## Parallelization Strategies for the Ant System



Lorenzo Cioni

Dipartimento di Informatica e-mail: lcioni@di.unipi.it

## Topics of my talk

- A few words on *metaheuristics*
- A few words on parallel processing
- The *Ant System* (serial version)
- The Ant System (parallel versions)
- Exploiting Parallelism
- Algorithmic issues
- Conclusions

## Metaheuristics (μετα ευρισκειν)

- Metaheuristics are strategies that "guide" the search process, their goal is to efficiently explore the search space so to find (if any) optimal solutions.
- *Metaheuristics* range from simple local search procedures to complex learning processes.
- *Metaheuristics* are not problem specific and usually make use of domain specific knowledge in the form of heuristics.
- Metaheuristics make use of (well balanced)
   diversification (move to unexplored areas of the search
   space) and intensification (intensively explore areas of
   the search space) techniques.

## Classification of Metaheuristics

- Nature-inspired vs. non-nature-inspired
  - \* Genetic Algorithms, Ant Algorithms
  - \* Tabu Search, Iterated Local Search
- Population-based vs. Single Point Search or Trajectory Methods
  - \* Genetic Algorithms, Ant Algorithms
  - \* Tabu Search, Iterated Local Search, Variable Neighborhood Search
- Dynamic vs. static objective function
  - \* o.f. modified during search or kept unchanged
- One vs. various neighborhood structures
- Memory usage vs. memory-less methods
  - \* Use or not of the search history, short-long term memory

## Parallel Computing 1

- "True" parallel computing (MIMD): concurrent execution of control flows on data flows
- Two approaches:
  - \* shared memory: concurrent access to memory locations, conflicts
  - \* message passing: communication overhead
- Three models:
  - \* Synchronous: synchronization points (fork-join), communication overhead
  - \* Asynchronous: independent flows, local minima
  - \* Partially Asynchronous: mixed approach, ratio local computation/global computation

## Parallel Computing 2

#### Parameters:

- \* the ratio of computation, communication and idle times in relation to the total simulated execution time
- \* the speedup S(N)=T(1)/T(N)  $N=n^{\circ}$  of processors
- \* the efficiency E(N)=S(N)/N
- \* the efficacy  $\eta = S(N)E(N)$
- Exploiting parallelism (to be refined):
  - \* Analytical techniques
  - \* Simulation models
  - \* Measurement experiments

## Ant System 1

- Metaheuristic
  - \* nature-inspired, population-based
    - → real ants (population) searching for food
- Basic elements:
  - \* cooperating agents (artificial ants)
  - \* set of rules:
    - generation
    - → update
    - → usage
      - of <u>local</u> and <u>global</u> information so to find <u>good solutions</u>
  - \* local heuristic function: examination of feasible solutions
    - artificial ants searching the solution space mimic real ants looking for food

## Ant System 2 Traveling Salesperson Problem

- Complete weighted graph G=(V, E, d), V={ $v_i$ : i=1, ..., n}, E={ $(v_i, v_j)$  i $\neq$ j},  $d_{ij}$  weight (distance or cost) of the arc ( $v_i, v_j$ );
- minimum cost hamiltonian tour;
- given n cities TSP:
  - $\star$  the m artificial ants are distributed on the n cities according to some rule;
  - \* at the start of each iteration all cities but the assigned ones can be visited  $(\Omega)$ ;
  - \* each ant decides independently which (not yet visited) city to visit next (Tabu list);
- selection probability of **j** from **i**  $(p_{ij})$  varies **directly** with the pheromone trail (intensity, *adaptive memory*, parameter  $\alpha$ ) and **inversely** with distance (*visibility*, parameter  $\beta$ )
- the city selection process is repeated until all ants have completed a tour;
- at each step of an iteration  $\Omega = \Omega \setminus \{j\}$ , if  $\Omega = \{k\}$  then k with  $p_{ik} = 1$ ;
- each ant k evaluates the length of the tour  $L_k$ : a best tour is found and updated;
- the trail levels of pheromone are updated (every ant has the same quantity per tour);
- the **shorter** the tour the **more** pheromone per unit length;
- (analogy to nature) pheromone evaporation ( $\rho$ ): avoids early convergence.

## Ant System 3

## Traveling Salesperson Problem: probability and pheromone update

(1) 
$$p_{ij} = \begin{cases} \frac{[\tau_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{h \in \Omega} [\tau_{ih}]^{\alpha} [\eta_{ih}]^{\beta}} & \text{if } j \in \Omega \\ 0 & \text{otherwise} \end{cases}$$

where 
$$\eta_{ij} = \frac{1}{d_{ij}}$$

where

 $\tau_{ij}$  intensity of trail between cities  $v_i$  and  $v_j$   $\alpha$  parameter to regulate the influence of  $\tau_{ij}$   $\eta_{ij}$  visibility of city  $v_j$  from city i  $\beta$  parameter to regulate the influence of  $\eta_{ij}$   $\Omega$  set of cities, that have not been visited yet

