
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 8, AUGUST 1998 871

Large-Scale Parallel Data Clustering

Dan Judd, Philip K. McKinley, Member, IEEE,

and Anil K. Jain, Fellow, IEEE

Abstract—Algorithmic enhancements are described that enable large
computational reduction in mean square-error data clustering. These
improvements are incorporated into a parallel data-clustering tool,
P-CLUSTER, designed to execute on a network of workstations.
Experiments involving the unsupervised segmentation of standard
texture images were performed. For some data sets, a 96 percent
reduction in computation was achieved.

Index Terms—Data clustering, mean square error, data mining, image
segmentation, parallel algorithm, network of workstations.

———————— F ————————

1 INTRODUCTION

The amount of raw data available to researchers, in a variety of
scientific fields, has been increasing at an exponential rate. Without
automatic methods to process and manipulate such data, however,
the value of accessing it may be overshadowed by the difficulty in
its characterization [1]. A common method used in data explora-
tion is data clustering [2]. Developing effective data clustering
methods has been a longstanding problem in image processing. In
document image understanding, for example, clustering can be
used to separate regions of text and graphics [3]. In satellite image
processing, clustering can be used in a variety of tasks, from classi-
fying land usage to identifying strategic targets [4].

While many clustering methods have been applied successfully
to image segmentation, mean square-error clustering [2], [5], has
been one of the most popular methods, since it works well with
little or no supervision by the researcher. Stated formally, a set of n
patterns, or vectors, in d dimensions, is to be partitioned into K

clusters, {C1, C2, º, CK}, with cluster Ck containing nk patterns and

each pattern assigned to a unique cluster. The centroid of cluster Ck

is defined as m xk
k i

k

i

n
n k1 6 1 62 7=

=Â1
1

, where x i
k1 6 is the ith pattern

belonging to cluster Ck. The square-error ek
2 for each cluster Ck is

the sum of the squared Euclidean distances between each pattern

in Ck and its centroid, and the square-error for the entire K-cluster

partition is E eK kk

K2 2

1
=

=∑ .

The difficulty in square-error and other partitional clustering
methodologies is that there is no computationally feasible method
for guaranteeing that a given clustering minimizes the total

square-error EK
2 . The number of possible assignments, even for

small numbers of patterns and clusters, quickly becomes astro-
nomical. Therefore, many clustering algorithms use iterative hill-
climbing techniques that terminate

1)� when no improvement can be made,
2)� when the change in total error drops below a threshold, or
3)� when a predetermined number of iterations has been

completed.

However, even these algorithms are computationally intensive for
large data sets.

Our research investigates the use of parallel processing to re-
duce the execution time of mean square-error data clustering. In
the first phase of our study [6], we designed and implemented
P-CLUSTER (for Parallel-CLUSTER), a parallel version of a square-
error clustering algorithm. While a number of researchers previ-
ously have studied parallel data clustering on specialized archi-
tectures [7], [8], and on massively parallel processors [9], [10], our
methods are designed to take advantage of the aggregate memory
and computing power of a network of workstations (NOW). Ex-
periments in segmenting standard texture images demonstrated
that a small-scale NOW can effectively handle problems that
overwhelm a single workstation. For example, clustering of a 512 ¥
512 texture image required over 50 hours to complete on a single
Sun workstation, but only 70 minutes on four workstations, and 40
minutes on eight workstations [6].

In the second phase of our study, reported here, we have ex-
plored several variations on the mean square-error clustering algo-
rithm itself. Our goal is to prune as much computation as possible
while preserving the clustering quality. We accomplish this task
through a combination of three algorithmic enhancements:

1)� computing spheres of guaranteed assignment for cluster
centroids,

2)� computing the maximum movement effect for patterns
across iterations, and

3)� maintenance of partial sums for centroids.

In the remainder of this paper, we describe the basic P-CLUSTER
algorithm, introduce the three major enhancements to the algo-
rithm, and present the results of experiments on two NOW plat-
forms: a collection of Sun workstations and an IBM SP-2
supercomputer. Due to space limitations, many details of our
study are omitted here, but may be found in [11].

