
University of Florence

Existence proof for an exchange economy in the

standard Arrow-Debreu Economy

Notes of Prof. Antonio Villanacci

a cura di

Lorenzo Cioni, Clelia Lomuto, Fausto Pascali, Tommaso Pucci

1 Introduction

This note have the aim of describe a pure exchange economy. The
focus is on characterizing scenarios where it's possible to �nd an equilibrium
price. The existence proof will done in two step: �rstly we specify the
necessary behavior consumer assumptions that guarantee the existence of
an excess aggregate demand function with some particular properties;
secondly we show how these properties implies the existence of an equilibrium
price. The note is organized as follows: in the next section we give some basic
de�nitions and recall some well known and useful results; in the last section
we give the formal treatment of the existence of an equilibrium price in a
pure exchange economy.

2 Preliminaries

2.1 De�nitions

We consider an economy with a �nite number of commodities C and
a �nite number of consumers or householders H. We denote with xc

h the
quantity of commodity c used by the consumer h, and when we omit index
c we consider a vector of commodity. Each consumer h is described through
a pair (uh, eh), where uh : RC

+ → R, xh 7→ uh(xh) is the utility function
representing his preference relation and eh ∈ RC

+ is his initial endowment of
commodities.
We assume:

1. our model of economy is a model under certainity so that the behaviour
of the consumers is deterministic,
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2. economy is a pure exchange economy with no production possibility,

3. consumers are price takers , i.e. they cannot in�uence prices.

Our assumptions mean that consumers with their initial endowments of
the commodities go to the market where they see �xed prices, denoted by p
∈ RC

+, and decide to exchange their commodities so that maximizing their
own utility.
We have an economy with an equilibrium price and an allocation of com-
modities if markets clear (i.e. every consumer gets what he wants) while
everybody optimizes.

De�nition 2.1 The consumption set of each consumer is a subset of the
commodity space RC

+, denoted by X ⊂ RC
+, whose elements are the consump-

tion bundles that each consumer can conceivably consume given the physical
constraints imposed by his environment.

Before introducing the problem that every consumer faces in our economy
and so that of maximizing his utility, we have to describe in some way the
set within which each consumers can choose his consumption set given the
prices p he sees on the market and the endowment eh he has.
We, therefore,

De�nition 2.2 The budget correspondence β as

β : RC
+ × RC

+ →→ RC
+ (2.1)

that, for each pair (p, eh), de�ne the so called budget set:

β(p, eh) = {xh ∈ RC
+ : pxh ≤ peh} (2.2)

Budget sets de�ne, for each consumer, the consumption sets that such a
consumer can a�ord given market prices and personal endowment. The aim
of each consumer is the maximization of the personal utility uh and so he
solves the following:

De�nition 2.3 The Utility Maximization Problem (in short UMP ) is
:

Maxxh∈RC uh(xh) (2.3)

subject to
pxh ≤ peh (2.4)
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Relations (2.3) and (2.4) represent the formal description of UMP and
mean that each consumer chooses a consumption vector within his budget
set in order to maximize his own utility. Now we characterize the the way
consumers choose through the following de�nition :

De�nition 2.4 The demand correspondence xh(p, eh) is:

xh : RC
+ × RC

+ →→ RC
+ (2.5)

such that:
xh(p, eh) = argmax(UMP ) (2.6)

Observe that demand correspondence has teh following nice property:

De�nition 2.5 Demand correspondence xh(p, eh) is homogeneous of de-

gree zero if xh(αp, αe) = xh(p, e) for any p, e and α > 0.

Homogeneity of degree zero says that if both prices and endowment change
in the same proportion, then the individual's budget set does not change, as
can be easily seen from its de�nition.

2.2 Useful Results

We list here, with some comments, three theorems and a de�nition that
prove very useful in the �eld of Walrasian equilibrium, even in the simpli�ed
version we are describing in the present notes:

De�nition 2.6 Consumers are supposed to be rationals so that their pref-
erence relations � are both complete and transitive so to allow an ordering
of the consumption sets. Continuous preference relations can be represented
with continuous functions called utility functions. Formally we have that an
utility function for consumer h, uh : RC

+ −→ R, represents preference relation
�h if, for all x1 and x2 ∈ RC

+, we have

x1 �h x2 ⇐⇒ uh(x1) ≥ uh(x2) (2.7)

so that uh is a numeric representation of �h.

