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Abstract

The present paper is a short partial survey of some strategies that
can be used to exploit the potential parallelism of the Ant System

metaheuristic. The paper is composed of some introductory sections
(that make it as self-contained as possible) followed by a description
of Ant System applied to the Traveling Salesperson Problem in both
the sequential version and some parallel versions.
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1 Introduction

The present paper contains a short and partial survey of some of the
parallelization strategies of the Ant Systems (AS) meta-heuristic with re-
gard to the typical application of AS i.e. the Traveling Salesperson Problem
(TSP ). AS have been introduced as Ant Colony Optimization by Dorigo ([8])
and, since then, have undergone many changes (we cite here Rank based Ant
System Max-Min Ant System and Ant Colony system,[6]) and have been suc-
cessfully applied in solving different optimization problems ([11], [6], [7], [3],
[12]) such as: traveling salesperson, quadratic assignment, vehicle routing,
job-shop scheduling, sequential ordering, shortest common supersequence,
graph coloring and frequency assignment, bin packing, constraint satisfac-
tion, set covering and partitioning, spatial databases and telecommunication
routing among the others.
So to make the paper as self-contained as possible, in the next sections we
present some general concepts on metaheuristics and parallel processing then
we introduce AS as a paradigm or a metaheuristic. After that we describe the
TSP from the AS perspective then we describe AS in its sequential form to
end with some parallel versions. As we will see shortly, AS are a population
based metaheuristics and therefore ([10]) are naturally suited for parallel
processing though many possibilities of exploiting parallelism exist. Such
possibilities depend on the the nature of the problem at hand and on the
type of available hardware. This is the main reason we focus, in this paper,
on the application of AS to TSP: this allows us to put on a common ground
different proposals with the aim of comparing their results.

2 Some general concepts

In this section we follow [1] and [9] to arrange AS in a general framework.
The starting point is the concept of metaheuristic. Metaheuristics (MHs) are
a set of strategies that guide the efficient exploration of the search space so
to find optimal solutions (if any). MHs range from simple local search proce-
dures to complex learning processes and make use of a well balanced mixture
of diversification (i.e. move to unexplored areas of the search space) and
intensification (i.e. intensively explore areas of the search space) techniques.
MHs ([1] ) are usually approximate, non-deterministic, non problem-specific
but make use of domain specific knowledge in the form of heuristics. MHs
can be classified according the following criteria:

1. nature-inspired vs. non nature-inspired depending on the origin
of an algorithm: in the first family we have, among the others, Genetic



3

Algorithms and Ant Algorithms whereas in the second one we have
algorithms such as Tabu Search and Iterated Local Search;

2. population-based vs. single point search or trajectory methods
depending on the number of solutions used at the same time (a pop-
ulation or a single solution): Genetic Algorithms and Ant Algorithms
are of the first type whereas Tabu Search, Iterated Local Search and
Variable Neighborhood Search are examples of the second type;

3. dynamic objective function vs. static objective function de-
pending on the nature of the objective function if it is kept as given or
modified during the search;

4. one neighborhood structure vs. various neighborhood struc-
tures depending on the topology of the search space,

5. memory usage vs. memory-less methods depending on the the
use or not of a short term and/or long term memory, for instance to
implement a search history;

6. hybrid vs. pure methods depending on the fact that a method is
hybridized in some way or not. Hybridization can take three forms
([1]):

(a) the use of components of one metaheuristic into another one;

(b) the use of various algorithms exchanging information in some way
(cooperative search);

(c) integration of approximate and systematic methods.

As we will see shortly, some parallel implementations of AS make use
of local search to improve performances and of a tabu list (as in tabu
search) to keep track of the already visited cities.

Since in this paper we aim to present some strategies for parallelizing AS
and compare their results we now introduce some concepts regarding parallel
computing and parallel systems, including parameters to make parallel per-
formance measures ([9]).
With parallel computing or parallel processing we usually mean data process-
ing on parallel systems. Parallel systems can be characterized in terms of
control (according to Flynn’s classification as SIMD or MIMD systems),
synchronization (as either synchronous or asynchronous or partially asyn-
chronous [2] systems), communication (as either shared-memory or message-
passing systems), granularity (as fine-grained vs. coarse-grained systems)
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and, lastly, in terms of the number of processors as small-scale systems, if
such a number is low, or large-scale or massively parallel systems if such a
number is high. Within the scope of this paper we only point out that:

1. only with MIMD systems (either in the form of networks of work-
stations and PCs or as grid computing or as some special architecture
such as transputer) we have the concurrent execution of control flows
on data flows,

2. in case of shared-memory systems we have conflicts due to concurrent
accesses to memory locations that reduce performances;

3. in case of message-passing systems the exchange of messages containing
data introduces a communication overhead that reduces performances.

