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1 First lesson

1.1 Introduction

Main topics of the course (or course outline):

1. discrete models,

2. continuous models,

3. difference and differential equations and their solutions,
4. characterization of the solutions (stable and unstable),
5. points of equilibrium and their types.

Motivations: the course aims at presenting a basic introduction to difference
and differential equations as tools for the modeling of, respectively, discrete
and continuous dynamic systems (respectively DDS and CDS) and to give
some applications. During the lessons we are going to examine:

1. the general solutions in closed form;
2. equilibria for first order DDS;

3. linear DDS with exponential growth;
4. economical examples:

(a) bank account with compound interest,

(b) mortage repayment,

5. a comparison between DDS and CDS;

6. linear bounded DDS with applications to marketing;
7. linear bounded CDS;

8. analytical solutions for bounded CDS;

9. quadratic DDS;
10. logistic CDS;
11. analytical solutions of the logistic equation;

12. closed form solutions for quadratic DDS;
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13. stability of oscillating solutions;
14. from quadratic to cubic solutions of DDS;
15. models of populations.

We underline the fact that DDS are modeled with difference equations
whereas CDS are modeled with differential equations.

1.2 First example

In case of weather forecast we are interested in the prevision of some
quantities such as

1. temperature,
2. wind
3. humidity

but small variations can give rise to unstable combinations.

1.3 DDS

Now, at the end of the first introductory lesson, we state the general form
of a first order DDS (we call it first order since next value depends only on
one of the preceding values):

Tr1 = f(@k) (1)
with £ =0,1,2,... and with an initial known value xy. If we have
Th1 = f(Thy Tho1s ooy Thomy) (2)
with k. =m —1,m,m+1,... and m € N we speak of an m order DDS in
which we need m initial values. In case of a second order DDS we have
Tr1 = f(Tr, T-1) (3)

with two initial values zo and x;.
Let’s now go back to equation (1) and rewrite it as follows:

Tppr = T + f(@h) — 21 = 78 + g(28) (4)

with
9(w) = f(or) — (5)
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so that we have
Tpy1 — T = g(xk) (6)

in which g(z) plays the role of a correction since we have

ATy = Tpyr — T = g(ap) (7)

It is easy to switch from a discrete model, such as that represented by equa-
tion (7), to a continuous time model that, in case of equation (7), is repre-
sented as: J

= =) ®)
The transformation is obtained through easy steps that will be examined in
greater detail in the course of the following lessons.
Going again back to equation (1) if we want a closed form solution we look
for a solution in which x4, depends only from the initial value xy and on k
(the iteration counter) so that we can write:

Azxgi = F(k,zo) 9)

so that we have no recursion at all. There are cases in which such a general
closed form solution cannot be found.

1.3.1 Equilibrium values for first order DDS

If we have
Tr1 = f(xk) (10)
with £ =0,1,2,... we can find an equilibrium point x* such that
= f(z") (11)

and so z* is a fixed point of f. To find such an equilibrium value we have to
solve

x— f(z)=0 (12)
The simplest case is the one in which f is a polynomial with constant coef-
ficients so that the roots of (12) can be either reals or complex conjugates.
In any case we find solutions that can be either stable (e. g. decreasing
exponential) or unstable (e. g. increasing exponential) or oscillating.
If, given f(z), we use Taylor expansion formula around x* we obtain (stop-
ping at first order):

f(x) = (@) + (Do fomar ) (z — 27) (13)

We have two cases:
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1. | D.f |< 1 so that if we consider x = xj (in this case we get x4 =
f(zx) and, from the definition of equilibrium, z* = f(z*))

| hpr — " [<| g — 2" | (14)

so that z* is a stable point since at each iteration the distance from the
equilibrium point decreases.

2. | D,f |> 1 so that (see above)
| Zhpr — 2" [>] @y — 2" | (15)

In this case z* is an unstable point since at each iteration the distance
increases.

If | D.f |= 1 we have | 25,1 — 2* |=| x — 2* | so the distance remains
unchanged and the equilibrium is said indifferent.
1.3.2 Example

Suppose we have
Tp+1 = ZE% (]‘6)

with an initial value x¢. In this case we have x = 2?2 (in general it is z = f(x))
so that (in order to find fixed points) we have to solve

r—1*=0 (17)
Equation (17) has two solutions that are:
1. 27 =0,
2. 25 =1

and they represent two equilibrium points. Now we have to understand what
kind of equilibrium points they are since we they can belong to three possible

types:

1. stable, if following a small perturbation the system, after a short evo-
lution, recovers the equilibrium state;

2. unstable, if following a small perturbation the system goes away from
the equilibrium state;

3. indifferent, if the equilibrium does not belong to any of the aforesaid
categories.
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To check to which type an equilibrium point belongs to we have an easy tool
that uses the absolute value of the derivative of f evaluated in an equilib-
rium point. If such an absolute value is less that one the point is of stable
equilibrium, if it is greater than one that point is of unstable equilibrium and
if it is equal to one that point is of indifferent equilibrium.

In our case we have D, f = 2x so that:

1. Dy = 0 so that z7 = 0 is a stable equilibrium point,
2. Dy; = 2 so that 23 = 1 is an unstable equilibrium point.

Another way to understand the nature of an equilibrium point is to find the
closed form solution of equation(16). It is easy to see that, by successive
substitutions (and by starting with the k—th term), we have

mp = (21)” = (p2)” =+ = (m)” (18)
so that

1. if g < 1 we have
limk%mxk =0 (19)

so that the equilibrium is stable;

2. if g > 1 we have
limy oo T = OO (20)

so that the equilibrium is unstable.

It is possible to use a graphic analysis by studying the following system of
two difference equations:

Yk+1 = xz (21)
Tk+1 = Yk+1

with a known initial value zy. By drawing the graphs of the two curves and

computing successive values starting from different xz, it is easy to verify the

presence of two equilibrium points, one of which is stable whereas the other

one is unstable.
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2 Second lesson

2.1 Introduction

We start going over some of the topics of the first lesson.
During the first lesson we spoke about stability of equilibrium values i. e. of
the fixed points of the function that describes the behavior of a DDS and we
examined the following case:

Tpa1 = SE% (22)

with a known initial value z,. For equation (22) it is easy to plot the graphs
for distinct values of zg.

Now we face the somewhat inverse problem: we know a graph and we want
to know if it can be associated with a equation of the kind of equation (22)
for a given value of x,. The problem is not easy to solve because the data
we have may be misleading since (for instance) they may represent only a
partial plot of a function that seems to behave like an exponential function
but, really, tends to saturate from one value of £ on. We are going to deal
again with this problem in the future.

As a general form we have

Tpp1 = f(7) (23)
and such equation can be written as a system of two equations, each repre-
senting a curve in the z + y plane:

{ Yrr1 = f(xx) (24)

Tr+1 = Yk+1

with an initial known value z5. The couple of equations (24) represents
a sort of an algorithm for the definition of a trajectory that characterizes
the evolution of a DDS starting from an initial value x,. A point x* is an
equilibrium point iff we have

zt = f(a") (25)

What we are looking for is the intersection point of the two curves of equa-
tions (24) (a straight line and a generic curve): so to get equilibrium values
for which we have

= f(z") (26)
After that, in order to study the nature of equilibrium, we can either look

for a closed form solution of equation (25) or study the absolute value of the
derivative of f(z) with respect to z. If we have

fla) =a? (27)
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Figure 1: Curves and stability (see text for details)

(cf. figure 1) it is easy to see that equation (27) has two fixed points (those
showed as dots on figure 1): 2} = 0 and 2 = 1.

The first of those points is a stable one (how can be easily seen by examining
the absolute value of the derivative in that point, whose value is lower that
one) whereas the second one is unstable (how can be easily seen by examining
the absolute value of the derivative in that point, whose value is greater that
one). In case of z7 = 0 if we perturb the system we have that it goes back
to the equilibrium state (maybe with some dumped oscillations around it)
whereas in case of x5 = 1 we have an even small perturbation drives away the
system from such equilibrium and pushes it either toward 27 = 0 or toward
0.

2.2 Another example
Let’s step to a more complex example such as the following;:

16 4
Tht1 = £ Tk — sz (28)
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with a known initial value z,. In equation (28) we have
16 4,
=y - 29
fo) = P 2 (29)
We can work out the problem in two steps:
1. we define fixed points (or equilibrium points) by solving
x— f(z)=0 (30)

so to get (with easy calculations) 2 = 0 and x3 = 2.75;

2. we evaluate the absolute values of the derivative D, f in such points so

to get:

(a) D:r:f|x{ = 156

(b) Dyfi; =5 >1

so that both equilibrium points are unstable.

