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1 Introduction

The present short notes contain a bunch of basic materials for absolute be-
ginners in economic theory. Such materials essentially come from [MCWG95|
and [Vil04] (though all errors are mine) and include:

1. some remarks on preference relations,

2. an introduction to commodities, consumpion set and competitive bud-
gets,

3. a brief description of the classic demand theory and

4. a short analysis of the Walrasian equilibrium theory in a pure exchange
economy.

The main and basic results of calculus and topology are given for granted
though some of the main concepts will be reminded whenever they are
needed.

2 Basic results

We start with the definition of an abstract set X as te set of possible

mutually exclusive alternatives from which consumers must choose and then
we define a (preference) relation over such a set and, for sake of convenience,
we define a function that represents such a relation and that easier to ma-
nipulate and represent since it takes values on R.
The use of a preference relation considers the tastes of the consumers as
a primitive characteristic of the individual and represents the approach we
will develop in these short notes though it is not the only one, as noted in
[MCWG95], pag 5.

2.1 Preference relations

Preference relations (denoted as ) summarize the tastes of the consumers
and represent binary relations over the set X. The aim of > is to allow the
comparison of pairs of alternatives z, y € X. With the notation z > y we
mean that x is weakly preferred to y or that x is as least as good as y.
From > two more relations are easily derived:

1. a strict preference relation, denoted as >

2. an indifference relation, denoted as ~



The former is defined as z > y <= x > y but not y > x and means that z
is preferred to y.

The latter is defined as x = y <= = > y and y > x and means that z is
indifferent to y.

Of such a group of relations the > is the basic one and is assumed to be
rational that is complete and transitive. Completeness means that any
time we get two items x and y in X we are able to say if z > y or y > x or
both so in no case we can say "we cannot compare x and y".

Transitivity, on the other side, means that (anyway we pick z, y and z in
X) if we can say that z > y and that y > z we are sure that z > 2.
Completeness (from which derives reflexivity) and transitivity embody
the rationality of > preference relation. The fact that > is complete and
transitive (and so is rational) determines the following properties of the
"derived” relations:

1. relation > is both irreflexive and transitive,

2. relation ~ is reflexive (z ~ y V z), transitive and symmetric (so that
ifx ~ytheny ~2aVua yeX),

.ife -yr-z— x> 2

4. ifr ~y -z — x> 2

5. Vx,y € X we have either z > yory > z or z ~ y.

All such properties can be easily derived from the the rationality of ». It is
easy to see that ~ is an equivalence relation over the set X and that both >
and ~ are transitive.

2.2 Utility functions

Once that preference realtions have been defined and characterized we
step further and introduce wutility functions u() that describe preference rela-
tions by assigning numerical values to the elements of X. To be more formal
we say that a function

u: X —R (1)

is an utility function and represents > if for all x and y € X we have
x =y <= u(x) > u(y) (2)

Such a function is not unique since by composing it with any strictly increas-
ing function f : R — R we obtain a new utility function that represents



preferences > as u() did. This allows us to say that utility functions are
characterized by two types of properties: ordinal and cardinal ([MCWG95]).
Ordinal properties are preserved under any strictly increasing transformation
whereas cardinal properties are not preserved under such transformations.
In order to be able to use utility functions in place of preference relations
we need to step further and to establish under which conditions an utility
function represents a preference relation.

According to [MCWG95], pag 9, a preference relation can be represented by
a utility function only if it is rational. To show that this is true we have
to prove that given u() that represents >we have that > is rational and so
is complete and transitive ([MCWG95|, pag 9). To prove completeness we
note that since u() is a real valued function over the set X we must have
either u(x) > u(y) or u(y) > u(z) and so, for the aforestated definitions, we
must have either u(z) = u(y) or u(y) = u(z) and hence completeness.

To show transitivity we suppose that x > y and y > 2z so thatfrom the def-
inition of u() we have u(z) > u(y) and u(y) > u(z) and hence u(z) > u(z)
that implies x > z. we have so proved that > is rational if it is rapresented
with an utility function. Obviously we have z, y and z € X.

The converse is not true: given an arbitrary preference relation we cannot
describe it with an utility funcion without assuming that it is continuos,
further details in forthcoming sections.

3 Basics on consumer choice

We stress the role of the consumer in a market economy in which the
goods and services are available at given and known prices (so that consumers
act as price takers since they cannot influence prices) or can be exchanged
with other goods or services at given and known rates of exchange. We
introduce the following concepts at a very low level:

1. commodity: commodities are the objects that each consumer can
choose,

2. consumption set: defines the physical constraints that limit consumer’s
choices,

3. Walrasian budget set: defines the economical constraints that limit
consumer’s choices and

4. Walrasian demand functiont that defines the decisions of a consumer
under the aforesaid constraints.



The order of exposition follows faithfully the one adopted in [MCWG95] with
some limited diversions in [Vil04].