2 THE BASIC P-CLUSTER ALGORITHM

The square-error clustering algorithm used as a starting point for
our study was originally developed in the late 1960’s [5], and was
later modified to create the CLUSTER program [2]. CLUSTER at-
tempts to find the “best” clustering containing 1, 2, º, KMAX
clusters, for a specified value KMAX. The algorithm comprises two
major components. First, a K-means pass [12] is used to create a
sequence of clusterings containing 2, 3, º, KMAX clusters, where
the starting point for the kth clustering is based on the result of the
(k - 1)st clustering. Next, a forcing pass [5] creates another set of
clusters by merging existing clusters, two at a time, to determine
whether a better clustering can be achieved.

The original CLUSTER program targeted small data sets (fewer
than 4,000 patterns), and performed well in this domain. However,
our experiments with CLUSTER showed that, when the problem
size was larger than the available main memory on the system,
disk thrashing occurred, and performance dropped sharply.
Moreover, for large data sets, the round-off error introduced by the
cluster updating method produced poor clustering results; in
many cases, the algorithm simply failed to converge. These results
made it clear that a major revision of CLUSTER was necessary. We
chose a coarse-grained parallel structure suited to the NOW plat-
form, and we modified the method for cluster assignment so as to
reduce round-off errors.

The basic P-CLUSTER algorithm is given in Fig. 1. The algo-
rithm uses a client-server process configuration. Data is parti-
tioned into blocks by the server process, which sends the initial
centroid list and work assignments (blocks) to each of the clients.
For each block assigned to a particular client process, the client
computes the distances for each pattern in the block, and assigns
the pattern to the appropriate cluster. The client also calculates the

0162-8828/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� The authors are with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824.
�E-mail: {danjudd, mckinley, jain}@cps.msu.edu.

Manuscript received 19 May 1997; revised 29 Jun. 1998. Recommended for accep-
tance by G. Medioni.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 107098.

872 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 8, AUGUST 1998

block partial sum for each cluster, over the patterns in its blocks, and

sends the results to the server. Specifically, for each cluster Ck, the

client responsible for block b computes Pk b i
k b

i

nk b
,

,,=
=∑ x1 6

1
, where

nk b, is the number of patterns in block b that are assigned to clus-

ter Ck, and x i
k b,1 6 is the ith pattern vector in block b belonging to

cluster Ck. When the server has collected block partial sums from
all the clients, it calculates the new centroids and returns them to
the clients, which begin a new iteration of assignments. When no
further improvement is made during a given pass, each client
sends the cluster membership of its data patterns to the server.
The server then proceeds to the next pass or recognizes that ter-
mination conditions have been met and halts. In this algorithm,

centroids are updated only after all patterns have been assigned
to a cluster, which is the method originally used by Forgy [13].
This approach facilitates parallelization by enabling the block
partial sums to be computed in parallel using any block size,
independently of the other block partial sums. Moreover, com-
puting the centroids after reassignment reduces round-off error
because the original data is used to compute the partial sums in
each iteration.

Our initial positive results with the P-CLUSTER program [6]
encouraged us to explore methods to further reduce execution
time. In our experiments, we observed that after a small number of
passes through the data, relatively few patterns change their clus-
ter assignments. Specifically, we noted that 70–80 percent of the
changes in cluster assignment occur in the first two iterations, even
though the clustering pass may require over 100 iterations to com-
plete. As a result, the movement of centroids tends to decrease
with each successive pass through the data. In this paper, we pres-
ent three techniques that can be used to take advantage of these
trends in order to reduce the number of distance calculations, and
therefore, the total execution time, of mean square-error clustering.
Other authors have taken advantage of this property in different
types of clustering algorithms [14], [15]. In addition, we should
point out that, while our methods are shown to be very effective in
pruning computation, other proposed acceleration techniques,
such as arranging centroids in a K-d tree [16], may complement
these methods, and produce further performance improvement.
Integration of such methods into P-CLUSTER is a subject of future
research.