In case of equation (28) it is a little bit hard to define a closed form solution.
We know the fixed points and also know their nature. It easy to see (cf.

1 1| 0,1 -0,1 3 4.1
2 2.4 031 -0,33 2.4 -0,33
3 3.07 0,92 -1.14 3,07 -1.14
4 2,28 2727 467 2,28 -4 67
5 3.14 3.14 -32,35 3,14 -32,35
6 2.17| 2,16 -840 61 217 -940 61
7 3.18 3.18 -710807,32 3,18 -710807,32
8 2,09 208 -404199916724,891 2,08 -404199916724,93
9 3.19 319 -1,31E+023 3,19 -1,.31E+023
10 | 206 206 -1,37E+046 2,06 -1,37E+046
11 3.2 32 -1,49E+092 3.2 -1,48E+092
= 2,05 2,05 -1,79E+184 2,05 -1,79E+184
13 32| 3.2 Err:S03 3.2 Err:S03

Figure 2: Different behaviors (see text for details)

figure 2), by doing some simple calculations either by hand or using any
spread sheet, how do such DDS behaves with variable initial value x,. We
have the following cases:
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1. 2o = 0 all successive values are 0 so there is no evolution at all and the
same holds also for zy = 2.75;

2. for all different initial values provided that they fall between 0 and 4
the system shows a transient period followed by a periodic oscillation
of period 2 between the values 2.05 and 3.2;

3. for any other initial value g < 0 or £y > 4 we have that the system
diverges to —oo.

In the general case of equation (23) we start with xy then we evaluate, one
after the other:

1. z1 = f(zo)

2. 2 = f(z1) = f*(20)
3. 23 = f(22) = f*(20)
4. 24 = f(z3) = f*(20)

and so on, where with f* we mean the function f composed with itself i
times, if 7 = 0 we have, by definition, the identity function.

In this way we may guess if the system’s behavior diverges, converges or
oscillates.

2.3 Equilibrium values

If we have a DDS described by the following equation:

Tr1 = f(zk) (31)

we can restate such defining equation so that it can be described in terms of
two copies of the same function:

{ Y1 = [ (k) (32)

Tryo = [(Yrs1)

In this case we can use the graphic method sketched in figure 3 to evaluate
the successive points starting from an initial point z, (called 0 in that figure).
Starting from 0 we evaluate point 1 as the intersection of the straight line
x = x¢ with y = f(x) then we use 1 to evaluate 2 as the intersection of the
straight line y = y; with x = f(y) and so on. We so obtain a trajectory
that is usually called an orbit that can show either a stable or an unstable
behavior. In the first case it gets stuck on a point or tends toward a point
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Figure 3: Another graphic method (see text for details)

(maybe without ever reaching it) whereas in the second case it diverges going
more and more away from the starting point.
In figure 3 we suppose we have the curves whose equations are:

l.y=—(x—a)*+0
2. v=—(y—a)’+b

(with a,b € R) for which we have the four intersection points shown as small
dots on the graph. The points that lie also on the straight line are stable
equilibrium points whereas the others deserve further investigation.

It is very easy to step from the system of equations (32) to the following:

{ Y1 = f(f(fﬁk)) (33)

Tk+2 = Yk+1

2.4 Linear DDS with exponential growth

In this subsection we examine some simple models of linear DDS with
exponential growth. Of such models we will present also applications in
€conomics.
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2.4.1 Simple case, single constant

Let us suppose we have
Tg+1 = )\l‘k (34)

with an initial known value zo and with a constant A > 0.
If we want to evaluate the fixed points (with f(z) = Az) we must solve:

Y (35)

The only solution of equation (35) is z = 0. If we evaluate the absolute value
of the derivative of equation f(z) = Az we get A and so:

1. if A < 1 we get that the only fixed point represents a stable equilibrium
point,

2. if A > 1 we get that the only fixed point represents a unstable equilib-
rium point.

Stability and instability must be understood in this sense: if we impose an
even small perturbation to the system (so, in this case, we start with an
initial value x4 # 0) in the former case the evolution of the system is toward
the fixed point (in this case 0) whereas in the latter case we have that the
evolution of the system tends to go more and more away from the initial
value and from the fixed point.

Another way of solving the problem is to find the closed form solution of
equation (34). In the present case it is easy to see that such a closed form is:

(for any k£ > 0 and k£ € N) so that

1. if A < 1 we have that z; — 0 as k — 400,

2. if A > 1 we have that | zy | > +00 as k — +oc.

If A = 1 the system has no evolution from the initial value that is, indeed,
the only fixed point of the system since we have ;1 = xp = 2.

2.4.2 More complex case, two constants

Now suppose we have
Tpo1 = AT + [ (37)

with A\, # > 0 and a known initial value xo. Again we have a first order
system (since the next value depends only on one previous value) of first
degree but not linear (owing to the presence of the constant ).
Performing by hand some simple repeated evaluations we have:
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1. 2y = Awo +
2. xg = Axy + p = Nxo+ M+ p
and so on, up to
T = MNag + p(T4+ AN+ A2+ A (38)

By noting the presence of a geometric series we can simplify equation (38)

as follows:
. 1— )P

that is sought-for general solution. From equation (39) we have the con-
straint:

A£1 (40)

If A =1 we have, indeed, that the general solution has the following form:

so that the system is unstable since the orbit goes more and more away from
the initial state and do not approach any final state. If we see equation (41)
as ry = g(k) we have that g represents an increasing and unbounded function
of k so that an unstable behavior easily follows.
If we go back to equation (39) under the constraint of equation (40) we can
simplify it as follows:

T = )\k(fl?() — C) +c (42)
with p

c=1— (43)

a constant depending on A and p. equation (42), apart from the presence of
constant ¢, describes an exponential behavior that is

1. stable if 0 < A < 1 so that \¥ — 0 and 2, — ¢ as k — oo with z* = ¢;
2. unstable if A > 1 so that \¥ — oo and xp — o0 as k — 0.

In the stable case we have that the fixed point is

) 1
—c=—_ 44
x c T (44)

how it can be easily shown by solving (according to equation (37)):

T=Ax+ [ (45)



2.4 Linear DDS with exponential growth 17

2.4.3 More and more complex: three constants

Now we suppose to have three strictly positive constants A, u, r with the
constraint A # r so that the system we have can be described with the
following first order, first degree non linear equation

Thy1 = )\LEk + ,urk (46)
with a known initial value zy. As usually we have two paths to follow:

1. find fixed points and evaluate, for those points, the absolute value of
the derivative;

2. find the closed form solution and study its behavior as a function of k.

Let’s start with the first path.

This path is not really promising owing to the presence of the term 7*. All
we can obtain in this way is that, owing to the constraints on the constants,
if r > 1 the system shows an unstable behavior.

Let’s step to the second path and write down a tentative general solution of
the form:

zp = bAF 4 cr® (47)

with b, ¢ constants to be determined. From equation (47) we determine:
Tpe1 = DAFF! ek t? (48)

By substituting equations (47) and (48) in equation (46) we get:

DAL o erfth = pARTL o ehr? 4k (49)
By a simplification we get
cr=cAr+ i (50)
so that o -
r—A

(from which we see the necessity of the constraint A # r). To evaluate the
other constant (b) we use equation (47) and make use of the initial known
value x¢ so to write:

Tog = b+ c (52)

and finally:

0
b e — e -
To =€ =Tg — — (53)

From equation (47), that represents the general solution in closed form (and
on the ground of equations (51) and (53)), we can conclude that:
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1. the system shows an unstable behavior if either r > 1 or A > 1;
2. the system shows a stable behavior if r < 1 and A < 1.

We note that the tentative general solution of equation (47) is modeled on
the form of the equation (46): by an examination of such equation we see
that through recursion we have an accumulation on A so the necessity of \*.
The need of the other term comes from the presence of an analogous term in
equation (46).