As to the parameters we are going to introduce (and use in the next sections)
a set of “classical” parameters that allows the execution of parallel perfor-
mance measures. If we suppose to have p processors that can cooperate in
some way in a parallel system and define as T (p) the elapsed time with p pro-
cessors and with T (1) the time required by the “best” sequential algorithm
we can define the following parameters:

1. speedup S(P ) = T (1)
T (p)

2. efficiency E(P ) = S(p)
p

3. overhead O(P ) = T (p)(1 − E(p)) = T (p) − T (1)/p

4. scalability that is ([9]) how should the size of a problem vary in order
to maintain constant efficiency irrespective of the number of processors
used.

Usually we have 1 ≤ S(p) ≤ p. In [2] the authors introduce also the following
parameters:

1. efficiency η = S(p)E(p)

2. the ratio of computation, communication and idle times in relation to
the total simulated execution time.

The first of such parameters allows the identification of the maximum number
of processors that can be used to carry out useful work whereas the ratios
can be used within simulation models. In [2], indeed, the authors claim that
in order to evaluate the behaviour of parallel programs three tools can be
used:
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1. analytical techniques or methods;

2. simulation models;

3. measurement experiments on a real implementation.

Since analytical methods prove insufficient ([2]) “due to the complexity of
estimating the communication overhead” and since “the characteristics of
the particular parallel machine will bias the performance of a real imple-
mentation” they decided to use simulation models discarding measurement
experiments too whereas, as will be examined in next sections, in [10] and in
[4], for instance, experimental results are obtained by using typical data sets
for the TSP.

3 AS, general view

From the definitions of section 2 we can deduce that AS are a metaheuris-
tic

• nature-inspired,

• population-based

since the inspiring model is that of real ants (a population) searching for food:
artificial ants searching through the solution space mimic real ants looking
for the shortest path from the nest to food sources. The basic elements of the
AS MH are the artificial ants as cooperating agents that use a set of rules to
generate, update and use both local and global information so to find good
solutions within the solution space.
Going into details we can say ([1]) that in AS artificial ants walk randomly on
the connections L of a connected graph (construction graph) whose nodes
are the solution components C . If a Combinatorial Optimization (CO) prob-
lem is given its constraints are included in the ants’ constructive procedure
so that, at each step, only feasible solution components can be added to
the current partial solution ([1]). Elements of C and L have associated pa-
rameters (the so called pheromone trail parameters and heuristic or visibility
values that are used by the artificial ants to make probabilistic decisions on
how to move from one vertex to the next one.
As to pheromone trail parameters we note that ([1]):

1. they mimic the behaviour of real ants that mark the paths they travel
on with a substance called pheromone,
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2. in general they can be assigned to both nodes and connections (only
to nodes in case of TSP)

whereas with regard to heuristic or visibility values we only say that they
too can be assigned to both nodes and connections (only to nodes in case
of TSP) and represent an a priori heuristic information about the problem
instance (in case of TSP we have the length of an arc between two cities).
Given a set A of artificial ants, the general structure of AS (cf. sections 4
and 5) is composed of:

1. an initialization phase;

2. a loop to be repeated while termination conditions are not met.

In the initialization phase all the pheromone trail parameters are initialized
to a small value whereas within the loop every artificial ant incrementally
constructs a solution by adding solution components to the partial solution
constructed so far ([1]). The choice of the next solution component is made
on a probabilistic rule. When all the artificial ants are done a rule for the
update of the pheromone trails is applied. The probabilistic rule is (cf. [2]):

pij =

{

(τij)α(ηij)β

P

h∈Ω
(τih)α(ηih)β if j ∈ Ω

0 otherwise
(1)

where

ηij =
1

dij

(2)

is the visibility of node vj (or city, in case of TSP) from node vi with dij

length or cost of arc (i, j). Moreover we have:

1. τij is the intensity of the pheromone trail between the nodes vi and vj,

2. α is a parameter that regulates the influence of τij,

3. β is a parameter that regulates the influence of ηij,

4. Ω is the set of not yet visited nodes.