3 COMPUTATIONAL PRUNING ENHANCEMENTS

3.1 Spheres of Guaranteed Assignment
The key to reducing computation time in square-error clustering is
to minimize the number of distance calculations. One way to re-
duce distance calculations is to precompute a set of radii for each
centroid, defining a set of hyperspheres that may preclude the need
to check other centroids. Fig. 2 shows an example of this Spheres of
Guaranteed Assignment method in two dimensions. Given a set of
centroids, the distance between each pair of centroids is computed
and saved in a table. In addition, stored with each pattern is its
previously assigned centroid. If a pattern P is closer to a centroid

Ci than half the distance to the centroid Cmin, where Cmin is the

closest centroid to Ci, then P can be assigned to Ci without check-

ing any other centroids. In Fig. 2, let us assume that C2 is the clos-

est centroid to C1. Therefore, any pattern such as P1, within a dis-

tance
C C1 2

2

-
 of C1 (depicted by the smallest solid circle around C1),

must be closer to C1 than to C2. Moreover, since any such pattern is

necessarily closer to C1 than to any other centroid Ci, only one

distance calculation is needed to properly assign pattern P1 to

centroid C1.

If the distance from a pattern P to C1 is greater than half the

distance from C1 to C2, then the distance to C2 must also be com-

puted. If the pattern is closer to C2 than to C1, then C2 becomes
the new minimum distance centroid, and the process is contin-
ued until no centroids remain to be checked or until P falls
within a sphere of guaranteed assignment. Once again consid-

ering Fig. 2, let us assume that C3 is the next closest centroid to

C1. Since pattern P2 lies outside the first radius of C1, the distance

from P2 to C2 must be computed. When it is determined that P2 is

closer to C1 than to C2, the distance from P2 to C1 can be com-

Algorithm: Parallel square-error clustering with forcing pass.
Input: n patterns with d features, maximum number of clusters,
KMAX.
Output: History of each of the KMAX clusterings produced.

1)� Server: Read from the user the value of the maximum
number of clusters, KMAX. Read the pattern matrix and
partition it into n blocks, where n is the number of clients
involved.

2)� Server: Distribute blocks of data to clients. Find the mean
and standard deviation of the data. Perform data normali-
zation if desired and set K = 2.

3)� Server: For a given K clustering, an initial set of cluster
centroids is chosen based on the centroids of the (K - 1)st
clustering. The centroid of the cluster with the largest total
variance is converted into two new centroids by adding
(subtracting) the standard deviation of each feature of the
cluster to (from) each pattern. The remaining new cen-
troids are identical to the other (K - 2) centroids from the
(K - 1)st clustering.

4)� Server: Broadcast the new centroids to all clients.
5)�Clients: Each client assigns each pattern of its data block

to the cluster whose centroid minimizes the Euclidean
distance between the pattern and the centroid. For each
cluster, the sum of all patterns assigned to that cluster is
computed, on a feature-by-feature basis. The client sends
to the server the number of patterns assigned to each
cluster and the block partial sums for each cluster.

6)� Server: Total the input from all the clients. If any of the
clusters is empty, then recompute the initial centroids and
go to step 4.

7)� Server: If no pattern changed clusters or if a maximum
number of iterations has been reached, then go to step 8.
Otherwise, recompute each centroid based on the new
clustering and go to step 4.

8)� Server: If the number of clusterings found thus far is less
than KMAX, return to step 3 in order to compute the (K +
1)st clustering.

9)� Server: For a given K clustering, find the cluster pair that,
when merged, causes the least increase in total error.
Merge these two clusters and use the resulting centroid,
along with the other (K - 2) centroids, as centroids for a (K
- 1)st clustering. Proceed as in steps 3 through 7 to com-
pute clustering K. If the new clustering produces a lower
total error than the previous one, then save the results.

10)�Server: Repeat step 9 for (KMAX - 1) clusters down to
three clusters.

11)�Server: Repeat steps 3 through 10 until no clustering is
improved.

Fig. 1. P-CLUSTER algorithm.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 8, AUGUST 1998 873

pared to the second sphere around C1, corresponding to
C C1 3

2

-
.