Let’s now examine briefly the case A = r. In this case we have (from equation
(46)):

Tpr = Mg + pAF (54)

with a known initial value zy. Now we can guess a general solution of the

form:
z, = b\ +c (55)

By substituting and simplifying we get

pA*
1—\

CcC =

(56)

with A # 1. Such a solution does not represent a real solution since ¢ depends
on k. The problem lies in the wrong choice of the tentative solution of
equation (54) and will be examined in detail in the next section. Anyway we
can say that:

1. if0 < A< 1then ¢— 0 as k — +oc,
2. if A > 1 then ¢ - —00 as k — +o0.
If, moreover, we have A\ = 1 from equation (54) we get:
Tp1 = Tp + [0 (57)
from which we get the following general solution in closed form:
T = xo + kit (58)

and so (since by hypothesis z > 0) a diverging behavior.
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2.4.4 Last example: a DDS with two constants (or what happens
if A\=r)

Suppose we have A, u both strictly positive and the following equation:
Tpyr = Mg, + pAF (59)
In this case as a tentative solution we can try:
xp = (b+ ck)\F (60)
with b, ¢ to be determined. Substituting equation (60) in equation (59) and

simplifying we get:

_ K
c=5 (61)

To find b we use zy and put £ = 0 in equation (60) so that:
As a general solution we get again an exponential growth of the form:

w = (20 + k%))\’“ (63)

In this case we have:
1. if A > 1 the system shows an unstable behavior,
2. if A < 1 the system shows a stable behavior.

If A =1 we get:
T = g + k,u (64)

and, again, a diverging behavior.
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3 Third lesson

3.1 Introduction

Before stepping to some easy economic applications of what we have seen
so far we review some concepts we have examined in the past lessons so we
go back to the following system of equations:

{ k1 = f (@) (65)

Tr+1 = Yk+1

System (65) must be solved having a starting point xq (cf. figure 4 in which

Yi

y=I(x)
o~ S

2|
ol

e ¥

F 3
0 1 2
Figure 4: Again on graphic methods (see text for details)

points are enumerated only with the increasing value of k).
More complex models are those involving difference equations of the first
order but of second degree such as the following:

Tg+1 = 6[1 - l‘k]l‘k (66)
in which ¢ is a parameter. Some instances are the followings:

1. if e = 3.5 we have xp 1 = 3.5[1 — zx]ay;
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2. if e = 3.84 we have ;.1 = 3.84[1 — zy|zy.

Figure 5 shows two tests, one for each of the aforesaid equations, the first is
for € = 3.5 whereas the second is for ¢ = 3.84. We easily see that in the first
case we have an orbit with a period of three whereas in the second case we
have an orbit with period four.

To define fixed points for equation (66) we have to solve:

r=c¢c(l—x)x (67)

The solutions of equation (67) are easily evaluated in

1. Tg = O,
_e—1
2. T = ET
so that

1. if e = 3.5 we have 1 = 0,7

2. if e = 3.84 we have x; = 0, 74.
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1 0,5 0,5
2 0.88 0,96
3 0,38 0,15
3 0.83 0,48
5 0.5 0,96
6 0,87 0.15
7 0.38 0,49
8 0,83 0,96
9 0.5 0,15
10 0.87 0,48
11 0,38 0,96
12 0.83| 0,15
13 0.5 0,49
14 0,87 0,96
15 0.38 0,15
16 0.83 0,49
17 0,5 0,96
18 0.87| 0.15
19 0,38 0,49
20 0.83 0,96
21 0.5 0,15
22 0.87| 0,49
23 0,38 0,96
24 0.83 0.15
25 0.5 0,49/

Figure 5: ¢ = 3.5 (first column), ¢ = 3.84 (second column, see text for
details)
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3.2 Examples from economics: bank account and
mortgage

We consider a bank account with an initial capital xy and we want a

model of the compound interest assuming that no money is withdrawn from

that account. We can use one of our previously seen models and precisely
the simplest model of exponential growth:

Tgr1 = )\fl?k (68)

with a known initial value xq that we suppose, for the present case, strictly
positive. If we pose

A=1+a« (69)
with « denoting the interest defined as
1
= — 70
o=7 (70)

where I is the interest rate and 7T is the time period used for the calculation,
both being known quantities. We already know that equation (68) general
closed form solution has the following form:

z, = Mg (71)
so that by a simple substitution we get:

1
z = (1+ f)kfﬂo (72)
This unrealistic model describes an exponential unbounded growth to +oo if
o > 0 but also an exponential unbounded growth to —oo if 2y < 0.
Let us examine the case of a mortgage repayment. In this case the model

is represented by the following equation:

Tpi1 = AT + [0 (73)
with
L A=(1+41),
2. p=—-R

where I, T and xy are known entities (with the same meaning they had in the
previous case) and R is the entity of the repayment and is a fixed quantity.
In this case the general solution in closed form is the following:

zp = N(zg —¢) + ¢ (74)
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with -
= R— 75
c= R (75)

so that we can write:

1 T T

For equation (76) to have an economic validity we must impose that:

has a negative sign (since the amount to be paid must decrease with time)
so that the following inequality must be satisfied:

I
R > xUT (78)

I this way we have:
1. for k = 0 we have z¢y = x¢,
2. for k > 0 the amount to be paid decreases,

3. the payment stops for a value of k£ such that x, = 0.

3.3 More complex models

When we use difference equations we refer to discrete models in which
time rolls in discrete units fro £ to £ 4+ 1 and so on. Now we put all this in
relation with the continuous counterpart so to define the so called Contin-
uous Dynamic Systems (or CDS). The natural model for CDS is made by
differential equations. Let’s now see how we can switch from difference
equations to differential equations with a very simple example.

The starting point is a difference equation:

Thy1 = )\LEk =i + )\fl?k — T (79)
Equation (79) can be rewritten as:
A$k+1 = Tgyr1 — T = ()\ — 1)$k (80)

In both the first and the last member of the chain of equalities (80) we can
imagine the presence a Ak = (k+1) —k = 1 as a divisor so that switching to
the continuous counterpart (and using y to denote the continuous dependent
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variable and ¢ the independent variable time) we can rewrite equation (80)

as follows:
dy

o= A1)y (81)

with a known initial value
Yo = y(to) (82)

in which ty represents an arbitrarily fixed initial time.

Equation (81) is a type of differential equation also known as with separable
variables and represents a model for CDS. The solution of such a family of
equations springs from the following steps:

1. we start with equation (81) and rewrite it as follows:

dy B
z_(/\ 1)dt (83)

2. integrating equation (83) we get:

Iny=A\—-1)t+k* (84)

3. using exponentials we obtain:

y = Ke Vi (85)
with K = ¥’
4. putting ¢ = 0 and using the known value 7, we get yo = K = e*".
In general (so for a generic initial time ;) we have:
Y = yoe—t=t0) (86)

in which ﬁ plays the role of a time constant. Equation (86) describes the
so called Malthusian law of growth and describes:

1. a stable behavior if A\ —1 < 0 and so 0 < A < 1,
2. an unstable behavior if A — 1 > 0 and so A > 1.

In the first case we have:
limi 100y =0 (87)

for any finite initial value yq.
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3.4 Bounded linear DDS

For this family of systems we make use of models of the following form:
Th1 = Tk + E(Too — Tk) (88)
where:
1. x¢ is a known initial value,
2. T is the saturation value theoretically reached at ¢t = oo,
3. ¢ is a known parameter.
We have two cases:

1. the initial value is lower than the saturation value or zy < z, in this
case the curve that describes the behavior increases till it reaches x.;

2. the initial value is greater than the saturation value or xy > x4, in this
case the curve that describes the behavior decreases till it reaches x.

We can rewrite equation (88) as follows:
Tpy1 = (1 —€)xp + exo0 (89)

or
Tpi1 = AT + [0 (90)

with A = (1 —¢) and g = ex. A we have already seen, the general solution
in closed form of equation (90) is:

1— Ak
1—-A

1
1—A

K
1—A

we require A > 0 so that we must impose ¢ < 1.

If we substitute A = (1 —¢) and p = x4 in the last member of equation

(91) we obtain:
2= (1 — ) (20 — Too) + Too (92)

Since we want a stable evolution we must impose:
|1—¢|<1 (93)

or (since € > 0)
0<e<?2 (94)
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Disequations (94) define a model with saturation (with or without dumped
oscillations around the saturation value) whereas if € > 2 we have no stable
solution and so the corresponding model is no more with saturation.
The continuous counterpart of equation (88) has the following form:

dy(t

W — e — yl1) (95)
dt

(we remind that we use y to denote a continuous variable, function of time ,

as in this case). On this ground we can say that:

1. if zo > y(t) the derivative is positive and so the variable y(t) is in-
creasing with time;

2. if zo < y(t) the derivative is negative and so the variable y(t) is de-
creasing with time.