3.1 The concept of commodity

Every consumer has to decide the consumption levels of the various goods
and services available on the market. Such goods and services are called
commodities. 1t is usually assumed that the number of commodities is finite
and equal to L so that we can use an index [ € {1,..., L} to locate a single
commodity as z;. Commodities are collected in the so called commodity or
consumption vector that contains the list of the amounts of any commodity.
We have!:

r=[r,...,0;] € RF (3)

where R’ is the so called commodity space. With a commodity vector we
represent the consumption levels of a generic consumer and with a component
x; we mean the amount of the commodity [ consumed.

3.2 The concept of consumption set

Consumpion vectors usually suffer limitations owed to a number of physi-
cal or institutional constraints that prevent the consumption of commodities
from assuming negative values or values lower or hifigher than a fixed quan-
tity. Formally we say that we have a consumption set as a subset of R
(denoted as X C RF) and that consumption vectors x € X.

In what follows, on the footsteps of [MCWG95|, we define the consumption
set as the set of the non negative consumption vectors, i.e.:

X=R ={zeR:z >0forl=1,...,L} (4)

If we consider, as an example, the case of two commodities z; and x5 (and so
L=2) we can consider the some of the many conceivable combinations (for
details see [MCWG95| pages 19-20):

1. both z; and z, are continuous and non negative and one of the two (or
both) may have an upper bound,

2. either x; or x5 can take on discrete non negative values while the other
take on continuous non negative values and one of the two (or both)
may have an upper bound,

'Tn these notes we try to avoid, whenever possible, the use of superscripts to denote
vector transposition so the reader should rely on the context to understand if a given
vector is a column or a row vector.



3. both z; and x4 are continuous and non negative and one of the two (or
both) may have a lower bound,

4. both z; and x5 are continuous and non negative without any other
constraint.

At the end of the present section we note tat the main feature of X=R" is
the fact that it is a convex set so that if we have two consumption vectors
z! and 2% in RE and we take \ € [0,1] we get that the convex convolution
r=Ar! + (1 — \)z? € RL. The property of convexity of the set X is very
important in the general development of the theory and will be maintained
throughout the the sections that follows.

3.3 Competitive budgets

At this point we have to face with the the consumption sets that a generic
consumer can afford. In order to do that we introduce the concept of price
vector

p=I[p1,...,pr] €R" (5)

with two assumptions:
1. the prices of the L commodities are all publicly known,

2. the consumers are price takers in the sense taht they cannot influence
the prices since the each consumer’s demand of any commodity is a
small fraction of the total demand for such a good.

Even if nothing imposes that prices cannot be negative (a negative price
simply means that a consumer really pays to consume a commodity) we are
going to assume in what follows that p > 0 so that p, >0V 1 € [1, L].

The fact that a consumer can afford a consumption set depends on:

1. the prices p = [p1, ..., pL],
2. the wealth w of the consumer
since a consumption set x is affordable iff the affordability constraint is sat-

isfied?:
pr=pix1+ -+ prrp < w withX € RE (6)

2We use no special symbol to denote scalar product of two vectors so any product of
two vectors is generally a scalar product and so denotes an element of R.



Such constraints imply that the set of the feasible consumption sets is made

up of the elements of the following set, also know as Walrasian or competitive
budget set([MCWGI5)):

Byw={z € R} : pr < w} (7)

where p are market prices and w is consumer’s wealth. The consumer’s

Xy Xy

wip, A

w/p1

Figure 1: A Walrasian budget set (shaded regions)

problem constists in choosing a vector x € B,,,. Figure 1 represents B, ,,
when L = 2. To have a non trivial solution (i.e. = # 0) we impose w > 0.
The set {z € R} : px = w} is called budget hyperplane or budget line if L = 2
and defines the upper boundary of B, ,, that is so a closed and limited set
(and therefore is a compact set). It is easy to verify that the slope of the
budget line is —ﬁ—; and captures the rate of exchange of the two commodities.
The points were the budget line cross the axis have coordinates:

w w

(0,p2) and (pl,U) (8)
so it is easy to understand what happens if prices varies at a constant w. As
shown in figure 1 price vector drawn at a generic point T of the budget line
must be perpendicular to any vectory lying on such a budget line. Indeed if
we take another point on the budget line, say z’, we have pT = px’ = w and
so p(T — 2') = 0 whence the perpendicularity.
Last but not least we note that budget set B, ,, is convex so that if we take
two consumption sets 2’ and z” in B, ,, and a real value A € [0, 1] and define
a new consumption set as the convex convolution of the others

2= (1-=Nz" + " (9)

7



we have & € B,,, as it is easily verified (simply by using the definition of
B, ., and some elementary calculus).

We note that the convexity of the set B,,, depends on that of the set of the
consumption vectors X (that we posed equal to R"). In general we can prove
that B, is convex as long as X is convex ([MCWG95]). So we have defined
a (Walrasian) demand correspondence (since in general it is multi valued)
x(p,w) that assigns a set of consumption sets x to each pair (p,w). The
reason we have a correspondence is that given a pair (p, w) there can be more
than one vector x than can be chosen by the consumer. If we have only one
vector we say z(p, w) is a demand function. Such a demand correspondence
x(p, w) is supposed to verify the following hypotheses ([MCWG95]):

1. the demand correspondence z(p,w) is omogeneous of degree zero if
z(ap, aw)=z(p, w) for any p,w and a > 0,

2. the demand correspondence satisfies Walras’ law if V p > 0 and w > 0
pr=wV x € x(p,w).