Since the second radius is greater, P2 need not be compared to

any other centroid and can be assigned to C1.
In Fig. 2, pattern P3 lies outside all spheres of assignment, and

thus the distance to every centroid must be computed in order to
assign this point. It is obvious from casual observation that pattern
P3 is closer to centroid C1 than to any other centroid, and it may be
tempting to use a more inclusive shape, such as a hyperellipsoid or
a convex hull of bounding planes, instead of a hypersphere. How-
ever, if the bounding shape itself becomes too complex, it may be
computationally more expensive to determine whether a pattern is
contained within the shape than simply to compute the distance
from the pattern to every centroid. Clearly, the least number of
centroid distance calculations occurs when the first centroid
checked is the correct one. Storing the cluster to which each pat-
tern was most recently assigned enables the algorithm to start with
a likely candidate centroid.

3.2 Maximum Movement Effect
Given that the cluster membership of most patterns is unlikely to
change in any given iteration, it is also advantageous to include a
simple check to determine whether it is possible for the pattern to
have changed membership at all. If the answer is no, then all com-
putation for that pattern can be avoided and the assignment from
the previous iteration can be used.

Formally, let P be a pattern and {C1, º, CK} be a set of K cen-
troids, ordered in increasing distance from P, that is, |P - C1| £ |P
- C2| £ L £ |P - CK|. We define the maximum movement effect, M,
to be:

M = |P - C2| - |P - C1|.

M is the minimum total distance that C1 and C2 must move such
that there is a possibility of P becoming closer to C2 than to C1.
Clearly,

|P - Ci| - |P - C1| ≥ M, for all i > 1,

since C2 is at least as close to C1 as is any other centroid, given the
ordering.

Now, let all centroids C1, º, CK move to new positions

′ ′C CK1 , ,K , and define mi to be the distance moved by Ci:

m C Ci i= − ′1 , 1 ≤ ≤i K1 6 .

Let mmax be the largest distance moved by any centroid other than

C1, specifically, mmax = max (mi), 1 < i £ K. The maximum distance

that C1 could have moved away from P is m1, and the maximum

distance that any other centroid Ci (i π 1) could have moved closer

to P is mmax. It can be shown that, if M > (m1 + mmax) , then P is as
close to ′Ci as to any other centroid ′Ci , i > 1 [11].

To make use of this result, stored with each pattern P is its
M value, denoted MP. As with the spheres of guaranteed as-
signment method, the previous cluster assignment is also
stored with each pattern. (For the first iteration in each pass, M
is set to -1 for all patterns.) Before each iteration, the distance
moved by each centroid, along with mmax, is computed. For a
pattern P that is a member of cluster i, P-CLUSTER sets MP =
MP - (mi + mmax). If MP £ 0, then normal distance calculations
must be executed to find both the closest centroid and the sec-
ond closest centroid to pattern P. If MP > 0, then all other com-
putation on pattern P may be skipped. The new, reduced value
of MP is used in the next iteration. The reuse of MP is possible
because it is based on the total movement of all the centroids,
which can take place over a series of iterations. The reduction
of MP by (mi + mmax) is equivalent to maintaining a total sum of
mi and mmax for each pattern.

The method described above is based on a worst-case scenario
in which the centroid associated with a pattern always moves di-
rectly away from that pattern, and all other centroids move di-
rectly toward the pattern. The actual P-CLUSTER implementation
takes advantage of a minor optimization in order to improve per-
formance; see [11].

3.3 Partial Sums
Experiments showed that the previous two methods substantially
reduced the dominating computation of P-CLUSTER, namely the
distance calculations, causing other components of the algorithm
to become more prominent. One such component is the feature-
wise summation of all the pattern vectors within each cluster. Pre-
viously, the number of floating point additions required in this
operation was small compared to the number of multiplications
and additions involved in finding the closest centroid. As distance

Fig. 2. Spheres of assignment example.

874 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 8, AUGUST 1998

calculations were reduced, however, these addition operations
gradually became the dominating computation, especially in later
iterations when relatively few patterns change membership.

To reduce these computations, we maintained a set of partial
sums associated with each block of data, one set for each possible
cluster. Patterns that change assignment are subtracted from the
old set of sums and added to the new set; a computation is carried
out only when a membership change takes place. The potential
problem with maintaining partial sums is the possibility that
roundoff error will accumulate over time and eventually degrade
the clustering results. To combat this phenomenon, we maintain a
count of how many iterations have passed since the partial sums
were created directly from the data. When a limit is reached, the
partial sums are computed directly by summing the original data,
thus limiting the potential effect of roundoff. We set the limit arbi-
trarily to 1,000, but in experiments with our two main data sets, no
roundoff effects were observed, regardless of how high the limit
was set. For other data sets and application domains, different
values of this limit may be required.