Theorem 2.1 (Weierstrass theorem) Let be

uh A :−→ R (2.8)

a continuos function, if A is a compact set then u attains a maximum and
a minimum value.
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We use such a theorem, in the characterization theorem, to prove that
z is a well de�ned function and, in the existence theorem, to prove that a
correspondence we de�ne there is not empty valued.

Theorem 2.2 (Maximum Theorem) Consider a budget correspondence
β, an utility function uh, a demand correspondence xh and the indirect utlity
function v : RC

++ ×RC
+ → R, v : (p, e) 7→ max(UMP ).

Assume that β is (non-empty valued), compact valued and continuous, uh

continuous. Then

1. xh is (non-empty valued), compact valued, upper hemicontinuous (UHC)
and closed;

2. v is continuous.

Observe that Weierstrass theorem assure us that UMP at least a solution
from since β(p, eh) is a compact set (it is closed and limited) and function u
is supposed continuous.

Theorem 2.3 (Kakutani's �xed-point theorem) Suppose that A ⊂ RN

is a nonempty, compact, convex set, and that φ : A →→ A is a closed
correspondence with the property that set φ(x) ⊂ A is nonempty and convex
for every x ∈ A. Then φ(·) has a �xed point; that is there is an x ∈ A such
that x ∈ φ(x).

We use Kakutani's �xed-point theorem in the existence theorem to show
that the correspondence we have de�ned there de�nes an equilibrium price
vector p∗. To show that we de�ne a correspondence µ : S →→ S and than
prove that S is convex, compact, µ is not empy valued, convex valued, closed
graph so that we can use the theorem and be sure that ∃s∗ ∈ S such that
s∗ ∈ µ(s∗).

De�nition 2.7 (Walras' law) We have it in various versions and we list
them here one after the other. We denote with xh(p, wh) the demand corre-
spondence of consumer h, wh > 0 the consumer's wealth, eh the consumer's
endowment, p � 0 the vector of the prices and z(p) the excess aggregate
demand correspondence.

pz(p) = 0 ∀p (2.9)

pxh = wh ∀xh ∈ x(p, wh) (2.10)

4



pxh(p, wh) = w ∀p andwh (2.11)

pxh = peh ∀xh ∈ x(p, eh) (2.12)

We can, indeed, describe a consumer either in terms of a monetary wealth
wh or of an endowment of goods eh. We use the de�nition as a thesis in the
characterization theorem as an hypothesis in the existence theorem.

3 Characterization and Existence

We have two theorems, one of characterization and one that allows the
de�nition of an equilibrium price vector p. The �rst theorem, actually, char-
acterizes the excess aggregate demand correspondence z(p) in terms of:

1. the demand correspondence xh(p, eh) 1

2. the endowment eh

We call z(p) excess aggregate demand correspondence because it represents
the di�erence between the overall consumers willings(at a certain price level)
and what is really available in the markets(the sum of consumer endow-
ments). More formally we have:

z :7→7→
H∑

h=1

(xh(p)− eh) (3.13)

The basic hypotheses involve the utility function uh and the demand corre-
spondence xh(p) of each consumer: the �rst must be continuous and strictly
increasing wheras the latter must take up values in RC

+ and be homogeneous
of degree zero so to "absorb" scalings of the parameter p by a factor α > 0.
Through such a theorem we prove that z(p) is well de�ned (so it is not a
pure formalism but has a real meaning), continuous, homegeneous of degree
zero, bounded from below and satis�es boundary conditions (so that if one of
the prices go to 0 the z() is unbounded).
The second theorem is a theorem of existence and, by using as hypotheses
the conclusions of the �rst theorem about excess aggregate demand corre-
spondence, aims at saying that an equilibrium price vector p∗ � 0 exists
such that z(p∗) where with the term equilibrium price we mean a price vec-
tor such that demand equals supply. The proof strongly rely on Kakutani's
�xed point theorem we introduced in the previous subsection.
We note that the theorem proves that an equilibrium price vector exists
but in no way gives tools for its determination or says something about its
uniqueness.