Homogeneity of degree zero? means that if both prices and wealth change in

the same proportion then the affordable consumption sets remain unchanged:
such a property derives easily from the definition of budget set B, ,, since it
is easy to see that B, ,,=Bgp aw. On the other hand the fact that the demand
correspondence x(p, w) satisfies Walras’ law means that the consumer fully
uses his wealth (no savings) over his lifetime. The aforesaid properties are
more correctly derived from the maximization of the preferences (see next
section for details and [MCWG95| for a more serious discussion) and can
be proved that they hold under very general circumstances though we have
posed them here as assumptions.

As noted in [MCWG95|, pag. 24, one immediate consequence of homogeneity
of degree zero is that although z(p,w has L + 1 arguments we can fix the
level of one of them so to normalize with respect to it the other L variables:
usually normalization can be done either in term of one of the prices p; for
some [ or in term of the wealth w by posing it equal to 1. Delving deeper
into the subject is out of the scope of the present notes (and also out of the
ability of the author).

3With the notation p > 0 we mean that any element of p is strictly greater than 0
whereas with the notationp > 0 we mean that every component of p is > 0.

4We can define homogeneity of any degree as follows: f(x) is homogeneous of degree r
if we have f(tz) = t" f(x).



3.4 Concluding remarks

Demand correspondence z(p, w) represents the choices of the consumer
and depends on both the prices p and the consumer’s wealth w under the
hypotheses:

1.p>0
2. w>0.

We can have variations of z(p, w) with w for a fixed vector p (wealth effects),
variations of z(p, w) with p for a given wealth w (price effects) and variations
of z(p, w) with both p and w. In the present subsection we give only a few

simple remarks about wealth effects (see figure 2). More about the topic, as
usually, on [MCWG95].

X2

wip X

wip, 1

Figure 2: Wealth effects

In figure2 we see that as w becomes bigger in the direction of the arrow the
budget set becomes bigger and so the consumer can afford bigger consump-
tion sets.

Indeed, given a vector of prices p we get that the demand correspondence
depends only on the wealth w so we have z(p, w) or the so called consumer’s
Engel function whose image in RY is {z(p,w) : w > 0} is known as wealth
expansion path. The important thing to note is that the % gives the
wealth effect on the [th commodity: if such a derivative is > 0 (and so a
richer consumer can buy a quantity equal or bigger of such a commodity)
than the commodity is called normal wheras if such a derivative is < 0
the commodity is called in ferior so that the richer the consumer is the less

he/she buys of such a commodity. Further details, as usually, on [MCWG95].



4 A few notes on demand theory

4.1 Introduction

In the present section we shadow, as usually, [MCWG95|, chapter 3 in
this case, and start with some notes on preference relations and their main
properties to step, soon after, at introducing utility functions so to close
the section with something about the consumer’s decision problem under the
assumption that we have L commodities whose prices are fixed ad cannot be
influenced by the consumers.

4.2 Basics on preference relations

The first step ([IMCWG95], pag. 41 and followings) is to introduce the
concept of consumer’s preferences over the commodity vectors = in the con-
sumption set X C ]Ri. To describe such preferences we introduce a preference
relation > defined on the set X and require that it is rational and so that it
is:

1. complete ¥ z, y € X we have either x > y or y > x or both, and
2. transitive ¥ x, y and z € X we have x >y and y » 2z = x > 2.

Besides such properties we introduce both desiderability and convexity as-
sumptions.

Desiderability assumptions are captured by the concepts of monotonicity,
strong monotonicity and local nonsatiation and represent the fact that larger
amounts of commodities are preferred to smaller ones. An undrlying assump-
tion is that Vo € X if y > 2 then y € X so any quantity of commodity is
available for consumption.

We say that a preference relation > on the set X is:

1. monotone if given x and y € X we have y > 2 — y > x,

2. strongly monotone if given x and y € X we have y > x and y # z —
Yy -,

3. locally nonsatiated ifVx € X andVe > 03y € X such that || y—z ||< ¢
and y > z.

M onotonicity requires an increase in all the commodities from x to y so that
y > x and therefore if some of the commodities do not vary we can have
indifference between x and y. On the other hand strong monotonicity allows
the increase of only a subset of the commodity so to say that y > x.

10



X X
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Figure 3: LNS, UC(z), LC(z) and I(z) sets, see text for details (from
[MCWGI5]).

In figure 3 we represent (on the left) an example of local non satiability

(LNS): we have a ball with center in = and radius € and another consumption
set y € ]RJLr that is (strongly) preferred to x whereas in the center of figure 3
we show how a thick indifference set violates LN S since if it satisfied LN S
there should be a point y preferred to z and contained in the ball shown
but this contradicts the fact that all the points within the set are indifferent
amongst themselves.
In realtion to the preference relation > we can introduce the three sets on
consumption sets shown on the right of figure 3 and namely: the indifference
set or I(x), the upper contour set or UC(z) and the lower contour set or
LC(X). Such sets are defined as follows:

1. IC(z) ={y e X : y ~ z},
2. UC(x) ={ye X :y =z},
3. LC(z) ={y e X : z = y}.

As to the convezity of = we state the following definition (from [MCWG95]):
a preference relation > on X is convex if V £ € X we have that UC(z) is
convex (see figure 3, on the right) and os if:

yrzandzr-z —ay+(1—a)z -z (10)
for any a € [0, 1].