4 PERFORMANCE EVALUATION

In order to evaluate the clustering quality and the execution time
of the three enhancements to P-CLUSTER, we used the new ver-
sions of the program to segment standard texture images [17]. One
such image, shown in Fig. 3a, is of size 512 ¥ 512 pixels and con-
tains 16 distinct textured regions. This image has been passed
through a bank of 20 Gabor filters [18] to produce 20 energy fea-
tures per pixel. The clustering result for this image is shown in Fig.
3b. We emphasize that all versions of the P-CLUSTER program
produce identical clustering solutions for a given data set. Due to
space limitations and for the sake of comparison, many of the per-
formance results reported in this paper are for this particular im-
age; results for other data sets can be found in [11].

We implemented the modified P-CLUSTER algorithm on a col-
lection of workstations comprising a mixture of Sun Sparc-10
model 30’s and model 40’s with clock speeds of 33 MHz and 40
MHz, respectively, each with 32 Mbyte of memory and a relatively
small (,200 Mbyte) local disk. The machines are interconnected
via 10 Mbit/sec Ethernet. This configuration is typical of many
laboratory environments. Interprocess communication was im-
plemented initially using PVM (Parallel Virtual Machine) [19] and
later using MPI (Message Passing Interface) [20]. We also ran a

series of tests on an IBM SP-2 supercomputer at Argonne National
Laboratory. Each node of the SP-2 is an IBM RS/6,000 model 370
workstation with a clock speed of 62.5 MHz, 128 Mbytes of mem-
ory, and a 1-gigabyte local disk. The nodes are interconnected by
both a 10 Mbit/sec Ethernet network, and an 8.5 Mbyte/sec MIN-
based high-speed switch.

Two execution times are reported for each trial, a total time and
a core time. The total time refers to the wall-clock time for a com-
plete run of P-CLUSTER, including all data input and output. The
core time refers to the time spent in the main computation section
of the program. In general, the variance of core times was consid-
erably less than that of the total times, due to the performance
fluctuations of the network file system. In the following plots, the
execution times when using one and two processors are sometimes
excessive, due to thrashing, and are omitted. All data points are
averages of multiple runs, usually five runs per point. Due to our
limited availability of CPU time on the SP-2, on that platform five
runs per point were conducted for the improved P-CLUSTER algo-
rithm, but only three runs per point for the original algorithm,
which consumed a much larger proportion of our allotted re-
sources.

Fig. 4 plots the performance (core time and total time) of four dif-
ferent versions of P-CLUSTER when executed on the image shown
in Fig. 3. Results are given for the original P-CLUSTER program as
well as for P-CLUSTER with the successive incorporation of the
three computational pruning techniques discussed above. For
spheres of guaranteed assignment only, the maximum percentage of
execution time reduction occurred when using six processors: The
original version completed in a total of 3,227 seconds, whereas the
modified version completed in 2,282 seconds, a 29 percent reduction.
When the maximum movement effect method is included, parallel-
ism reduces computation for up to 10–12 workstations, after which
the overhead associated with communication overshadows compu-
tational gain. The percentage improvement of combining the two
methods ranges from 60 percent for three processors to 33 percent
for 16 processors. As shown, the maintenance of partial sums further
reduced execution time by several minutes.

In order to verify that the improved clustering performance
was not a consequence of one particular hardware set or operating
system, we ported P-CLUSTER to an IBM SP-2 supercomputer at
Argonne National Laboratory. The performance improvement
trends of both the algorithmic improvements and the paralleliza-

 (a) (b)

Fig. 3. P-CLUSTER performance on a 512 ¥ 512 image with 20 features. (a) Input image. (b) P-CLUSTER result.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 8, AUGUST 1998 875

tion were very similar to those of the trials run on the Sun Sparc-
10’s, although the SP-2 was considerably faster (see Fig. 5). In these
experiments, MPI was used as the message passing mechanism for
both the SP-2 and the Sparc-10’s. The large amount of memory in
each SP-2 node (128 Mbytes) also made it possible to perform
clustering on the large image with only one or two processors,
something that was impractical on the Sparc-10’s due to thrashing.
It is worth noting that the improved algorithm when executed on
the slower Sparc-10 processors still completed sooner than the
original algorithm when executed on much faster SP-2 processors.
This observation (a better algorithm on slow systems can outper-
form a simple algorithm on fast systems) underscores the need for
research in how to improve parallel clustering algorithms.