Such conclusions cab be contradicted by what happens in case of discrete
functions (cf. below for some more comments). Figure 6 shows some calcu-
lations made with a spread sheet and applying equation (88) in the following
cases:

1. column A:e¢=0,5, xqg =0, 25;
2. column B: ¢ =1,9, xy = 0, 25;
3. column C: ¢ =21, xqg = 0, 25.
In all cases we have x,, = 1. It is worth noting what follows:

1. in the first case (¢ = 0,5) we can observe a quick growth to the satu-
ration value without any oscillations,

2. in the second case (¢ = 1,9) we can observe an initial overshoot followed
by a dumped oscillation around the saturation value that represents the
asymptotic value,

3. in the third case (¢ = 2,1) we can observe an unbounded oscillation
around the saturation value.

Such behaviors represent an empirical corroboration of the theoretical obser-
vations made in the foregoing paragraphs. Some more data are contained in
figure 7. We only note that:

1. in all the columns D, E, F' we have put zy = 1, 2 so the initial value is
above the saturation value (which is z,, = 1),
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2. column D: £ =0, 5,
3. column E: ¢ = 1,9,
4. column F: ¢ =2,1,

5. the shown behaviors, apart from some initial differences (only due to
the values of z) coincide (from a qualitative point of view) with those
shown in figure 6.
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A | B | C I
1 0.25 025 0.25
2 063 168 1,33
3 081 0,39 0,09
3 0.91 1,55 2
5 0,95 051 -0,1
6 0,98 1,44 2.21
7 0,99 0.6 -0,33
8 0,99 1.36 2.46
g 1 0,68 0,61
10 1 1.29 2,77
1 1 074 -0,95
12 1 1.24 3.14
13 1 079 -1,35
14 1 1,19 359
15 1 083 -1.,85
16 1 1,15 4,13
17 1 0,86 -2,45
18 1 113 4,79
19 1 0,39 317
20 1 1,1 5.59

Figure 6: column A: ¢ = 0,5; column B: ¢ =1,9; column C:c=21;
all columns xq = 0,25; (see text for details)
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0 E F

1,2 1.2 1,2
1.1 0.82 0.78
1,05 1,16, 124
1,03 0.85 0.73
1,01 1,13 129
1,01 0.88 068
1 1,11 135

1 0.9 061

1 1,09 1,43

1 0.92 053

1 1,07, 152

1 0.94 0.43

1 1,06 163

1 0.95 0.31

1 1,05 1,76

1 0.96 0,16

1 1,04 1,92

1 0.97 0,01

1 1,03 2.11]

1 0.97 0,22

Figure 7: column D: e = 0,5, column E: ¢ =1,9, column F: e =2,1(see
text for details)
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4 Fourth lesson

4.1 Introduction

In the third lesson we have examined bounded linear DDS either with an
oscillating behavior or not. We have also looked for equilibrium points and
we have, at least, examined their continuous counterpart.

As to the bounded linear DDS we note that we call them linear in a somewhat
imprecise manner since they do not behave linearly neither their descriptive
equation is (strictly speaking) linear. One model for bounded linear DDS is,
indeed, the following:

Th1 = T + €(Too — Tp) (96)

with a known initial value 2o > 0, a known (or guessed) saturation value x4
and a known parameter . Equation (96) can be rewritten as

Tpy1 = (1 —&)xp + €200 (97)
so hat its general solution in closed form is:
T = (1 —&)"(20 — Zoo) + Too (98)

with z,, representing the saturation value or the value that (in cases of
stability) is attained (theoretically) for £ = +oc.
From equation (98) it is easy to see that:

1. if 0 < £ < 2 then the system shows a stable behavior;

2. if ¢ > 2 then the system shows an unstable behavior (so it oscillates
around To).

4.2 Bounded linear CDS

In this section we step to the continuous counterpart of the present calss
of DDS and so we talk about CDS. Rewriting equation (96) as follows:

AZpy1 = g1 — T = (Too — T) (99)

and using y to denote the continuous dependent variable (that varies as a
continuous function of time) we can write:

Dy = &(Yoo — ¥) (100)
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(we remind that with D,y we denote the derivative of y with respect to
t). The general solution of equation (100) (if we have a known initial value
Yo = y(to)) is:

Y = Yoo — (Yoo — yo)e ) (101)

In equation (101) quantity 1/e plays the role of a time constant. We can
easily see that the solution described by equation (101):

1. can never show an oscillating behavior as it can happen with the cor-
responding DDS;

2. is stable iff ¢ > 0 and the greater it is the faster the solution reaches
its saturation value z..;

3. if t = tg we have y = y, whereas as t — oo we get ¥ — Yoo-

If we evaluate the derivative (with respect to time) of equation (101) we
obtain:
dy
dt
so the graph is that of an increasing function but with a decreasing slope
(since the function described by equation (102) gets lower and lower values
as t increases).
A more complex model is represented by that described with the logistic
function.
In this case we have:

(Yoo — yo)e—710) > (102)

1. a slow initial (or ¢ near to t;) growth (small values of the derivative);
2. a faster growth as ¢ increases;
3. an inflection point;

4. after the inflection point, a slower and slower growth toward a satura-
tion value.

All this under the hypothesis that y., > y¢. Logistic curve allows the inclu-
sion of reality effect in our model since, for instance if we model a population,
the slow initial growth accounts for the small number of individuals that are
in the reproductive age whereas the approach to a saturation value takes
into account the effect of some physical limiting factor (food, land and so
on) on the growth of the population (that, otherwise, would be unbounded).
To describe a logistic behavior, in either DDS or CDS, we have to switch to
more complex expressions, as we will see in the next section.
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4.3 Quadratic DDS

In this case we have a first order second degree difference equation of the
form:
Tpy1 = Tp + 6(1 — :Ek)ZEk (103)

where we have x,, = 1 (such a value is usually called carrying capacity).
We note that:

1. fixed points of equation (103) are z§ = 0 and z} = 1 for any value of ¢;
2. 2o = 0 is an unstable point at 0 (see later on in the present section);

3. if we have xqg = 1 in one step the system reaches the same condition as
before.

Again we can rewrite equation (103) as follows:
Axpyy = g1 — 2 = (1 — ) Tg (104)

In equation (103) we have € > 0 and known and the aforesaid fixed points.
To study the nature of those fixed points we can evaluate the derivative of:

fle)=z4+e(l—2)z (105)
and study its absolute value in such points. In the present case we have:

q
£:1+6—2x (106)

and then

1.inzg =0 %:1+6> 1 since € > 0 so that zj = 0 is not a stable
equilibrium point;

2. inz} =1 % = 1 — ¢ so that we must impose that | 1 —¢ |< 1 (since
e > 0) therefore z7 = 1 is a stable equilibrium point. In this case we
have that, solving | 1 — ¢ |< 1, the constraints 0 < € < 2 allow the the
fixed point 27 = 1 to be a stable equilibrium point;

3. until € remains far from the limiting value 2 we have no oscillation and
the more it approaches to 2 we get more and more wide oscillations
around the equilibrium point 1 and also the transitory phase tends to
last longer;
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4. when € > 2 the system shows a more and more unstable behavior with
wider and wider oscillations around the point 1 that cannot be classified
as an equilibrium point anymore.

Going back to equation
g1 = xp + (1 — zp)my, (107)
we note that it represents a parabola of the family:
y=x+e(l —2)r=—er’+2(1—¢) (108)

so that we can evaluate its maximum value that occurs at (easily evaluate
the derivative and equate it to 0):

_1—5
2

x (109)

and is
(1—-¢)?

2e
Using a method already seen in the past we can rewrite x = f(z) as a system

of equations:
T=y
so that we can work out by using two intersecting curves and an initial point:

in this way we can guess the value of the saturation value to be used as either
Too OT Yoo depending on which type of system (DDS or CDS) we are studying.

y= (110)

4.4 Logistic CDS

At this point (with the usual techniques) we find the continuous counter-
part of equation (103):

Dy =e(1—1y)y (112)
with

1. yo = y(to) known;
2. Yoo = 1 for the sake of simplicity.