Convexity conveys the key concept that consumers tend to diversificate their

11



consumption vectors. The above definition has been stated for a generic
set X but, as noted on [MCWG95], can hold only if X is convex. Besides
convexity we use the stronger assumption of strict convexity.

A preference relation > satisfies the property of strict convezity if:

yrzandz =z —ay+(1—a)z -z (11)

with y # z and for any « € (0,1).

The present subsection closes with two properties that allow the deduction
of a preference relation from a single indifference set. Such proporties are
those of homoteticity and quasilinearity. We simply set out the properties
and refer the reader to [MCWG95| for further details.

Homoteticity applies only to monotone preference relations and states that
a monotone preference relation = on X € Rlis homotetic if x ~ y then
ar ~ ay Ya > 0.

A preference relation = on X = (—o0, 00)x RY™" is quasilinear with respect
to commodity 1 (or, in general, respect to commodity [, with the obvious
changes) if:

1. all the indifference sets are parallel displacements of each other along
the axis of commodity 1 so that if x ~ y then (z + ae;) ~ (z + aeq)
with e; = (1,0,...,0) and « € R,

2. good is desiderable and so z + ae; > z V 2 and a > 0.

4.3 Preference relations and utility functions

In this section we introduce a function, called wutility function and de-
noted as u(), tha t can be used to represent preference relations under the
assumption that they are continuous. We omit many details (not omitted on
[MCWG95]) and go directly to the main point.

The basic property we need is that > is continuous. We say that > on X is
continuous if for any sequence {(x", y™ }witha™ = y"Vn with x = lim, 2"
and y = limy,_,~y" we have x > y.

An equivalent way to state continuity of > is to say that Va UC(x) and
LC(z) are both closed. Once established that > is cotinuous we can state
that there is a continuous utility function u : X — R that represents such
a correspondence so that:

=y «— u(r) > u(y) (12)

From that definition and both from the properties of > and those of the real
numbers it is easy to state that:

Ty — u(r) > u(y) (13)

12



and that
x ~y < u(z) = u(y) (14)

We already noted in past sections that the function u() that represents > is
not unique since if we transform it with a strictly increasing function f we
again get a utility function that may be no more continuous but in no way
we stated that all the utility functions must be continuous but only that if
> is continuous then exists a continuous utility function that represents it.
Usually it is also assumed,for analytical convenience, that wu() is either
dif ferentiable or twice continuously differentiable so that indifference sets
are smooth surfaces.

Since there is a correspondence betwwen > and () we have that the proprties
of the former reverberate on properties of the latter so that:

1. monotonicity of = implies that u() is increasing so that u(x) > u(y) if
T >y,

2. convezity of = implies that u() is quasy concave®.
Convexity of = does not imply that u() is concave®. The last two properties
we state with regard to utility functions representing preference relations are
the followings™:

1. a continuous preference relation > on X = R is homotetic iff it is
represented with a utility function u() that is homogeneous of degre
one

2. a continuous preference relation > on X = (—o0,00) X ]Ri’l is quasi-
linear with respect to the first commodity if can be represented with a
utility function u() = x1 + ¢(za,....x1).

4.4 The utility maximization problem

Under the hypotheses that:

1. we have a preference relation that is rational, continuous and locally
non satiated,

"We say that u() is quasiconcave if the set {y € RE : u(y) > u(z)} is convez for all z
or, equivalently, if u(az + (1 — @)y) > Min{u(z),u(y)} Vz,y and Ya € [0, 1].

6.u() would be concave if u(az + (1 — a)y) > au(z) + (1 — a)u(y)

“We call such properties cardinal since are non preserved for an arbitrary increasing
transformation of the utility function in contrast with the properties of being increasing
and quasiconcave that are preserved under such transformations and that, for such a
reason, are called ordinal.
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2. we have a continuous utlity function () that represents such a preference
relation,

3. we have a consumption set X =R’
4. we have prices p > 0 and wealth w > 0

we can state the consumer’s problem of choosing a consumption set within
the Walrasian budget set B,,, = {z € RZ : px < w} so to maximize his/her
utility level as follows

Mazx,>ou(z) st.  pr<w (15)

and call it Utility Maximization Problem or, in short, UM P.

The first thing to state is the existence of at least a solution of such a problem.
We are sure that the problem UMP has a solution if p > 0 and u() are
continuous since a continuous function on a compact set always attains a
maximum value and budget set B,,, = {z € R : pr < w} is compact
because it is both bounded and closed.

At this point we examine both the set of optimal consumption sets and the
values of the function u() on such sets.