In order to investigate the general utility of these methods, we
performed experiments on several other data sets. The data sets
and the reduction in distance computations are summarized in
Table 1. %URGDW]��D [17] is the 512 ¥ 512 image shown in Fig. 3.
%URGDW]� is an image of size 256 ¥ 256 pixels and containing five
distinct textured regions, and %URGDW]��E is the same image as
%URGDW]��D with 45 instead of 20 features. &RXSRQ and &RXSRQ
VDPS are text images passed through four filters. &RXSRQ�VDPS is
a random sampling of &RXSRQ; the true number of clusters is un-
known. ,ULV is a well-known plant measurement data set with
four clusters [2]. ,VROHW is a set of filtered speech data, specifi-

cally, individuals pronouncing the letters of the English alphabet;
there are 26 expected clusters and 618 features [21].

We clustered each data set several times with different numbers
of clusterings. In all cases, the proposed methods pruned away at
least 69 percent of the distance computations. In many cases, the
savings was much greater. For example, in the 10- and 16-cluster
cases of the &RXSRQ data, 96.2 percent of the distance calculations
were eliminated. With the exception of the Isolet data, searching
for more clusters yielded a larger computational savings. The pro-
posed clustering algorithms also yielded larger savings with in-
creasing problem size.

5 CONCLUSIONS

With recent advances in computer networking and data storage
technologies, the demand for methods to better characterize
and process large data sets is increasing. One “generic” com-
putation that is important to many data mining applications is
data clustering. Reducing clustering time enables the use of
larger sampling percentages (of the population) to improve
clustering accuracy and gives the researcher greater flexibility
when interactively exploring data archives. Fast data clustering
methods are particularly useful in image segmentation and
other image processing tasks.

 (a) (b)

Fig. 4. Effects of three pruning techniques on 512 ¥ 512 image, 16 clusters. (a) Core times. (b) Total times.

 (a) (b)

Fig. 5. IBM SP-2 vs. Sun Sparc-10 comparison for 512 ¥ 512 image, 16 clusters. (a) Core times. (b) Total times.

876 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 8, AUGUST 1998

We have previously developed a parallel clustering program, P-
CLUSTER, designed for use on networks of workstations. In this
paper, we described three computational pruning techniques that
have been incorporated into P-CLUSTER. Results of experiments
on two NOW platforms, a collection of Sun Sparc-10 workstations
and an IBM SP-2 supercomputer, demonstrate that dramatic per-
formance improvements in data clustering are possible by com-
bining these pruning techniques with parallel processing.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their useful comments and suggestions on how to improve this
paper. This work was supported in part by the U.S. National Sci-
ence Foundation grants CDA-8806599, DUE-9551180, CCR-
9503838, and CDA-9617310, and by Northrop Corporation.

A number of related papers and technical reports are available
via the world wide web from two research groups at Michigan
State University. Results from the Software Engineering and Net-
work Systems Laboratory are available at http://www.cps.msu.edu/sens,
and results from the Pattern Recognition and Image Processing
Laboratory are available at http://www.cps.msu.edu/prip.

REFERENCES
[1]� U. Fayyad, D. Haussler, and P. Stolorz, “Mining Scientific Data,”

Comm. ACM, vol. 39, pp. 51–57, Nov. 1996.
[2]� A.K. Jain and R.C. Dubes, Algorithms for Clustering Data. Prentice-

Hall, 1988.
[3]� A.K. Jain and S. Bhattacharjee, “Text Segmentation Using Gabor

Filters for Automatic Document Processing,” Machine Vision Ap-
plications, vol. 5, pp. 169–184, 1992.