The rule for the update of the pheromone trails is (cf. [2]):

τij(t + 1) = ρτij(t) + ∆τij (3)

with

∆τij =
m

∑

k=1

∆τk
ij (4)
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and

∆τk
ij =

{

1
Lk

if ant k travels on edge (vi, vj)

0 otherwise
(5)

Moreover we have:

1. t is the iteration counter,

2. ρ ∈ [0, 1] is a parameter that ragulates the evaporation of τij,

3. ∆τij is the total change of the trail level on the edge (vi, vj),

4. m is the number of the artificial ants,

5. ∆τ k
ij is the change of the trail level on the edge (vi, vj) caused by the

kth artificial ant,

6. Lk is the cost of the solution found by the kth artificial ant (in case of
TSP we speak of the length of a tour found by the kth artificial ant).

4 The TSP from the AS perspective

As it is known, CO problems ([9])) can be described as

min{f(x) | x ∈ S} (6)

where f is the objective function and S is the finite, but very large-scale, set
of the feasible solutions. Such problems are characterized by a computational
complexity. Whenever such a complexity falls in the NP−hard class the only
exact known algorithms are based on enumeration. Since, in the worst case,
their complexity may be exponential with the size of the input data the only
alternative is the use of [meta−]heuristic algorithms such as AS. TSP ([3]) is
a well known CO problem that has n! solutions (if n is the number of cities)
so it’s NP − hard with exponential complexity in the worst case ([3]): this
prevents the use optimal algorithms (that prove computationally inefficient
if not totally unfeasible) and fosters the use of heuristic algorithms that in
practice give good solutions. TSP aims at finding a constrained shortest
path: given a complete weighted graph with n nodes, G = (V, E, d), with

1. nodes (cities) V = {vi : i = 1, . . . , n}

2. arcs (roads) E = {(vi, vj) i, j = 1, . . . , n i 6= j }

3. weights on the arcs (distances or costs between two cities)
dij, i, j = 1, . . . , n
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Figure 1: Hamiltonian tour for TSP (from [3] with changes)

the TSP requires the definition of a minimum cost or distance Hamiltonian
tour. Figure 1 shows an example of such an Hamiltonian tour for simplicity
on a non complete graph. Such a tour is formed by the following succession
of the nodes: 1 − 2 − 3 − 5 − 9 − 7 − 8 − 6 − 4 − 1.
Given a TSP for a graph with n cities, in order to solve it with AS we can
use m artificial ants distributing them on the n cities according to some rule
([2]) (diversification) then we start with the algorithm (cf. section 5). The
algorithm is made up of a main loop that is executed a certain number of
times. At the start of each iteration all cities but the assigned ones can be
visited and each ant decides independently from the others which not yet
visited city to visit next. Such a decision is made according to the proba-
bilistic rule of equation (1): the probability of selecting city j from i (pij)
varies directly with the pheromone trail between i and j (τij) and inversely
with the distance dij(or directly with the visibility ηij). For the first factor
we speak of an adaptive memory with an associated parameter α whereas
for the second we speak of a measure of desirability with an associated pa-
rameter β. The city selection process is repeated until all artificial ants have
completed a tour. At each step of an iteration each artificial ant visits a new
city (and this is always possible since the graph is connected) until it visits
the last unvisited one. At this point the tour is closed ad each artificial ant
evaluates the length Lk of its tour. A best tour (the one with the shortest
length) is found so to update the one found at the previous iteration. Now it
is time to update the trail levels of the pheromone and this is done according
to equation (3). As section concluding remarks we note that ([2]):
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1. the shorter a tour is the more pheromone is left on the arcs per unit
length,

2. to avoid an early convergence of the algorithm we have (in analogy with
nature) a pheromone evaporation regulated by the parameter ρ.