Within UMP there is a rule that assigns z vectors to pairs (p,w) > 0.
such a rule is denoted with z(p,w) € RE and is called Walrasian demand
correspondence. For each pair (p, w) > 0, z(p, w) may contain even a set of
elements (and this is the reason we call it correspondence) and verifies the
following properties:

1. is homogenous of degree zero in (p,w) so that x(ap,aw) = x(p,w)
Vp, w and Va € R,

2. satisfies Walras’ law so that pr = w Va € z(p, w),
3. satisfies convexity /uniqueness .

under the assumptions that wu() is a continuous utility function repreent-
ing a locally non satiated preference relation defined on X € ]Ri.
Convexity /uniqueness means that if > is convex so that wu() is quasicon-
cave then z(p,w) is a convex set and that if > is strictly convex then wu()
is strictly quasiconcave and then z(p, w) is single valued. The proof of such
properties can be found in [MCWG95]|, on page 52.

Demand correspondence x(p, w) locates the sets 2 on which UM P attains
its maxima that are described by the indirect utility function denoted with
v(p,w) in R and that for any (p, w) > 0 gives the utility value of the UM P.
As to v(p, w) we simply list its proferties referring the reader to [MCWG95|

14



for their discussion and proof.

Under the assumptions that () is a continuous utility function repreenting
a locally non satiated preference relation defined on X € ]Ri we have that
the indirect utility function v(p, w) is:

1. homogeneous of degree zero,
2. strictly increasing in w and non increasing in p; for any [,
3. quasiconvex so that the set {(p,w) : v(p,w) < T} is convex for any 7,

4. continuous in p and w.

15



5 Walrasian equilibrium

In this ending section we face the Walrasian equilibrium model in its

simplest form and therefore in the case of a pure excahnge economy. Theory
is in itself complex and broad so we must limit to a few hints owing to
limitations in both space and science. For a broader treatment of the subject
we refer the reader to [MCWG95|, chapter 17.
We introduce the notion of aggregate excess demand function and try to
say something about the existence and uniqueness of Walrasian equilibria as
well as about the properties of such equilibria (that generically are finite in
number).

5.1 Pure exchange economy

According to [MCWG95]| in a pure exchange economy the only possible
production activities are those of free disposal. This means that the set of
producers contains only one member (so J =1 and Y} = —]Ri, wher L is the
number of the commodities) while we have I consumers and each consumer
ha a consumption set X; = R%Y and an initial endowment vector w; € R".
We assume that >, w; > 0. The preference relation >; of the consumers is
supposed to be:

1. continuous,
2. strictly convex,
3. locally non satiated.

Within such an economy we say that the set (z*,y*) = (23,..., X}, vy}) of
consumption sets and production at the optimum and a price vector p € RF
constitue a Walrasian equilibrium iff the following conditions are satisfied:

1. y7 <0,py; =0 and p > 0,
2. x;k :xi(p:pwi) Vi€ [1:"'7[]7

3. Zimf_ziwi:yf

The above conditions allow us to say that in a pure exchange economy in
which consumer preferences satisfy the aforementioned conditions a price
vector p > 0 is a walrasiona equilibrium price vector iff:

L
> wi(ppwi) —w; <0 (16)
=1

16



Such a condition introduces the vector z;(p, pw;) —w; € RE as the demand for
each good over and above the amount that consumer i possesses in his/her
endowment vector w;.

Condition (16) suggests a formalization of the excess demand vector for each
consumer and of its sum over the set of the I consumers as a function of the
prices p.

In this way we define for the generic consumer i the ezcess demand function
as

zi(p) = zi(p, pwi) —w; <0 (17)
where z;(p, pw;) is the Walrasian demand function for the generic consumer

© whereas thw aggregate demand function is defined by summing for all the
consumers so to get the following function:

z(p) = Z zi(p) (18)

=1

whose domain is the set of non negative price vectors that includes all strictly
positive price vectors ([MCWG95]).

The use of equation (18) we can paraphrase equation (16) as follows: the
price vector p € RY is an equilibrium price vector iff we have z(p) < 0.

We note that if p is an equilibrium price vector within the economy we have
sketched so far we have:

L. p=>0,

2. z(p) <0and

3. pz(p) = 22 pz(p) = X2 (pxi(p, pwi) — pwi) =0

where we have used (16) and local non satiation. This means that for any
commodity [ we have not only z/(p) < 0 but also z/(p) = 0 if p, > 0. There-
fore if a commodity has a strictly positive price, at the equilibrium it cannot
be in excess supply (so z/(p) = 0) as can happen (so z(p) < 0), instead, if it
is free (and therefore p, = 0).

Following [MCWG95|, the next step is assuming that consumer preferences
are strongly monotone so that from now on we rely on the following assump-
tions:

1. X; =RE forie[l,...,1]

2. All preference relations »; are:

(a) continuous,

17



(b) strictly convex and

(c) strongly monotone.

Under these assumptions any Walrasian equilibrium must involve a price
vector that is strictly positive (i.e. p > 0) otherwise consumers would ask
for infinite quantities of free goods. If preferences are strongly monotone a
price vector p = (py1,...,pr) is a Walrasian equilibrium price vector iff it
causes the full consupmtion of all the goods so to clear the market. More
formally it is a Walrasian equilibrium price vector iff it is the solution of the
following system of L equations and L unknowns:

z(p)=0 Vi=1,...,L (19)

At this point we introduce the properties of the aggregate excess demand
function that are essential in the development of the theory. As usually we
only list the properties with a minimum proof referring the reader, again, to
[MCWG95], chapter 17.