If we rewrite equation (112) as follows:

gy = et (113)
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and integrate it with usual integration methods we get (for ¢y = 0):

Yo
— 114
Y Yo+ (1 —yo)e=e! (114)

whereas if ¢ty # 0 we get:
Yo

= 115
Y Yo + (1 — yo)e=(t=to) (115)

If we consider again equation (112) and evaluate its derivative we get:
Dy = (1 —2ey) Dy (116)

so that the maximum value of D,y is obtained when Dy = 0 and so for:

1
- — 11
y=5 (117)
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5 Fifth lesson

5.1 Logistic CDS

We go back again to the equation describing a CDS with a saturating
behavior:

Dy =e(1-yy (118)
with
1. yo = y(to) known;
2. € > 0 known;

3. Yoo = 1 for the sake of simplicity.

The general solution of equation (118) is
_ Yo

Yo+ (1 — yo)e~0-)
We can use equation (119) to model the growth of a population form a
starting time and an initial value for a certain period of time.

Y (119)

5.2 CDS and DDS

We now restate the equation for a CDS as follows:
dy Y
— =¢(l— = 120
L —c1- Ly (120)
with:

1. € > 0 known;

2. K estimated in some way and representing the saturation value;

3. if y < K we have % > 0 so that for values lower than he saturation
value the behavior is of increasing type;
4. if y > K we have Z—?t’ < 0 so that for values higher than he saturation

value the behavior is of decreasing type.
For the DDS we have:

T
Tpyr = zp 4+ (1 — ?k)xk (121)
that can be rewritten as:
T
Amk—l—l = Tg41 — T = 8(1 — —k)l‘k (122)

K
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5.3 Quadratic DDS

We now step to a class of DDS for which no general solution exists, the so
called quadratic DDS whose descriptive equation has the following form:

Tpy1 = Az} +2Bx, + C (123)
with:
1. A, B,C known constants;
2. xo known initial value.

The technique that is usually used in these cases is that of guessing a general
form of a tentative solution, write it down using some parameters to be
determined and then:

1. substitute such a tentative solution in equations such as (123) ,
2. perform all the possible calculations and

3. evaluate the unknown parameters by equating the coefficients of anal-
ogous terms.

We note that such a procedure can effectively work since as composing ele-
ments we use functions that form a basis of a vector space. In our case the
tentative solution of equation (123) has the form:

Ty = aeXk 4 feT Xk 4y (124)
with:
1. xi = 2*0p;
2. Hy known;
3. eXk = cosxy, + iSenxy;
4. «, (3,7 constants to be calculated.
If we suppose a = 3 we get (by using Euler’s rules):
ek 4 BeT Xk = cosyy + isenyy, + cosxr — iSenxy = 208Xk (125)

and so a periodic oscillating solution. If we observe that if for a given k (and

so x) we have:
Xk = 2"0q (126)
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then for k + 1 (and so xyy1) we have:
i1 = 28710, = 2 x 280, = 26, (127)
If now we substitute equation (124) in the equation (123) we get:!
e Xk 4 BeT Xk Ly = Alae™ k4 Be” Xk 4] +2Blae™k + Be” Xk 4] 4+-C (129)

If we consider that the functions e?Xk, e~ 2Xk Xk and e~ X* belong to a base
of a vector space (and so are linearly independent one from the others) if
we perform the calculations and equate the coefficients of the corresponding
terms we get:

1. a = Aa? so that a = 1/A4;

2. = AB?% so that 8 = 1/4;

3. Ay + B = 0 since we have no terms involving e™X.
From such equations we see that:

1. we must impose A # 0 (and tis is obvious since we want to use a
quadratic model);

2. we have a = f3;
_ _B
We have also one more equation that represents a constraint on C"
v =2AafB+ Ay* + 2By + C (130)

If we substitute in equation (130) the values we have found for o, # and 7
we get the following relation among A, B and C"
B?—-B-2
C=—-— 131
. (131)
Such an equation represents an added constraints on the values of the given
constants A, B, C.

'We use the following equivalence:
(a+b+c)® =a®+b* + ¢ + 2ab+ 2bc + 2ac (128)

with a = ae™X* b = qe"™* and ¢ = v
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At this point (on the ground of the foregoing equations and relations) we
rewrite equation (124) for £ + 1

Tpy1 = ek 4 Be™ Xk oy (132)
In this way we have that the general solution of equation (123) with C' given

by equation (131) is:
e’iQXk _*_67’L'2Xk B

- —_— 1
o A A (133)
o 2 B 2 B
_2c0sx B _ 2 kg B
Tp =~ y Acos(2 6) y (134)

Now we use the initial value zy to evaluate y. If we put £ = 0 in equation
(134) we get:
2 B

To = Zcosﬁg - (135)

and, at last (with easy mathematics):

ALEO+B

5 ) (136)

0o = arccos(
In this way we have obtained the initial value of the angle. At this point,
putting all things together, we obtain:

Al‘o—f—B B

2
ry = —cos(2" arccos( 5 ) — 1 (137)

A

and this gives rise to the following constraint: | Azg + B |< 2 owing to the
interval of variation of cosine function.

In equation (137) we have that zg, A, B represent known values that must
satisfy the aforesaid constraint and the condition on C' of equation (131).

5.4 The Chebyshev polynomials

We now introduce the definition of Chebyshev polynomials (C'Ps) as
follows. A CP is a function, defined between —1 and +1, of the form:

T;(z) = cos(i X arccos(z)) (138)

that defines a polynomial of degree 7 since the parameter 7 defines the number
of the zeroes. If we put i = 2 we have that such a number is determined by
k in such a way that, for instance:

1. if £ =5 we have a polynomial of degree 5 and so with 5 zeroes;
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2. if K = 21 we have a polynomial of degree 21 and so with 21 zeroes and
SO on.

By using such a definition we can rewrite equation (137) as
— ) - — (139)

If now we pose A =2 and B = 0 (from equation (131) we have C' = —1)
equation (123) becomes:
Tpy1 =275 — 1 (140)

so that we can study its evolution as a function of zy. Fixed points of equation
(140) can be easily evaluated and are:

1

1. Iy = )

2. 152:1

so we can study its behavior starting, for instance, with zo = 0.25. We get
a so called chaotic behavior since it is non periodic and shows very quick
variations.

Last but not least we have to take care of the constraint represented by
equation (131) that we rewrite here for the sake of convenience:

B2-B-2
C=— = 141
- (141)
In such equation all the elements represent known values so that if, for in-
stance, we have B = 2 then we must necessarily have C' = 0.

In this case equation (123) becomes:
Tpy1 = Az} + 4wy, (142)
and can be rewritten as:
Tpr1 = (4+ A)zp — A(1 — zp) g (143)

that shows a logistic behavior.

Next lesson we will investigate what happens if | Azy + B |> 2 and we will
find a general solution of the problem modeled with equation (123) under
the aforesaid condition.
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6 Sixth lesson

Now we step to the examination of the following expression:
o = %[1 Ty (1 = 20)] (144)
with an initial value 0 < xg < 1. We can write:
xp = e’k 4 feT X 4y (145)
with y; = 2%6,. The general expression is:
Ty = Ax} +2Bxy + C (146)

and with an initial value z( such that | Azy + B |> 2. In equation (145)
we have that zy is known whereas «, (3, must be determined with some
calculations on equation (146).

If we substitute equation (145) in equation (146), perform calculations and
simplifications and equate the coefficients of the corresponding terms we,
finally, get:

1. v= jTB,
2. a= %,
3. =+
We can easily see that o = 3 so that equation (145) becomes:
1 B 1 B
T = Z(€Xk +e X)) — 1= ZQcosh(Xk) - (147)
so that at the end we get:
1 B
Ty = ZQcosh(QkHO) -7 (148)

If we evaluate §y at k£ = 0 and use the initial value xy (as we have already
done in the past lessons) we get:

1 A B B
=2 2k —To+ =) — — 14
Tp cosh(2%arccosh( 5 %0+ 5 ) (149)

Again we must impose:
1. A#0,
2.C=(B*-B-2)A"!

In this case we do not perform any analysis of stability.
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6.1 Quadratic DDS, particular form
We use the following form of quadratic DDS:

Tgr1 = 4(1 — fl?k)fl?k (150)

with a known initial value xg.
Now we can study stability. Given

f(z) =41 — 2)x (151)

we can study the behavior of the derivative or use it to write:
df

where z* is a fixed point for function f. At this point we rewrite here equation
(139):

— )= (153)

to see how the initial condition propagate to the solutions. If we evaluate
the derivative of the expression of z; and we remember that the derivative

of arccos(z) is
1

V1 — 22

we can see haw the solutions show a highly oscillating behavior. The deriva-
tive of equation (153) is:

(154)

k k Azo+B
SLEURs ot
We have:
1. if | Azg + B |< 2 we have stable solutions;
2. if | Azg + B |= 2 the denominator is equal to 0.
In case of the following quadratic DDS:
Tpy1 = 4(1 — zp) 2 (156)

we can (since f(x) =4(1 — z)z):

1. evaluate its fixed points;
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2. study their nature (stable or unstable).