1In what follows argument eh will be disregarded in the notation for xh().
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3.1 The Excess Aggregate Demand

For sake of simplicity from now on we omit the argument eh in the demand
correspondence and we write xh(p) for xh(p, eh).

Theorem 3.1 In a pure exchange economy if for any household h ∈ {1, . . . , H}:

1. uh : RC
+ → R,

2. uh is continuous,

3. uh is strictly increasing,

4. xh(p) ∈ RC
+ and homogeneous of degree zero

then, the excess aggregate demand map

z : RC
+ → RC

z : p 7→
H∑

h=1

xh(p)−
H∑

h=1

eh

i. is a well de�ned continuous function,

ii. satis�es Walras law,

iii. is homogeneous of degree zero

iv. is bounded from below,

v. satis�es the boundary condition:{pn}n ⊂ RC
+ and pn → p̄ ∈ ∂RC

+

=⇒ z(pn) is unbounded.

Proof.

ia.) z is a well de�ned function. The existence follows from the Extreme
Value Theorem apply to the household's maximization problem. The unique-
ness follows from the strictly monotonicity of uh.

ib.) uh is continuous.

ii.)

pz(p) =
C∑

j=1

pj

( H∑
h=1

xh(p)−
H∑

h=1

eh

)
=

H∑
h=1

p · xh(p)− p · eh = 0
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where the last equality follows since xh binds the budget constraint.

iii.) It follows from the homogeneity of xh(p).

iv.) For any c ∈ {1, . . . , C} and any p, mc ≤ zc(p) with m ∈ RC ,

z(p) =
∑

h

xh(p)−
∑

h

eh ≥ −
∑

eh = m (3.14)

where we use the facts that xh(p) ∈ RC
+ and eh ∈ RC

+ for any h.

v.) Suppose otherwise i.e. {xh(pn)}n is bounded. then there exists a
converging subsequence:

xh(pr)→ x̄h ∈ RC
+ (3.15)

Being xh(p) continuous,

lim
r→+∞

xh(pr) = xh(p̄) = x̄h (3.16)

Since p̄ ∈ ∂RC
+, ∃c such that p̄c = 0 but then for any ε > 0 w.l.o.g. we

take c = 1:

p̄(x̄h + (ε, 0, . . . , 0)) = p̄x̄h ≤ p̄eh (3.17)

From the strictly monotonicity of uh(·),

uh(x̄h + (ε, 0, . . . , 0) > uh(x̄h) (3.18)

and (4), (5) contradict the de�nition of xh(p̄) ≡ x̄h. �

3.2 Existence

Theorem 3.2 If
z : RC

+ → RC

z : p 7→
∑

h

(xh(p)− eh)

1. is a continuous function,

2. satis�es Walras law: pz(p) = 0,

3. is homogeneous of degree zero,

4. is bounded from below,
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5. satis�es the boundary condition:{pn}n ⊂ RC
+ and pn → p̄ ∈ ∂RC

+ =⇒
z(pn) is unbounded,

then ∃p∗ ∈ RC
++ such that z(p∗) = 0

Proof.

From the homogeneity we can normalize the prices and de�ne:

∆ ≡ {p ∈ RC
+ :
∑
c=1

pc = 1} (3.19)

and consider this as the domain of z. Observe that ∆ is a convex and compact
set and each p ∈ ∂δ has at least one zero component. So we will prove the
thesis showing that ∃p∗ ∈ ∂∆ such that z(p∗) = 0.

The main steps of proof will be:

1. de�ne a correspondence µ : ∆→→ ∆;

2. show that ∃p∗ ∈ Int∆ such that p∗ ∈ µ(p∗);

3. show that z(p∗) = 0.

Step 1) De�nition of the correspondence µ.