5 AS for TSP: the sequential version

Now that we have the bricks we can build the wall and so we present a
high level sequential version of AS for TSP ([2]):

Initialize

For t=1 to T

Assign the m ants to the n nodes

For k=1 to m do

Repeat until k has completed a tour

Select city vj to be visited next with probability pij given by (1)

Calculate the length Lk of the tour generated by artificial ant k

Update the trail levels τij on all edges according to (3)

Update the length of the best tour

End

Sequential pseudo-code for TSP with AS (we call it TSP-oriented-PC, from
[2] with changes)

In the Initialize phase we have:

1. the calculation of the matrix of the distances D = [dij], i, j = 1, . . . , n
and, therefore, of the values of visibility (ηij);

2. the initialization of the matrix of the initial values of pheromone on
each arc τ0 = [τij], i, j = 1, . . . , n.

After that the algorithm enters the main loop which is repeated T times (T
may be either a predefined value or a value depending on some convergence
criterion): within this main loop [artificial] ants work independently one from
the others to define a tour among all the cities. When all the ants are done
we have an Update phase during which the algorithm updates the values
τij. After T iterations the algorithm returns the best generated solution.
Following [2] we have:

1. if we have n cities, m ants and T iterations we have an algorithm whose
computational complexity is of order O(Tmn2);
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2. in [2] the authors claim that if we put m = n and assign one ant to
each city we get good results with respect to the quality of the best
solution and the rate of convergence;

3. therefore they adopt such a position (and call it problem size) and put
m = n so that, since T is independent from the problem size, the
computational complexity is of order O(m3).

We are going to use such results in section 6. With regard to TSP-oriented-
PC we note that a more general structure (so we call it Abstract-PC ) is the
following ([1] and [3]):

Initialize

While (termination_conditions_not_met) do

ScheduleActivities

AntBasedSolutionConstruction()

PherormoneUpdate()

DaemonActions() %Optional

end ScheduleActivities

endwhile

We are going to deal with Abstract-PC mainly in section 7, for the mo-
ment we note that the pseudo-code contains an outer loop which encloses
an abstract construct (ScheduleActivities) that gathers three parts without
specifying how these are scheduled and synchronized, all this being a duty
of the algorithm designer. The three parts include ([1]):

1. AntBasedSolutionConstruction(): during this phase ants build a solu-
tion by moving through the nodes of the construction graph using rules
such those specified by equations (1) and (3) and keeping in memory
the path each is following and its length;

2. PherormoneUpdate(): this is the more complicate phase and that dif-
ferentiating the various versions of AS (cf. section 1) since we can
have:

(a) the update of the pheromone when an ant walks on arc (i, j) or
the so called online step-by-step pheromone update,

(b) the update of the pheromone in a delayed and backward way and
only when a solution of the proper quality has been built, the so
called online delayed pheromone update,
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(c) the update of the pheromone through evaporation by which the
pheromone trail intensity on the components (arcs and nodes in
general) decreases with time: this allows the forgetting, favours
the diversification and prevents a too rapid convergence of the
algorithm on sub-optimal solutions;

3. DaemonActions(): such an optional phase can be used to implement
centralized actions that cannot be executed by the single ants, such as
([1]):

(a) the use of local search procedures on the solution built by the ants
or

(b) the collection of global information to decide whether deposit or
not additional pheromone so to bias the search process from a
nonlocal perspective.

From the previous discussion it is easy to see ([3]) how each ant is an au-
tonomous agent that (in TSP) constructs a tour and so proposes a solution
to the TSP. There is, therefore, a natural form of parallelism at ants level
since ants (that behave independently form each other) do not need synchro-
nization (even if, as we will see in section 6, synchronization is useful to avoid
sub-optimal solutions) and more ants can be concurrently active at the same
time.

6 AS for TSP: the first two parallel versions

As stated at the end of section 5 the sequential version of AS applied to
TSP ([2]) contains a high level of problem-inherent parallelism since the be-
haviour of each ant is totally independent from that of the other ants during
every iteration. From this consideration in ([3]) two distinct parallel imple-
mentations strategies are proposed: a synchronous strategy and a partially
asynchronous strategy (see figure 2). In figure 2 (left) a fork − join com-
pletely synchronous architecture is shown. The idea is to compute the tours
of the cities in parallel and to do that we have:

1. a master process Mp,

2. a set of processes Pi, i = 1, . . . , m, one for each ant.