If we suppose that, for every consumer i, X; = ]Rfr, >, satisfies the properties
we fixed before and Zj w;j > 0 then the aggregate excess demand function
z(p) defined for price vectors strictly positive (p > 0) satisfies the following
properties:

1. z() is continuous,
2. z() is homogeneous of degree zero so that z(ap) = z(p)Va > 0,
3. Walras law is satisfied and so Vp € R'+ we have pz(p) = 0,

4. 3 s > 0 such that z/(p) > —s for every commodity [ € [1,..., L] and
price vectors p,

5. if p" — p with p # 0 but for some [ € [1,..., L] we have p, = 0 then
Mazx{z (p"),...,zL(p")} — o0

Properties form (1) to (4) derive directly from the properties of the demand
function z(p,e) (or z(p,w)). Moreover to understand property (4) we have
to consider that z; € X; = RY so that a consumer ¢ cannot supply to the
market a quantity of a good [ that is greater of his/her initial endowment.
Last but not least property (5) means that prices cannot be all equal to 0
but if some price go to 0 then the demand of the corresponding good must
go to oo owing to the fact that preferences are strongly monotone and there
is certainly a consumer whose wealth tend to a strictly positive limit since
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we have p) . w; > 0.

Walras law represents a relation among the price vector, p, and the aggregate
excess demand function, z(p). Such a relation gives a way to verify that a
price vector p > 0 clears all markets® if it clears all markets but one. As
noted in [MCWG95|, page 582, if we have p > 0 and zp) =--- = 2,1 =0
because we have pz(p) = >, pz(p) = 0 and p;, > 0 we must have z7(p) = 0.
From the previous considerations we have that if we define:

z2=(z1(p),...,z1-1(p)) (20)

as the excess demands vector fo L —1 goods but L —th we have that a strictly
positive price vector p is a Walrasian equilibrium iff Z(p) = 0.

After having characterized the aggregate excess demand function z(p) we
step forward to the problem of the exixstence of a Walrasian equilibrium
in a pure exchange economy modelled by means of excess demand function

(IMCWG95], page 584).

Zy

Figure 4: The existence of an equilibrium, all details in the text (from

[MCWG95)).

We have seen that in case of continuous, strictly conver and strongly mono-
tone preference relations within a pure exchange economy with ) . w; > 0 the
excess demand function z() satisfies the aforesaid properties. What we want
to prove now is that any function z() that satisfies those conditions admits a
price vector p such that z(p) = 0. The simplest case is shown in figure 4. We
use the fact that z() is homogeneous of degree zero to normalize with respect

8We note that price vector p clears all markets if z;(p) =0Vl € [1,..., L].
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to the second commodity and put ps = 1 and look for an equilibrium vector
of the form p = (p1,1). After normalization we use Walras law to solve the
following equation

21(p1,1) =0 (21)

Figure 4 presents such a situation in which we have two values p)| where
z1 > 0 and p”; where 2; < 0 and, since 2;(p;, 1) is continuous, there must be
an intermediate value p* € [p}, p”1] where z1(p}, 1) = 0 so that an equilibrium
vector price must exist. All such considerations in the case L = 2 derive fro
the properties we have stated for z(p) and their extension to the general case
L > 2 is not straightforward and will only be sketched in what follows. For
further details we refer, as usually, to [MCWG95].

To investigate the general case, followig [MCWG95|, we suppose that z(p) is
a function defined for p € R%, and satisfies the following conditions:

1. z() is continuous,
2. z() is homogeneous of degree zero so that z(ap) = z(p) V a > 0,
3. Walras law is satisfied and so Vp € Ri+ we have pz(p) = 0,

4. 3 s > 0 such that z(p) > —s for every commodity [ € [1,..., L] and
price vectors p,

5. if p" — p with p # 0 but for some [ € [1,..., L] we have p, = 0 then
Maz{z (p"),...,z(p")} — 0.

If all this is verified then the system z(p) = 0 has a solution so that a
Walrasian equilibrium price vector p exists in a pure exchange economy in
which preference relations of the consumers are continuous, strictly convex
and strongly monotone and the vector of the aggregate endowments is strictly
positive (i.e. Y. w; > 0).

The identification of an equilibrium price requires a proof made up of five
steps preceded by a normalization process.

we start with the normalization process that involves a normalization of the
prices p. In order to do so and since the functio z() is omogeneous of degree
zero we define a unit simplex of the prices as follows:

A={peR;:) p=1} (22)

and look for an equilibrium price vector p € A though the function z(p) is
well defined only if p € intA = {p € A : p, > 0V I}. Summing up the five
steps aims at:
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1. construct a correspondence from A to A (the first two steps),

2. argue that any fixed point of the correspondence is a vector price p*
that belongs to the correspondence and is a solution fo z(p) = 0 (the
third step),

3. prove that the correspondence is convex valued and closed graph (the
fourth step),

4. and finally (in the fifth step) use Kakutani’s fixed point theorem to
prove that such an equilibrium price vector as a fixed point of the
correspondence necessarily exists.