As to the first point we have that equation x = 4(1 — x)z has the following
solutions:

1. 27=0
2. 25 =0.275

As to the second point we evaluate
fl(z)=4—8x (157)

In this case in both fixed points the absolute value of the derivative is greater
than one so that both fixed points are unstable equilibrium points.

6.2 Cubic DDS

We start with the following general form:
Tpy1 = Az} + Bay + Cxy, + D (158)

with A, B,C, D constants (of which A, B can vary freely while C, D are
somewhat limited) and an initial know value z.
Using a “classic” technique we guess a solution of equation (158) as having
the form:

T = aeXk 4 Bem Xk 4y (159)

with
xr = 36 (160)

In equation (160) we have that 6, is known whereas in equation (159) «, 3,y
must be determined in the usual way. The steps we follow are:

1. substitution of the expressions for z;,; and ) in equation (158);
2. execution of the calculations and all the possible simplifications;
3. comparison of the corresponding coefficients.

Acting this way (calculations left to the reader) we get:
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1A
3.7=-3%
_ B?
4- 0—3_A_37
_ B (B?
5.D = B(2 4.

We note that:

Yer1 = 3816, = 3350, = 3y, (161)
Substituting the expressions for C' and D we get:
1B? 1B 1B
= Az} + Ba: + (=— — 3 e 162
Tk41 Ty + $k+(2A )xk+9A(9A ) (162)
whose general solution is:
1., , A
=t+—[e" 4 e ] - — 163
n= £l e ] - (163
or 5 4
T = iﬁ[cos(?)kﬁg] ~ 35 (164)

As the sign we choose the + sign since the values xj are positive even if the
effective choice depends on the chosen initial point. At this point we can
obtain #, as a function of the known initial value zy. In this way we get
(retaining the two signs to get a general solution):

2 A
Ty = iﬁcos(ﬁg) ~3B (165)
or VA
A A
0o = arccos(:tT(:EO + 3—B)) (166)

By substituting equation (166) in equation (164) we get x; as a function of
the initial value x,.
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7 Seventh lesson

7.1 Introduction

For one moment we go back to logistic equation for CDS. In this case the
equation that describes the model has the following form:

dy _

= (1— )y (167)

K

with two parameters:
1. K the carrying capacity,
2. ¢

and a known initial value yy = y(to) evaluated in an initial time ¢y. Such a
model can be easily solved and gives a relation among the aforesaid quantities
to which corresponds a graph with an s-shape that starts at a low level,
increases with a change in concavity from convex to concave and reaches a
saturation value. Such a model can be used both to describe historical series
of data so to ground them on a solid theoretical background and to predict
the behavior of a model and so of a modeled system.

7.2 Continuous models: theory and practice

In this case we are sure that solutions exist and the same holds for equi-
librium points that prove to be stable. We will, for the moment, examine
some classical model that can be used for describing harvesting and fishing
strategies starting with logistic CDS.

We rewrite here both the descriptive equation:

Y e1- Ly (168)
(with two positive parameters € and y,, and a given initial value y,, usually
non negative) and the general solution:

Yo

I (1= ) <l-t0)

(169)

y:

where 7, is the so called carrying capacity and represents the theoretical
size that a modeled population will reach at ¢t = oco. For equation (168),
indeed, we have:
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1. when t = t;, we have y = yq,

2. when (theoretically) t = oo or (in practice) after an enough long period
of time we have ¥y = Y.

We note that equation (167) represents a parabola and attains its maximum
value for

€Yo
— I 170
v= (170)
and such a value is
€%Yoo
>0 (171)

We can use this model to control the growth of a population through two
strategies:

1. constant fishing or harvesting (so any time we fish or harvest we are
bounded by a quota or a maximum quantity),

2. proportional fishing or harvesting: is an ex-post strategy so that each
time we can fish or harvest a fraction of what we fished or harvested
on the previous time.

7.2.1 Strategy number 1: constant fishing or harvesting

We try to keep the overall size of a population between two boundary
values (a lower and an upper boundary) by removing at a given instant the
net increase of the population defined as the difference between births and
deaths (but this only if that balance is positive). So what we remove (we
use this term for both fishing and harvesting) is dy/dt and, in practice, what
we need is an evaluation of the time gap (or At) between two successive
removals: usually such a value is modeled on biological parameters (such as
the interval from one reproductive period and the successive). Since every
time we remove a fixed quota of the population we can restate the equation
that describes its variation (and so equation (168)) as:

—=¢(l-=)yy—H (172)

(with two positive parameters € and y,, and a given initial value y,, usually
non negative). In this case we only know that H is strictly positive but we
don’t know its value. H represents the amount we remove each time from
the total population. Since we don’t want that the population from which we
are removing risks extinction we want to maximize H under that constraint
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so we look for a point in which the growth of the population stops. In other
words we want to solve

dy
— =0 173
o (173)
or
2
e——eu+H=0 (174)
Yoo

Equation (174) has the following solutions:

e4 /2 — y%H
y1,2 = 2 (175)
Yoo

We now have that if we put H = 0 we obtain y; = 0 and ys = Y. Since we
want real solutions we must impose that the argument of the square root is
non negative and therefore we impose:

4
2 p>g (176)
Yoo

From equation (176) we get an upper limitation on the value of H:
€
H < J9e (177)
In case of disequation (177), if we impose an equality we get

H =y (178)

and, therefore, in equation (175) the square root vanishes and so we get:

1
Y1 = Y2 = Yoo (179)

2
Figure 8 shows the limiting situation in which equations (178) and (179)
hold. From that figure we can also see that the real parameter is ¢ so that
since we remove a quantity equal to H each time and starting from a level
equal to the one specified by equation (179) we must have:
€ Yoo

e < 22 180
1Yo <5 (180)

so that the following relation must be verified:

£ <2 (181)
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Ya

Figure 8: Logistic curve with limiting level (see text for details)

Figure 9 shows the behavior of the successive removal campaigns, each cam-
paign collecting the maximum quota H with an interleave (At in figure 9)
fixed on biological bases. With a maximum removal equal to H every each
At population is kept at the level given by equation (179) with a removal
that cannot be greater than the quantity specified by equation (178). The
main risk in this case is that if we fix a wrong value for At the population
can slope down till the extinction. We note that the behavior shown in figure
9 can be described also by the equations derived so far that give:

1. the equilibrium level (equation (179)),
2. the maximum possible removal (equation (178)),

3. instant of time at which start the removal, when the derivative attains
its maximum value.

Each of the spikes can be seen as the part of a delayed copy of the basic
curve with an upper cut of amplitude H above the line y./2. In a real
world application every removal cannot occur in a zero time so each gap of
amplitude H, in reality, is a segment with a slope and models a removal that
occurs in a finite time 6(¢).
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Yi

growth without
removal

Figure 9: Logistic curve with free growth and removal campaigns (see text for
details)

As a final note we say that the parameter H is usually called the maximum
sustainable yield of a dynamical system.
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7.2.2 Strategy number 2: proportional fishing or harvesting

In this case we suppose that the entity of the removal is proportional to
the amount of the current population through a parameter A so that we can
rewrite the logistic equation in the following form:

dy Y
—~ —(1—- )y =\ 182
o =c=-Dy=y (182)
or d )\
Yy Y
= (e(1 = 2) - 2 183
= 0= =) (183)

in which we have ¢, A\, 7y, that are strictly positive parameters and y, is a
known initial value. We want to define the extremal points so we look for
the zeroes of the derivative and so of equation (183). In this case we get the
following value:
A

= (1= Due (184)
in which the derivative vanishes. Such a value is smaller than the one we get
in the usual logistic curve. Now we have to fix the value of he parameter \.
Since we want

0 <Yy < Yoo (185)
we must have 3
0<(1—g)<1 (186)
or
A
0<—-<1 (187)
€
and, at last:
0<A<e (188)
Since we want to maximize J
Y
— 189
we evaluate the second derivative and equate it to zero so that we obtain:
d?y A y . dy
(1= 922 = 190
dt? e € yoo) dt (190)
and, at last:
1 A
=-(1- Sy 191
y=50-2)y (191)
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where y, represents the maximum possible removal. We can easily see (from
equations (184) and (191)) that the point in which the derivative attains its
maximum value coincides with half of the equilibrium value so that

1

SUx (192)

?J:2

If we substitute equation (191) in equation (182) we get

dy ¢ Ao
— = —(1 - ) "Yso 193
-2y (193)
in which

(1- g) (194)

acts as a reduction factor. In this case we have that the maximum growth
decreases quadratically (with an increase of \) so that the bigger is A the
smaller is the equilibrium value and as A — ¢ we have that both the equi-
librium value in equation (192) and y, tend to 0.