At the very start Mp spawn processes Pi and distributes them (with a mes-
sage passing protocol) some global information such as the matrix of the
distances D and that of the pheromone trail intensities τ0. At this point
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Figure 2: Synchronous vs. Partially Asynchronous strategies (from [2])

each ant/worker can compute a tour of the cities and, upon completion, can
send the tour and its length back to Mp that, in its turn, update the trail
levels (according to equation 3 so defining the new matrix τij) and checks for
the best tour found so far (that with the shortest length). To start a new
iteration Mp sends to the Pi the new matrix τij so that the processes can re-
peat their calculations with the new local data and this till the termination
condition is met. In this case we have a synchronous structure with Mp that
forks processes that join with Mp to exchange data and so on (see figure 2
(left)). Under the following assumptions:

1. communication overhead may be ignored,

2. we have as many processing elements (PEs) or workers as we need (and
so an infinite number of PE) so that we can assign each process to a
PE,

we get the following asymptotic speedup (under the assumption that the se-
quential version of AS is executed with as many ants as cities and so n = m):

Sasymptotic(m) =
Tseq(m)

Tpar(m,∞)
=

O(m3)

O(m2)
= O(m) (7)

Since communication overhead cannot be ignored and since the number of
PE is N is smaller than the problem size in practice we get a lower speedup.
Under the assumptions that:
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1. we have as many ants as cities so that m = n,

2. we have N PE and N � m

we must assign, in a balanced way, a colony of ants to each PE so to increase
the granularity of the application under the constraint that each worker gets
about the same amount of processes and so the same computational load.
Under these more realistic assumptions we get the following speedup:

S(m, N) =
O(m3)

O(m3

N
) + Tovh(m, N))

(8)

The degradation of speedup is due to the rather high frequency and volume
of communication in the synchronous approach: at each iteration Mp must
exchange data with the processes Pi and this data exchange gives rise to the
communication overhead Tovh(m, N) that strongly depends on the commu-
nication behaviour of the underlying physical architecture ([2]).
Since it is not possible,in general,to avoid the assignment of more than one
process/ant to each PE (since usually N � m) the only way to get a better
speedup is to reduce the impact of communication overhead. The solution
proposed in [2] to this end is that shown in figure 2(right) and is called
partially asynchronous strategy. According to such a strategy we have:

1. one PE that runs Mp (and that can coincide with one of the workers),

2. N workers Wj, j = 1, . . . , N .

At the very start Mp sends (with a message passing protocol) to each worker
Wj the matrices D and τ0. Upon receiving such data the processes assigned
to each worker Wj (on average we have bm/Nc processes for each worker)
perform independently a certain number of local iterations of the sequential
algorithms. When the local computations are over we have a global synchro-
nization of all the workers with the Mp : the best locally found tour is sent
to the Mp that performs the usual updating operations and sends to all the
workers the updated matrix τij.
The critical factor is the ratio between the number of local and global itera-
tion: if such ratio is low there is no reduction of the communication overhead,
if such ratio is too high good and promising values found locally might be
ignored by the other workers. In the experiments reported in ([2]) such lo-
cal/global ratio is fixed at five to one.
Having described the two strategies presented in [2] we now use the parame-
ters we introduced in section 2 to illustrate the quantitative results presented
in [2]. Such results have been derived using a discreet-events simulator. The
simulator works on two basic assumptions:
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Figure 3: Synchronous vs. Partially Asynchronous timings (from [2])

1. the time needed to send a message is the sum of a fixed startup time
and a variable time depending on the size of the message,

2. we can have multiple simultaneous communications without contention.

Moreover the simulator gets as input the description of the parallel program
structure and the resource requirement specification and produces as output
a trace file that contains the time stamps for the start and end of both
computation and communication blocks. In [2] the experiments to compare
the two strategies have been carried out on three different problem sizes:

1. small: m = 50,

2. medium: m = 250,

3. large: m = 500

with N ∈ {5, 10, 15, 20, 25} so that in the partially asynchronous strategy
there are up to 100 processes for each worker. Figure 3 shows, on the left,
the busy/communication/idle times in the synchronous case and, on the
right, the same times for the partially asynchronous case. According to [2]
we have:

1. busy time is the time devoted to effective local computations,

2. comm[unication] time is the time spent in preparing and sending
data among PE,

3. idle time is the time PEs do no useful work.
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Figure 4: Synchronous vs. Partially Asynchronous parameters (from [2])

Data are presented in such a figure for the three problem sizes (that do not
belong to any standard library of TSP such TSPLIB, see section 7) in a
rather qualitative percentage form. Authors claim that:

