+
P′S implies PS

τ⇒ P′S.

Lemma 2. P
τ

� P′ implies P τ−→
+

P′.

Proof (sketch). Proof follows by rule induction. Rules (TAU), (TELL), (ASK), (RE-
TRACT), are immediate. Cases (PAR), (SUM), (RES), (TR-PAR) follows by inductive
hypothesis. Cases (COMM) and (TR-COMM) follow by proving using rule induction
that P

α

� P′ for α = x〈ỹ〉,x〈ỹ〉 implies P α−→ P′. If the last applied rule is (TRANS ), then
P ≡ [PS : QS].US. Consequently, the proof has the following shape:

PS
τ

� P′S

PS
τ⇒ P′S

(UP)

[PS : QS].US
τ

� [PS : QS].US

(TRANS)

By inductive hypothesis on PS
τ

� P′S we have that PS
τ−→

+
P′S. Then, it can be proved by

induction on the length of the derivation that PS
τ−→

+
P′S implies [PS : QS].US

τ−→
+

[P′S :
QS].US

Theorem 2. P τ⇒ P′ implies P τ−→
+

P′.

Theorem 3. P τ⇒ P′ iff P τ−→
+

P′.

Proof. Immediate by Theorems 1 and 2.

6 Concluding Remarks
We have presented a constraint-based model of transactional SLAs. In our language,
the mutual responsibilities of service providers and clients are expressed in terms of
constraints, which are placed by each party during the negotiation. If the combination
of such constraints is consistent, then they form the SLA contract. On the contrary, if
the negotiation fails, each party can activate a programmable compensation aimed e.g.
at relaxing client requirements or increasing service guarantees.

The proposed approach seems promising for studying more complex negotiation
scenarios that, for instance, include third parties applications or feature arbitrarily nested
transactions. We also plan to investigate different compensation mechanisms in which,
e.g., the constraints placed until the failure are not discarded when the transaction aborts
and allowing the compensating process to take advantage of them. Similarly, it would
be interesting to consider an optimistic approach to transactions along the lines of [1].
This could be achieved by relaxing the well-formedness assumption and by allowing
global constraints to be copied inside transactional scopes upon transaction activation.
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