Since we want

0 <Yy < Yoo (195)
we must have 3
0<(1—g)<2 (196)
or (taking into account the constraints on the parameters):
A
0<—-<1 (197)
€
and, at last:
0<A<e (198)
If we fix -
A== 199
’ (199)
we get:
1
yx = Eyoo (200)
and p
Y= Ty (201)

dt 16
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7.2.3 Brief comparison between the strategies 1 and 2

We only note that:

1. strategy number 1 is more effective (with regard to the quantities we
can remove from a population) in removing items from a population
but, since it is based on an estimated maximum growth, it can bring
the population to extinction;

2. strategy number 2 is less effective but brings the system to an equi-
librium value that is lower of that is reached in strategy 1 and that is
preferable from an environmental point of view.

growth without
removal

to

Figure 10: Comparison of strategies (see text for details)

Figure 10 contains a comparison among:
1. a growth without removal,;
2. a growth (1) with a succession of removals according to strategy 1;
3. a growth (2) with removals according to strategy 2.

Figure 11, last but non least, shows a comparison among the logistic growth
without any removal (in this case there is a limit to the population growth
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due to external factors such as limited availability of food and space and so on

..) and a growth with removals governed by strategy number 2 (under the
hypothesis that A = £/2): it is clear that the system reaches an equilibrium
point. To know the amount of what can be removed we proceed as shown
in figure 11. Starting from an instant of time ¢* we find the corresponding
value on the lower curve then we find the corresponding point on the upper
curve: the value of the derivative in that point is the amount of what can be
removed.

Yi

growth without
removal

t* t

to

Figure 11: Strategy number 2 (see text for details)
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8 Eighth lesson

8.1 Introduction

In this lesson we are going to examine some model of increasing complex-
ity and relating to one population or two populations competing for the same
environment. The more complex competitive model we are going to examine
today is the model of two populations, one of preys and another of predators,
that compete in a somewhat violent way, the former representing the reser-
voir of food for the latter. In what follows we use y(t) or y;(t) and ys(t) to
denote the numerical evolution of either one population or two populations
as a continuous function of time.

8.2 First model: one population
This situation is easily described by the following model:

dy

dt
with €, constant strictly positive parameters and a known initial value .
In this case we have:

e(1—y)y (202)

y=— 203
Yoo (203)

Equation (202) has the already known solution:
y= z (204)

[vyo + (1 = yyo)e = 1o)]
In this case we have that:
1
limy 00l = Yoo = ; (205)
so that the equilibrium value is stable and is independent from both ¢ and
Yo-

8.3 Second model: CDS of two “friendly ” populations

In this case we have two populations that share an environment and
compete for a set of resources without trying to destroy each other. We
use yi(t) and yo(t) to describe the size of each population with time. The
descriptive model is represented by the following equations:

dy1 __
{ dd_ztz - 81(1 - ,yl(yl + y?))yl (206)
G =ea(1 = a(y1 + y2))va
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with the strictly positive constants &q, 9,71, 72 and known initial values ¢!
and 9. In this case there is a full symmetry between the two populations, this
is, indeed, the simplest case. We note that the growth rate of one population
is affected by the presence of both populations in equal proportion. In general
we can find a general solution of system (206). A solution can be found
by integrating after a separation of the variables. We start from the first
equation of system (206).

We can rewrite it as follows:

dy,

o =ciy1 — a1 +y2)h (207)

and then 1 4 .

U1

e (T 208
g1y dt (1 +32) (208)

With similar transformations on the second equation of system (206) we get:

1 dy2 1
= — (g + 209
Ealay2 dt o (14 12) (209)

Subtracting side by side equations (208) and (209) we get:

1 d 1 d 1 1
@ _ @ _ - L (210)
e dt - ey At 1 e
o 1 1 11
dy, — dys = (— — —)dt (211)
11N €2Y272 T 72
Integrating we get
1 1 1 1
—lny; — —lnyy = (— — —)t+ K (212)
&1 €272 T2
Using some simple properties of logarithmic functions we obtain:
1
€171 1 1
= (— - )+ K (213)
y2€272 M Y2

At the end, using an exponentiation, we arrive at the general solution in the
form:

= elarmap)t=t) (214)

We note explicitly that:
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1. equation (214) does not describe a prey-predator model;

2. equation (214) cannot be used to describe the evolution of the popula-
tions over time.

At this point we are going to examine some special cases of equation (214).

1. if the two populations show an equal aggressivity so that v; = v, we
have a stable solution of the form

YL Yo L
€] — — )& 2]_5
(y?) (yg) (215)

™)

Now we have two sub-cases:

(a) if 1 = 9 we obtain

1 Yo
= == (216)
yis
or
Y2 =3

with & = 3 /y5. We see easily that starting from the initial values
the sizes of the two populations remain constant at those values,
there is no evolution at all.

(b) if &1 # €5 we have
Y1\ Yo\ L
(=) =(5)= (218)
i Yo
and so there is an evolution of the two populations.

2. if the two populations show an different aggressivity so that v; # 9
we, again, have two sub-cases:

(a) % > %2: in this case the exponential on the right side of equation
(214) is positive so that the right size tends to +oo at ¢ tend to
~+o00. This implies that since y; assumes finite values we must have
ya —> 0 so the less aggressive population declines to extinction.)

(b) % < 7%): we can reason as before by exchanging the roles of y;

and 5.

From all this we learn that a population survives the other if it obtains
all the resources independently from the relative magnitude of the growth
coefficients e; and 5 and of the initial sizes of the populations (y{ and v3).
We note that the condition ; = 7, represents more an exception than a rule.
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8.4 The most complex model: prey-predator system

In this case we have two populations with one population that act as
a killer of individuals of the other so to gain environmental control and
supremacy. We obtain the following system of differential equations:

{ d_gél =e1(1 = yy1 — My2)h (219)
% = —52(1 - 72y1 - )\2y2)y2

in which e; and e, represent the two growth factor and the first equation
refers to the prey population whereas the second one refers to the predator
population. In this case we have no more a condition of symmetry between
the two populations and the predator population tends to extinction if the
preys are not enough.

In this case we have

1. the following strictly positive coefficients: €1, €9, Y1, V2, A1, Ag;
2. two known initial values: 3! and y9;
and the following special cases:

1. the population size y; increases according to the logistic function if
there is no predator so that y, = 0;

2. the population size y, decreases if there are not enough preys.

As to the parameters we note that v, v depend on the environment whereas
A1, A2 depend one on the size of the other population so that we can make
the simplifying assumptions that the growth of one populations depends only
on the growth of the other and is independent from the environment. In this
way we can:

1. disregard v, with respect to Ay;
2. disregard 7, with respect to \o;

so that equations of system (219) can be rewritten as:

{ d_ytl — 61(1 - Aly?)yl (220)
= —ea(1 = Xaya)yo

with the aforesaid sign constraints on the parameters. The first equation
relates to the prey population so that if there is no predator (i. e. yo = 0) it
describes an exponential growth (instead of the expected logistic behavior).
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The second equation relates to the predator population so that in absence
of preys (i. e. yo = 0) it describes an exponential decrease. The underlying
hypothesis is that the environment plays a minor role in the evolution of
the populations that depends only on the presence of the predators (for the
preys) and of the preys (for the predators).