1. for the small problem size, idle time dominates the scene and is lower
in partially asynchronous case than in the synchronous case;

2. with increasing problem sizes (medium and large) communication time
becomes negligible in both cases and idle time seems lower in partially
asynchronous case than in the other (even if it is not so clear how much
lower it is);

3. in both cases idle time increase with an increase in the number of
workers.
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Figure 4 presents, on the left, the values of the comparative parameters (i.e.
Speedup, Efficiency and Efficacy) in the synchronous case and, on he right,
the values of the same parameters for the partially asynchronous case. From
the figure, again in a rather qualitative way, we can see that:

1. for all the problem sizes the second approach is better than the first
(higher Speedup, Efficiency and Efficacy) owing to a reduced communi-
cation frequency, this factor being very important when implementing
the algorithm on real parallel architectures;

2. for the small problem size we can say that increasing the number of
workers above 5 (in the first case) or 10 (in the second) is a waste of
computational resources;

3. in both cases/approaches the best values of the parameters are ob-
tained for the large problem size when Speedup is nearly optimum
(S(N) ≈ N) and Efficiency decreases slowly with an increasing num-
ber of workers;

4. the Efficacy curves show that optimum number of workers that can be
used with the different problem sizes is highest for the large problem
size in the partially asynchronous case.

In the final section of [2], authors point out some corrections that could be
adopted to get better performance measures. Such corrections involve the
ratio local/global computations in the partially asynchronous case and the
grouping of the processes to be assigned to the available PE in both cases.
As to the first point they propose a dynamic approach so to start with a low
ratio, to avoid early convergence, and then switch to higher ratios when some
promising solutions begin to emerge. As to the second point they highlight
two aspects: assignment and dynamics.
With respect to assignment they note that processes can be assigned to the
PE randomly or according to a distance criterion such that ants/processes
on clustered cities are assigned to the same PE or, at the opposite,
ants/processes on distant cities are assigned to the same PE. Lastly, with
respect to dynamics they say that the assignment of processes to PE may
be done only once at the very start of the computation or may be repeated
during the computation and after a certain number of global or local syn-
chronizations.
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7 AS for TSP: further parallel versions

The next parallel implementation of AS we are going to describe in this
paper is that presented in [10]. In that paper the author presents paralleliza-
tion strategies for AS and empirically tests the most simple strategy, that of
executing parallel independent runs of the algorithm. To do so the author
uses MAX − MIN AS applied to TSP noting that, since the most efficient
AS algorithms are actually hybrid algorithms, he will present an algorithm
enriched with a local search phase.
In order to better understand what follows we note that MAX −MIN AS

Figure 5: Performances of sequential implementations of MAX − MIN AS
(from [10])

only the ant with the iteration best tour is allowed to update the pheromone
trails. Such an update is performed in the usual way (see equation 3) and the
steps of the algorithm (which are repeated for a given number of iterations or
for some maximum computation time) are tour construction and trail update.
Again inMAX −MIN AS trails assume values within the interval τmin and
τmax and are initialized to τmax, all this to avoid a premature convergence of
the algorithm.
Figure 5 presents the results of MAX − MIN AS (MMAS) on some TSP
instances taken from the standard library TSPLIB averaged on 10 runs. The
numbers in the instances names are the number of cities among which the
algorithm has to find a tour. To get lower execution times the author pro-
poses a parallelization strategy of MMAS using a MIMD architecture such
as a cluster of workstations. The most simple way to obtain the parallel
version of an algorithm is to run it in parallel on k processors. This solution
(which is effortless) avoids any communication overhead but can be adopted
only if the underlaying algorithm is randomized as in the case of MMAS
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where the tour construction is highly random. If we adopt k parallel inde-
pendent runs we keep as the final solution the best solution of the k runs.
In [10]) the author gives a justification in probabilistic terms to which we
refer the reader. to compare the sequential version with the parallel version
the two must have the same computation time so that if we have a time t
for the k runs the sequential version must be given a time equal to kt. One