[4]� A.K. Jain and P.J. Flynn, “Image Segmentation Using Clustering,”
Advances in Image Understanding: A Festschrift for Azriel Rosenfeld,
pp. 65–83. Los Alamitos, Calif.: IEEE CS Press, 1996.

[5]� H.P. Friedman and J. Rubin, “On Some Invariant Criteria for
Grouping Data,” J. Am. Statistical Assoc., vol. 62, pp. 1,159–1,178,
1967.

[6]� D. Judd, N.K. Ratha, P.K. McKinley, J. Weng, and A.K. Jain, “Par-
allel Implementation of Vision Algorithms on Workstation Clus-
ters,” Proc. 12th Int’l Conf. Pattern Recognition, pp. 317–321, Jeru-
salem, Israel, Oct. 1994.

[7]� L.M. Ni and A.K. Jain, “A VLSI Systolic Architecture for Pattern
Clustering,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 7, no. 1, pp. 80–89, Jan. 1985.

[8]� K. Hwang and D. Kim, “Parallel Pattern Clustering on a multi-
processor With Orthogonally Shared Memory,” Proc. Int’l Conf.
Parallel Processing, pp. 913–916, 1987.

[9]� J.C. Tilton and J.P. Strong, “Analyzing Remotely Sensed Data on
the Massively Parallel Processor,” Proc. Seventh Int’l Conf. Pattern
Recognition, pp. 398–400, Montreal, 1984.

[10]� S. Ranka and S. Sahni, “Clustering on a Hypercube Multicom-
puter,” IEEE Trans. Parallel and Distributed Systems, vol. 2, pp. 129–
137, Apr. 1991.

[11]� D. Judd, P.K. McKinley, and A.K. Jain, “Computational Pruning
Techniques in Parallel Square-Error Clustering of Large Data
Sets,” Tech. Rep. MSU-CPS-96-02, Dept. of Computer Science,
Michigan State Univ., East Lansing, Mich., 1996.

[12]� J.B. McQueen, “Some Methods of Classification and Analysis of
Multivariate Observations,” Proc. Fifth Berkeley Symp. Math. Statis-
tics and Probability, pp. 281–297, 1967.

[13]� E. Forgy, “Cluster Analysis of Multivariate Data: Efficiency Versus
Interpretability of Classifications,” Biometrics, vol. 21, p. 768, 1965.

[14]� K. Fukunaga and P.M. Narendra, “A Branch and Bound Algo-
rithm for Computing k-nearest Neighbors,” IEEE Trans. Comput-
ers, pp. 750–753, July 1975.

[15]� H. Avi-Itzhak and T. Diep, “Lossless Acceleration for Correlation-
Based Nearest-Neighbor Pattern Recognition,” Proc. 12th Int’l.
Conf. Pattern Recognition, Jerusalem, vol. 2, pp. 240–244, 1994.

[16]� V. Ramasubramanian and K. Paliwal, “Fast k-Dimensional Tree
Algrotihms for Nearest Neighbor Search With Application to
Vector Quantization Encoding,” IEEE Trans. Signal Processing, vol.
40, pp. 518–531, Mar. 1992.

[17]� P. Brodatz, Textures: A Photographic Album for Artists and Designers.
New York: Dover, 1966.

[18]� A.K. Jain and F. Farrokhnia, “Unsupervised Texture Segmentation
Using Gabor Filters,” Pattern Recognition, vol. 24, no. 12, pp.
1,167–1,186, 1991.

[19]� V.S. Sunderam, “PVM: A Framework for Parallel Distributed
Computing,” Concurrency: Practice and Experience, vol. 2, no. 4, pp.
315–339, Dec. 1990.

[20]� Message Passing Interface Forum, “MPI: A Message-Passing In-
terface Standard,” Tech. Rep. CS-94-230, Dept. of Computer Sci-
ence, Univ. of Tennessee, Knoxville, Tenn., May 1994.

[21]� M. Fanty and R. Cole, “Spoken Letter Recognition,” Advances in
Neural Information Processing Systems 3, San Mateo, Calif., 1991.

TABLE 1
CLUSTERING RESULTS FOR VARIOUS DATA SETS