distance between cities  $v_i$  and j

$$\tau_{ij}(t+1) = \rho \tau_{ij}(t) + \Delta \tau_{ij}$$
 (2)

where 
$$\Delta \tau_{ij} = \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$
 and  $\Delta \tau_{ij}^{k} = \begin{cases} \frac{1}{L_{k}} & \text{if ant } k \text{ travels on edge } (v_{i}, v_{j}) \\ 0 & \text{otherwise} \end{cases}$ 

where t iteration counter  $\rho \in [0, 1]$  parameter to regulate the reduction of  $\tau_{ij}$   $\Delta \tau_{ij}$  total change of trail level on edge  $(v_i, v_j)$  m number of ants  $\Delta \tau_{ij}^k$  change of trail level on edge  $(v_i, v_j)$  caused by ant k  $L_k$  length of tour found by ant k

## Ant System: the sequential version

```
Initialize

For t = 1 to T

For k = 1 to m do

Repeat until ant k has completed a tour

Select city v_j to be visited next

with probability p_{ij} given by equation (1)

Calculate the length L_k of the tour generated by ant k

Update the trail levels \tau_{ij} on all edges according to equation (2)

End
```

- Titerations, n cities m ants: O(Tmn²)
  m=n, one ant in each city: O(m³)
- "Natural" parallelism: during each iteration ants behave independently from each other

## Ant System: parallelization



synchronous (left) vs. partially asynchronous (right)

## Parallel Ant System: speedup

- Basic hypotheses (a little bit unreal):
  - \* no communication overhead, infinite number of processing elements (workers), 1 process (ant) -1 worker

$$S_{asymptotic}(m) = \frac{T_{seq}(m)}{T_{par}(m,\infty)} = \frac{\mathcal{O}(m^3)}{\mathcal{O}(m^2)} = \mathcal{O}(m)$$

- More realistic assumptions:
  - ★ communication overhead, finite number of workers N « m (number of ants), 1 set of processes -1 worker (load balancing)

$$S(m,N) = \frac{\mathcal{O}(m^3)}{\mathcal{O}(m^3/N) + T_{ovh}(m,N)}$$

- Partially asynchronous solution:
  - \* 1 set of processes -1 worker, local iterations and global synchronization
  - \* reduced communication overhead, good values may be "broadly" ignored
  - \* ratio local/global is a crucial parameter (5 in the experiments)

## Exploiting parallelism

- Behavior evaluation:
  - \* analytical techniques
    - \* abstract, simplified model of parallel program characteristics, complexity in estimating communication overhead
  - \* simulation models
    - → discrete event simulation
    - input: description of the parallel program structure (three computational tasks: compute tour, local update, global update, two communication blocks: broadcast of trails, collection of paths)
    - input: resource requirement specification
    - \* assumption: time to send a message=fixed startup+ variable time depending on the size of the message
    - \* assumption:multiple simultaneous communications without contention
    - output: trace file with time stamps of starts and stops of each task/block
  - \* measurement experiments on a real implementation
    - data dependent

### Synchronous vs. Partially Asynchronous 1



# Synchronous vs. Partially Asynchronous 2

- 1. the ratio of computation, communication and idle times in relation to the total simulated execution time.
- 2. the speedup S(N) = T(1)/T(N),
- 3. the efficiency E(N) = S(N)/N, and
- 4. the efficacy  $\eta(N) = S(N) \cdot E(N)$ .









Problem Size



#### Variants

- Gain in speedup with the same quality or better quality with the same speed or both;
- Synchronous: rule for grouping processes and assigning to workers;
- Partially Asynchronous: also ratio local/global iterations I<sub>i</sub> i=1, ..., N;
  - \* the higher I<sub>i</sub> the lower the communication overheads but the easier workers get trapped in local minima:
    - → static approach: I<sub>i</sub> constant;
    - dynamic approach: I, from low to high;
- Processes (or ants) grouping:
  - \* assignment to workers: random or rule based assignment (distance criterion or quality)
  - \* dynamics: assignment only once or repeated after several global or local computations;
- Ants ranking according to solution quality so that only best ranked ants can update trails
- Use of local search to improve the solution generated by artificial ants

## Closing remarks

- two parallelization strategies
  - \* synchronous (S),
  - **★** partially asynchronous (PA, local/global = 5 in the experiments)
- discrete event simulation to evaluate performances
- (PA) performs better than (S) owing to reduced communication frequency among workers (very important on real parallel architectures)

## Bibliographical references

- Christian Blum, Andrea Roli "Metaheuristics in Combinatorial optimization: Overview and Conceptual Comparison", ACM Computing Surveys, vol. 35, n° 3, September 2003
- Bernd Bullnheimer, Gabriele Kotsis, Christine Strauß,
   "Parallelization Strategies for the Ant System", Report Series,
   Report n° 8, October 1997, University of Economics and
   Businness Administration, Vienna