Figure 6: Proposed architectures (from [10])

potential problem may occur if we have only a very low computation time
so that all we can do is speeding up a single run of an algorithm. It this
case the author (extending the work of [2]) presents the two architectures
(basically of a master-slave type) shown in figure 6 where is assumed the
use of a local search to improve solutions found by pure MMAS. In figure 6
(left) we have one master processor that update the main data structures for
MMAS, constructs the initial solutions and sends them to the slave proces-
sors so that they can improve them with local search algorithms. The master
collects such improved solutions, updates global data structures (essentially
the pheromone trails matrix) before passing to the evaluation of new and
better solutions. Such a solution is suitable if the update of the trails and
the computation of a solution is quicker than the execution of a local search.
if this is not the case we can adopt a solution like that in figure 6 (right)
where (with a solution similar to that found in [5]) we have one processor
that keeps the trail matrix and updates it, one or more processors that use
such a matrix to compute solutions and several other processors that receive
the solutions and improve them by local search and send them back to the
main processor. Such a solution suffers of a communication overhead that
lowers speedup with respect to the optimal values.
The solution shown in figure 6 (right) is suitable in the case of MMAS for
TSP where 70 − 80% of the time is spent by the local search, 10 − 15% is
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spent constructing local tours and the remaining is spent updating the trail
matrix. Figure 7 shows the computational results of the execution of parallel

Figure 7: Performances of parallel independent runs of MMAS for TSP (from
[10])

independent runs of MMAS with a maximum of 10 processors. In order to
calculate the exact speedup in case of parallel independent runs taking into
account the solutions quality the author compares the average solution qual-
ity of MMAS running k times for a time tmax/k with that of a single run for
a time tmax taking care of the initialization time tinit needed to an algorithm
to find high quality solutions so that we have to be sure that tmax/k ≥ tinit.
Experimental results are shown in figure 7 where the best average solutions
are in boldface and tmax is the maximum execution time for a sequential
algorithm. We note that for dl98an optimal solution has not been found.
The next parallel implementation of AS for TSP we are going to examine is
the one proposed in [4]. In that paper the authors develop what they call
Parallel Ant Colony Systems or PACS and propose three communication
methods for updating the pheromone levels among groups in PACS. The
aim of PACS in not limited at reducing computation time since they develop
a parallel formulation which reduces the computation time and gives a better
solution.
The first step is the generation of a set of artificial ants and their subdivision
in groups. To each group we apply the sequential algorithm AS whereas com-
munication among the groups occurs on a fixed scheduling: communication
aims at updating the pheromone level for each route according to the best
route found either by neighbouring groups or by all groups.
The PACS the authors propose is shortly described below, for further details
we refer the reader to [4].
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Figure 8: Performance comparisons for EIL101 data sets (from [4])

1. Step 1: Initialization generate Nj [artificial] ants for jth group of G
groups then randomly select an initial city for each ant, initialize the
pheromone level on every arc to a small positive value τ0 and set the
cycle counter to 0;

2. Step 2: Movement determine from city r the next unvisited city s to
be visited by ant i in the group j with a rule that accounts for either
the pheromone level and visibility between city r and s in group j or
the transition probability from city r to s of the ant i in group j;

3. Step 3: Local Pheromone Level Updating Rule is a rule that
update the pheromone level between pairs of cities for each group and
accounts, through a convex combination, an evaporation factor and of
the approximate distance of the route between all cities;
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4. Step 4: Evaluation of the total length of the route for each ant in
each group;

5. Step 5: Global Pheromone Level Updating Rule is a rule that
updates the pheromone level between cities for each group;

6. Step 6: Updating from communication with three methods called
Method 1 and Method 2 and that differs on the number of cycles
they are applied and on the rule by which the pheromone trail on each
arc for each group is updated whereas Method 3 is a mixture of the
other two;

7. Step 7: Termination increment the cycle counter, move the ants to
their initial positions and go back to step 2 until a termination condition
is met (maximum number of cycles reached or a stagnation condition
satisfied, for instance when all ants take the same route.

In figure 8 we quote a table and a diagram. The table is relative to per-
formance comparisons of three standard data sets (EIL101, TSP225 and
ST70) with regard to AS, ACS and PACS with the three method of updat-
ing from communications (i. e. PACS1, PACS2 and PACS3) whereas the
diagram is relative to performance comparisons of AS, ACS and PACS2 (i.e.
PACS with Method 2) for EIL101 data set.
EIL101, TSP225 and ST70 are data sets with 101, 70 and 225 cities re-
spectively. For AS, ACS they use 80 ants and the same is true for PACS
where the ants are divided in 4 groups of 20 ants each. All results in both
table and diagram are averaged on 5 runs. In the experiments the number of
cycles between updates of the pheromone level due to communications with
methods 2 and 3 in PACS have been set respectively to 80 and 30.
The very last example of parallel implementations we outline in this paper
is that proposed in [5]. In that paper the authors present Ant Colony opti-
mization algorithms with an application to TSP and two frameworks:

1. a master-slaves framework,

2. a pyramidal framework

together with the communication scheme and some experimental results.
Their aim, again, is to improve the performance of the master-slaves (polit-
ically called workers in section 6 following [2]) paradigm without modifying
the behaviour of the algorithm. The first framework they present is shown
in figure 9 and is very similar to the one proposed by [10]. They speak of
parallelization paradigms with master and slaves as the roles of the PE and
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Figure 9: master-slaves and message-passing (from [5])

message-passing as the communication structure. The master prepares global
data (the usual matrices D and τ0) and then transfer control to the slaves:
each slave runs an instance of the sequential AS and all of the slaves work
on the same problem instance. At the end of each iteration the slaves syn-
chronize with the master, send the solution back to the master that updates
global data and broadcast them to the slaves for a new iteration. Since, as
shown in figure 9 for a TSP instance with 229 cities (gr229tsp from the TSP
library), the speedup shows a degradation for a number of CPUs greater than
30 they propose a more complex framework they call Pyramidal Framework.
Such a framework makes use of one master PE (M), several (unspecified)
sub-masters (SM) and several (unspecified) slaves (SL) that communicate
with message-passing. A disjoint subset of the Ss is assigned to each SM .
At the very beginning M reads the problem instance (for our purposes the
graph on which we have to solve a TSP), initializes global data structures,
wraps all things up in a message that is broadcasted to the Ss which start the
execution while M and SM wait for requests to update the (either global or
locally global) data: each S runs a local instance of the sequential algorithm
(AS for TSP in our case) that works on a copy of the global data structures.
At the end of each local iterations the Ss interact with their SM which in
turn, when all or a tunable percent of its Ss are done, synchronizes with
the M . The M receives all the changes, updates global data and broadcasts
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Figure 10: Speedup in the proposed frameworks (from [5])

them to the Ss and the SMs (this point is really not clear in the paper). The
proposed framework seems similar to that proposed in [2] but since results
(in [5] limited to Speedup) have been obtained on non homogeneous data
the results cannot be compared. One of the critical points of the proposed
frameworks is that of the communications (as pointed also in [2]. In [5] two
solutions are proposed:

1. serialize the data transfer to the same processor (scheduling),

2. send only the data that have changed (logical clocks).

The use of scheduling greatly reduces communication time (and so commu-
nication overhead) and this reduction varies directly with the number of PEs
whereas with logical clocks only data that have changed (for instance an arc
on which the amount of pheromone has been increased by an ant or has evap-
orated) are exchanged among the various types of PEs. For further details
we refer the reader to [5].
As already stated, figure 10 shows the experimental results in case of a TSP
instance with 229 cities that has been run on a Sun Fire 15K HPC service
with a backend with 48 processors and the tests runs have been carried out
with the number of processors varying from 10 to 40. From figure 10 we
see that the master-slave framework gets an acceptable speedup for up to 26
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PEs whereas the pyramidal framework maintains an approximatively linear
speedup also for a greater number of PEs.

8 Conclusions

When i started planning this paper my intention was to examine (and
compare amongst themselves) as many parallel implementations of AS as i
could find in literature. After only a few searches i found that mine was a
“mission impossible”: too many papers in too many areas of application in
a too short time. Therefore, having as a starting point [2], i decided to con-
fine myself to parallel implementations of AS for TSP. I, then, started a new
search (not a really completely new one) and began finding some materials
among which i selected the papers that have been discussed here. My inten-
tion, as i stated in the Introduction was to “to put on a common ground
different proposals with the aim of comparing their results”. Unfortunately,
as it has been shown in this same paper, such intention has remained unful-
filled simply because, as an even superficial examination reveals, the results
cannot be compared amongst themselves either because they have been ob-
tained using ad hoc problem instances or because they have been obtained
by using different and disjoint generally available and typical data sets for
TSP. The paper is, therefore, simply a partial survey of some parallel im-
plementations of AS for TSP whereas it is not clear if the original intention
deserves further investigations or not, but time is a gentleman.
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