During the first step whenever p > 0 we define f(p) = {¢ € A : z(p)qg >
2(p)qd'Vq' € A} so that given the current set of prices p we define a new price
vector ¢ that maximizes the value of the excess demand vector z(p). If f()
is a rule that adjusts prices in a direction that eliminates any excess demand
the correspondence f() assigns the highest prices to the commodities that
are most in excess demand.

So we have

fp)={qgeA: q=0if z(p) < Max{z(p),...,z1(p)}} (23)

We note that if z(p) # 0 for p > 0 then (from Walras’ law) we have z(p) < 0
for some [ and zy(p) >= for some ' # [. So, for such a p, if ¢ € f(p) then
there is [ such that ¢, = 0.

If z(p) # 0 then f(p) € YA 9. After the fixed point correspondence for p €
intA, we define we define the correspondence for vA. If p € YA we define

fp)={q€A :pg=0} ={g€ A :q=0ifp>0}} (24)

Since p; = 0 for some [ we are sure that f(p) # (). Moreover no price on
the boundary of A can be a fixed point because pp > 0 whereas pg = 0 V
q € f(p)

At this point we have that a fixed point of the correspondence f() is an
equilibrium. If p* € f(p*) we must have p* ¢ JA and so p* > 0. If z(p*) #
0 then f(p) C YA which is incompatible with p* € f(p*) and p* > 0 hence
if p* € f(p*) it must be z(p*).

Last two steps aim at proving that the correspondence is:

1. convex-valued so that for any price vector p we have a convex set and

9With YA we denote the boundary of A and so A — intA.
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2. closed graph

and at showing that a fixed point necessariliy exists by applying Kakutani’s
fixed point theorem. According to such a theorem any convex valued, closed
graph correspondence from a nonempty, compact, convex set into itself has a
fixed point. Since both A and f() satisfy such conditions we are necessarily
sure that there exists a price vector p* that is an equilibrium price vector so
that p* € f(p*). The proofs given in the present notes is not complete and at
times obscure. A much more plain and clear proof can be found, as usually,
on citeMas-Colell:95, page 586.
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A Appendix

In the present section we introduce an even simpler version of Walrasian
equilibrium than that we presented in Section 5. The section is divided in
three parts: in the first two we introduce some basic elements and definitions
whereas in the last one we enunciate two theorems, one with regard to the
existence of the excess demand correspondence and the other to the existence
of an equilibrium price vector. We, moreover, try to highlight any underlying
assumption and present the economical meaning (if any) of the symbols we
introduce.

A.1 Preliminaries

The very basic concept is that of an economy defined as a set of pairs
(up, ep,) one for each consumers h € {1,..., H}. In each pair we have the
utility function uj, and the so called endowment e, of each consumer. Each
utility function represents a preference relation of each consumer.

Once defined the concept of economy we can specialize it in various ways. To
do so we now introduce three assumptions, two explicits and one implicit.
The first assumption (implicit) is that our model of economy is a model under
certainty so that the behaviour of the consumers is deterministic. The other
two explicit assumptions are:

1. economy is a pure exchange economy with finitely many commodities
and finitely many agents or consumers,

2. consumers are price takers so that cannot influence prices.

This means that we abstract from production and assume that consumers
with their initial endowments of the commodities that characterize the econ-
omy go to the market where they see prices fixed in some way they cannot
influence and exchange their commodities at these prices so to maximize their
own utility.

We have an economy with an equilibrium price and an allocation of com-
modities where markets clear (so every consumer gets what he/she wants)
and everybody optimizes.

To be more formal, we consider an economy with:

C commodities | € C={1,...,C} (25)
H consumersh € H={1,...,H} (26)

a vector of prices p € Rﬁ, a family of sets x) € Rﬁ, that are the consumption
sets of the consumers, and a family of sets e, € ]Rg that are their initial

23



endowments.

At this point we give some definitions so to formalize that each consumer has
a basket of consumption goods over which he/she can express a preference
relation (represented through a utility function).

Definition A.1 The consumption set of each consumer is a subset of the
commodity space Rﬁ, denoted by X C Rﬁ, whose elements are the consump-
tion bundles that each consumer can conceivably consume given the physical
constraints imposed by his/her environment.

Definition A.2 Consumers are supposed to be rationals so that their
preference relations »=p are both complete and transitive so to allow an
ordering of the consumption sets. Continuous preference relations can be
represented with continuous functions called utility functions. Formally we
have that an utility function for consumer h, uy : ]Ri — R, represents
preference relation =, if, for all x1 and x5 € RS, we have

T =p Te = up(x1) > up(z2) (27)
so that uy, is a numeric representation of »y.
Before introducing the problem that every consumer faces in our economy
and so that of maximizing his/her utility, we have to describe in some way the
set within which each consumers can choose his/her consumption sets under
two constraints: the prices p he/she sees on the market and the endowment

e, he/she has.
We, therefore, define the budget correspondence [ as

B:R{ xR -— RY (28)
that, for each pair (p, ep,), defines the so called budget set:
B(p,en) = {zn € RS : pxy < pey} (29)

Budget sets define, for each consumer, the consumption sets that such a
consumer can afford given market prices and personal endowment. The aim
of each consumer is the maximization of the personal utility u;() and so the
solution of the following Utility Mazimization Problem(in short UM P):

Max,, cre un(zp) (30)

subject to
pTp < pep (31)
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Relations (30) and (31) represent the formal description of UMP and mean
that each consumer chooses a consumption set within his/her budget set so
to maximize his/her own utility. We are sure that such a problem has at
least a solution from Weierstrass theorem since 3(p,ep) is a compact set (it
is closed and limited) and function u() is supposed continuous.