The basic idea to get a solution of equations of system (220) is to proceed
with successive manipulations and simplifications till we arrive at a form like
the one shown in equation (214). As a firs step we rewrite the equations of
system (220) as

;\—f% = Aay1 — M2ty 991
_Ardyr N\ ) (221)
T 1Y2 1A2Y1Y2
If we subtract side by side the equations of system (221) we get:
Aoy d A d
28 A2 = M (222)

&1 dt £9 dt
Now we go back to equations (220) and rewrite them as:

dyr __
= (1 = A02) (223
~ Zavs % = (1 - )\2y1)

so that subtracting again side by side we get

1 dy 1 dy
T = oy — A 2924
giyr dit E9ys dt 20 12 (224)

so that if we compare equations (223) and (222) we obtain:

Aadyp  Mdya 1 dy 1 dys

= 225
&1 dt £9 dt 11 dt £9%Y9 dt ( )
Now we can rewrite such equation as:
A A 1d 1d
2y + Py = — L4 224k (226)
&1 €9 €1 Y1 €2 Y2

with K a constant of integration. At this point we can multiply both sides
for dt, integrate and obtain:

= = X A
Iny" +inyy* = =y + —y2 + K (227)
&1 £9

ad, at last, using some simple properties of logarithmic functions:

(y_(l))%(y_z)é _ ei—f(y1—y?)€%(yz—y3) (228)
Y1 Y2
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We note that in equation (228) does not appear parameter ¢ so that we
cannot use that equation to model the behavior over time of the sizes of the
two populations. Equations such as (228) are called phase plane solutions of
prey-predator CDS. Such equations describe a periodically and indefinitely
oscillating behavior.
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9 Ninth lesson

9.1 Phase plane solutions

We go back to equation (228) and rewrite it here for convenience:

(y_(l))%(y_g)é _ ei—f(y1—y?)€%(yz—y3) (229)
Yi Y2

We can rewrite it as follows:

Yi_odom—v9y e (Y2 M9y —
(—6 2(y1 -y )51 (—6 2 )62 =1 (230)
y? Y3
In this way if we put:
1

U — (y_(l]ef/\z(yry?))ﬁ (231)

Y1
V= (Ze ez (232)

Ys

we get the equation of an hyperbola:
Uv =1 (233)

Such an hyperbola allows us to define a phase plane solution of prey-predator
CDS and to see that such a solution oscillates periodically and indefinitely.
In order to study one independently from the other equations (231) and
(233) we can perform some tricky calculations. As to equation (231) we can
evaluate:

dg: — %(z_(ll)e—/\z(yl—y?)) (234)
By equating it to 0 we have:
yl?(l — Ay )e 2w = 0 (235)
so that when .
Yy = o™ (236)

we have a zero of U°'. Furthermore we have that y; = 0 = U = 0 and
U®' = 0: we have thus that U starts from 0 in y; = 0, reaches a maximum in
Y1 = % and then decreases to 0 as y; — oo. To see why this happens it is

sufficent to examine the structure of equations (231) and (232). If we act in
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a similar way for V' (so we evaluate V*2, we derive respect to y» and equate
the derivative to 0) we find a maximum for:

1

=1 (237)
and a similar behavior, with the proper changes. Figure 12 shows (on the
SE part) the phase plane. Phase plane is a set of orbit that are described by
variables related each other by some function (as equation (233) in this case).
It is derived by the graphs of the functions of the tho involved variables (in
our case U and V') as functions of the corresponding variable and by the
graph of their link (and so of U as a function of V'). Such graphs are in the
positions shown in figure 12 and their point-by-point composition gives rise
to the phase plane graph for such pair of variables each one varying according
to the depicted behaviors. To see how it can be used let’s suppose to know
one value of the first variable y; so that we are in point 0. We evaluate U
for such a value than, using the link shown in the NW part of figure 12 we
find the corresponding value of V' (point 1). At this point we draw a straight
line down to intersect the graph of V' as a function of y» and obtain the two
points 2 and 3. To such points correspond two values:

1. the first one (2) is in the decreasing part of the yo, V' curve and to this
point correspond point p of the orbit in the phase plane;

2. the second one (3) is in the increasing part of the yo, V' curve and to
this point correspond point ¢ of the orbit in the phase plane.

Both the two points are admissible points so to distinguish between them
it is necessary to have some additional information. We note that the two
variables y; and ys vary between their extreme values in an oscillating forever
lasting way. We note, also, that since the two variables are linked by the phase
plane orbit their periods of oscillations 77 and T3 are bound to be equal so
that we have:

T, =1, (238)

The system is closed so that, since it is cyclic, it is of no importance which of
the two points (so values of y5) correspond to a given value of y; (on condition
that it is between the extremal values miny; and mazy; ) or which of the two
points (so values of y;) correspond to a given value of 3, (on condition that
it is between the extremal values minys and maxys) and moreover the graph
does not depend on the initial values provided that those values are within
the allowed intervals, and so within, respectively, miny,; and mazy,; and
minys and maxys.
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9.2 Other prey-predator models
9.2.1 Samuelson’s model

Such a model is based on the following set of equations:

W — gy (1 — - A
i 1y1( YY1 1y2) 9239
{ %‘) = —&aya(1 — Aay1) (239)

The first equation describes the preys and the second one the predators. All
the coefficients are strictly positive and we have also the initial values:

1. y(l) = yl(t0)7
2. y3 = ya(to).
We note that:

1. if predators are absent so that y, = 0 the equation of the preys is a
well known logistic;

2. if we impose

dys
— =0 240
we get
. 1
(e N (241)

3. under the assumption of equation (241),if we impose

dy,
— =0 242
we get
1—2n
V= (243)

If we evaluate the Jacobian we find that its eigenvalues are complex conju-
gates with negative real parts so that we have dumped oscillations and, in
the phase plane, we get spiral like behaviors.
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9.2.2 Kolmogorov’s model

It is based on the following equations:

W — fl(ylayQ)yl
{ % = fa(y1,92)y2 (244)

with the initial values:
1. y? =1l (tO)a

We note that f; and f; are functions to be characterized.
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Figure 12: Phase plane (see text for details)
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10 Tenth lesson

10.1 Some loose notes on Kolmogorov’s model

We now go back to Kolmogorov model that can be used in epidemic and
diffusion theory. Such a model is described by the following equations:

dyr
{ i fily, vy (245)
2 = foluyr, y2)yo

with the initial values:
1. y? = yl(tO)a

Functions f; and f; must be differentiable. For any point P = (yy,y2) of the
phase plane we can define a direction vector s that links the origin O to the
moving point P. We remind that:

1. yi(t) is the function describing the preys,
2. yo(t) is the function describing the predators.
Kolmogorov’s model is based on the following assumptions:

1.

224
— <0 246
i (246)
so that f; decreases with increasing ys:
2. of
1
— <0 247
s (247)

so that prey decreases either because of a logistic effect or because of
an increase of prey-predators encounters;

f1(0,0) > 0 (248)

so for small sizes of prey and predators sizes the prey tend to increase;

f1(0,A4) >0 (249)

so exists a constant A such that for a sufficient big size of predators,
prey cannot increase any more;
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’ f1(B,0) =0 (250)
6. o/,
E <0 (251)
the predator growth rate decreases with the size of predator population;
7. o/,
D5 >0 (252)

for a fixed prey/predator ratio an increase in both sizes is an advantage
for the predators;

f2(C,0)=0 (253)

so exists C' such that the predators size can increase iff the size of the
prey population is above C.

Under such assumptions we can have dumped growth rates or undamped
oscillations on the predator-prey solutions. As to the aforesaid constants we
have C' < B where B represents a limitation due to environmental resources
and C depends on the size of the prey population. Under the assumptions
from 1. to 8. we have that a fixed point can be a point of either stable or
unstable equilibrium.

10.2 Piecewise-linear pharmacology CDS

We want a continuous model of drug usage with the aim of getting a
given maximum concentration in a patient’s blood stream. With 7" we define
a period of drug supply that allows the definition of a succession of instances
of drug supply 7,27, ....

The model is given by the following differential equation:

dy
A 254
7 ey (254)

with a given initial condition y(t = ty) = yo. It is easy to solve equation
(254) so to get:
y = yoe (710) (255)

in which ¢ is a constant not dependent on £. We note that:

limy_s 400y = 0 (256)
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Since in equation (255) a total decay requires an infinite time if, after a time
interval equal to T, we give to the patient another dose of drug we start from
a new initial condition:

y1=yo(1+e ") >y (257)
and after another T" we have:
y=yo(1+e " +e ") (258)

until
k

ye =y0(Y_ e ") (259)

i=0
In equation (259) we have a geometrical series of reason r = e~*7 whose
partial sum is:
1— 7Jchl
S=—— 260
1—r (260)
and so (substituting » = e™*7 in equation (260) we get:
1— e*ET(lH»l)
Y = yo(ﬁ) (261)
so that: y
. 0
limg s ooyp = T et~ Yoo (262)

We have a known saturation value so that we can give to the patient an
amount of drug yy = Y~ at once: we know there can be no damage, otherwise
we can act on either yo or T so to modify y,. We note that if ¢ — 0 or
T — 0 we have 1y, —> 00.