µ(p) =

{
arg maxq∈∆ qz(p) if p ∈ Int∆
{q ∈ ∆ : pq = 0} if p ∈ ∂∆

(3.20)

Step 2) We have to apply Kakutani's �xed point theorem:
If

1. µ : S →→ S,

2. S 6= ∅,

3. S is convex,

4. S is compact,

5. µ 6= empty valued,

6. µ is convex valued,

7. µ is closed graph,

then ∃s∗ ∈ S such that s∗ ∈ µ(s∗).

Let's verify (1)-(7)
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1. Let be S = ∆,

2. Take for example p = (1, 0, . . . , 0),

3. It follows from de�nition (3.19),

4. It follows from de�nition (3.19),

5. We have to consider the de�nition (3.20) and distinguish

i. If p ∈ Int∆
then the maximization problem has at least a solution from
the Weirstrass theorem. Moreover if z(p) 6= 0 then µ(p) ⊆
∂∆ otherwise if z(p) = 0 then µ(p) = ∆

ii. if p ∈ ∂∆
take any q ∈ ∆ such that q⊥p, moreover µ(p) ⊆ ∂∆ ,

Claim A �xed point p∗ 6∈ ∂∆.
Proof. Consider p ∈ ∂∆. Then:

i. q ∈ µ(p)⇒ q⊥p,
ii. p 6= 0

So p∗ 6∈ µ(p∗) because a non-zero vector cannot be orthogonal to itself.

6. i. If p ∈ Int∆
then If q1 and q2 are maximizers, then [λq1 +(1−λ)q2]z(p) =
λq1z(p) + (1− λ)q2z(p) = q1z(p) = q2z(p);

ii. if p ∈ ∂∆
then If pq1 = pq2 = 0 then p[λq1 + (1− λ)q2] = λpq1 + (1−
λ)pq2 = 0;

7. WTS:〈pn → p, qn → q, qn ∈ µ(pn)〉 ⇒ 〈q ∈ µ(p)〉
We examinate separately the two cases:

a) p ∈ Int(∆)

b) p ∈ ∂∆

a) p ∈ Int∆⇒ p >> 0
So we have for n su�ciently large that pn >> 0 and qn ∈ argmaxq∈∆qz(p),
then:

qnz(pn) ≥ q′z(pn) ∀q′ ∈ ∆
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When n→∞, continuity of z implies that

qz(p) ≥ q′z(p) ∀q′ ∈ ∆

⇒ q ∈ µ(p).

b) p ∈ ∂∆
If, for n su�ciently large pn ∈ ∂∆, it must be qn

c = 0 for some c. Then
qc = 0 and q ∈ µ(p).
If pn ∈ Int∆, i.e. pn >> 0 ∀n, take c with pc > 0, there is an ε > 0
such that pn

c > ε for n su�ciently large.
We want to show that for n su�ciently large

zc(p
n) < max{z1(pn), . . . , zC(pn)}

For the boundary condition the right side of the above inequality goes
to in�nity. But the left side is bounded from above:

zc(p
n) ≤ 1

ε
pn

c zc(p
n) = −1

ε

∑
c′ 6=c

pn
c zc(p

n) <
m

ε

∑
c′ 6=c

pn
c < −

m

ε

where the equality is done by Walras' law and m is the lower bound of
z.
Then, for large n, any qn ∈ µ(pn) will have nonzero weight only on
commodities whose prices approach zero. Hence pq = 0 and q ∈ µ(p).

Step 3)The �xed point p∗ is an equilibrium price.

Remark

〈
z(p) = ku with u = (1, . . . , 1) ∈ RC

k ∈ R1

〉
=⇒ 〈k = 0〉 (3.21)

Proof of remark from Walras law:

0 = pz(p) = kpu = k
C∑

c=1

pc = k (3.22)

Now we know from the claim that p∗ ∈ Int∆ i.e. p∗ � 0 and p∗ ∈
arg maxq qz(p∗). Then z(p∗) = uz∗ where u = (1, . . . , 1) ∈ RC (by de�nition
of the max problem maxq qz(p∗)). From Walras' law:

0 = p∗z(p∗) =
∑

c

pc∗z∗ = z∗1 = z∗

so that z(p∗) = u0 = 0. �
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