The way consumers choose their consumption sets is through the demand
correspondence xy(p, ey) defined as follows:

zp R —— RY (32)

such that:
xp(p, en) = argmax(UM P) (33)

Demand correspondence is characterized in the following closing definition:

Definition A.3 Demand correspondence x;(p, ey) is homogeneous of degree
zero so that z,(ap, ae) = z,(p, e) for any p,e and a > 0.

Homogeneity of degree zero says that if both prices and endowment change
i the same proportion, then the individual’s budget set does not change, as
can be easily seen from its definition.

A.2 Some maths

We list here, with some comments, three theorems and a definition that
prove very useful in the field of Walrasian equilibrium, even in the simplified
version we are describing in the present notes: Weierstrass theorem, Maxi-
mum theorem, Kakutani’s fixed point theorem and Walras’ law.

Theorem A.1 (Weierstrass theorem) A continuous function
up tA—R (34)
on a compact set A attains a mazimum and a minimum value.

We use such a theorem, in the characterization theorem, to prove that z()
is a well defined function and, in the existence theorem, to prove that a
correspondence we define there is not empty valued.

Theorem A.2 (Maximum Theorem) Consider a budget correspondence
(3, an utility function uy,, a demand correspondence x,, and the indirect utility
function v: RS, x RY = R, v: (p,e) = maz(UMP).

Assume that (3 is (non-empty valued), compact valued and continuous, uy,
continuous. Then
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1. xp is (non-empty wvalued), compact valued, upper hemicontinuous

(UHC) and closed;

2. v 18 continuous.

Theorem A.3 (Kakutani’s fixed-point theorem) Suppose that A C RY
is a nomempty, compact, convex set, and that ¢ : A —— A is a closed
correspondence with the property that set ¢(x) C A is nonempty and conver
for every x € A. Then ¢(-) has a fized point; that is there is an x € A such
that x € ¢(x).

We use Kakutani’s fixed-point theorem in the existence theorem to show
that the correspondence we have defined there defines an equilibrium price
vector p*. To show that we define a correspondence p : S —— S and than
prove that S is convex, compact, i is not empty valued, conver valued, closed
graph so that we can use the theorem and be sure that ds* € S such that

s* € p(s*).

Definition A.4 (Walras’ law) We have it in various versions and we list
them here one after the other. We denote with x,(p,wy) the demand corre-
spondence of consumer h, wp, > 0 the consumer’s wealth, e, the consumer’s
endowment, p > 0 the vector of the prices and z(p) the excess aggregate
demand correspondence.

pz(p) = 0Vp (35)
px, = wp Yy, € x(p, wp) (36)
px(p,wy) = w ¥p and wy, (37)
px, = pep YV, € x(p,ep) (38)

We can, indeed, describe a consumer either in terms of a monetary wealth
wy, or of an endowment of goods e,. We use the definition as a thesis in the
characterization theorem as an hypothesis in the existence theorem.

A.3 Characterization and existence

We have two theorems, one of characterization and one that allows the
definition of an equilibrium price vector p. The first theorem, actually, char-
acterizes the excess aggregate demand correspondence z(p) in terms of:

1. the demand correspondence xy(p, ey) '

10Tn what follows argument e, will be disregarded in the notation for ().
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2. the endowment e,

of each consumer h € {1,...,H}. We call z(p) excess aggregate demand
correspondence because it represents the difference between what consumers
have and what they want, summed for all the consumers. More formally, we
have:

Z == th(p) —ep (39)

The basic hypotheses involve the utility function (uy : R® + 1) and the de-
mand correspondence of each consumer: the first must be continuous ant
strictly increasing whereas the latter must take up values in ]RE and be ho-
mogeneous of degree zero so to "absorb" scalings of the parameter p by a
factor a > 0. Through such a theorem we prove that z(p) is well defined (so
it is not a pure formalism but has a real meaning), continuous, homogeneous
of degree zero, bounded from below and satisfies boundary conditions (so that
if one of the prices go to 0 the z() is unbounded).

The second theorem is a theorem of eristence and, by using as hypotheses
the conclusions of the first theorem about ezcess aggregate demand corre-
spondence, aims at saying that an equilibrium price vector p* > 0 exists
such that z(p*) where with the term equilibrium price we mean a price vec-
tor such that demand equals supply. The proof strongly rely on Kakutani’s
fizxed point theorem we introduced in the previous subsection.

We note that the theorem proves that an equilibrium price vector exists
but in no way gives tools for its determination or says something about its
uniqueness. We stop here, referring the reader,as usually, to [MCWG95].
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