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Abstract

Electoral systems are complex entities composed of a set of phases
that form a process to which performance parameters can be associ-
ated. On of the key points of every electoral system is represented by
the electoral formula that can be characterized by a wide spectrum of
properties that, according to Arrow’s Impossibility Theorem and other
theoretical results, cannot be all satisfied at the same time. Starting
from these basic results the aim of the paper is to examine such prop-
erties within a hierarchical framework, based on Analytic Hierarchy
Process (AH P) proposed by T. L. Saaty ([Saa80]), performing pair-
wise comparisons at various levels of a hierarchy so to get a global
ranking of such properties. Since any real electoral system is known
to satisfy some of such properties but not others it should be possible,
in this way, to get a ranking of the electoral systems according also
to the political goals both of the voters and the candidates. In this
way it should be possible to estimate the relative importance of each
property with respect to the final ranking of every electoral formula.

1 Introduction

The present paper contains both the description of a ranking method
and some applications of that ranking method on the properties we wish our
voting systems satisfy.

*I wish to thank Dr. Franco Vito Fragnelli and Prof. Giorgio Gallo for their help and
advices.



Our aim is to investigate if through a hierarchic ranking of properties we can
devise a ranking of electoral methods (or even an electoral method).

The paper is structured as follows. After a very short description of the
ranking method we propose some notes on electoral systems and list, with
some comments, the properties we wish the various electoral systems satisfy.
Afterwards we are going to perform a simple ranking exercise and introduce
the actors whose points of view and interests we are going to consider, voters
and candidates. The next step is the application of the method to more
complex cases so to get a certain number of ranked orderings. The last step
is the association between some orderings and some more or less classical
voting methods. The paper, in a classic way, closes with some remarks and
plans for future works.

2 The mathematical tool

AHP is both a method and a tool developed by T. L. Saaty ([Saa80])
and used by himself and others in many fields (see for instance [SK85] and
[BRO4])*. Tt represents a useful investigation tool in all cases we have to
rank n alternatives depending on their order of importance or preference
(with respect to some actors and to a general or main goal) and on the basis
of qualitative valuations expressed using numerical values on a ratio scale.
After an analysis phase that allows the identification of a set of elements,
we define a hierarchy among these elements under the form of a rooted hi-
erarchy?. At the root (level [ = 0) we have the main goal, in many cases of
political nature, at level 1 we may have the actors , at level 2 the policies, at
level 3 the criteria and, last but not least, at the level of the leaves we have
the alternatives®. In Figure* 1 we show a somewhat simplified hierarchy with

!The topic is really complex and wide. It is obvious that in this Section we cannot
scratch but the very surface. Anyway [Saa80], though hard to find, is a good starting
point.

2We have a hierarchy with a root at level I = 0 and a set of elements at the deepest
level from the root that we call leaves and that contain the alternatives we want to rank
with respect to the root. The hierarchy does not contain any cycle because the arcs are
covered either from the root to the leaves (analysis phase) or from the leaves to the root
(synthesis phase).

3 Any of these levels may be missing but, on the other hand, more levels can be added
if this is required by the problem at hand. The minimal number of levels is three: the
main goal at level [ = 0 and two more levels.

4A hierarchy is defined complete if all the elements at two contiguous levels are con-
nected by exactly one arc (so that if they have respectively n; and ns elements between
the two levels we have ny x ny arcs) otherwise it is termed as incomplete. In this paper
we are going to consider only hierarchies of the first type.



Figure 1: Ezample of a complete hierarchy

a main goal (MG), three actors (acl, ac2 and ac3) four criteria (the cri) and
three alternatives (A, B and C'). Our example rooted hierarchy has therefore
a depth® d = 3.

Given any level ¢ € [0,d — 1], if we want to evaluate the importance of the
elements at level 1+ 1 with respect to those at level ¢ we can build m matrices
n X n where n is the number of elements at level ¢ + 1 and m is the number
of elements at level 7. In case of Figure 1 we have one matrix 3 x 3 to weight
the importance of the actors with respect to the main goal, three matrices
4 x 4 to weight the importance of the criteria with respect to the actors and
four matrices 3 x 3 to weight the alternatives with respect to the criteria. All
this represents what Saaty calls the analysis phase. Such phase is carried
out by the actors that have a common goal and that, either individually or
in co-operation, evaluate the matrices of the pairwise comparisons.

Between each pair of consecutive levels 7 and 7 + 1 each matrix is evaluated
performing pairwise comparisons between the elements of level 71+1. If we call
A one of those matrices we have that its elements a;; (with 4,5 =1,...,n)
assume positive values from an a priori defined scale and satisfy the following
conditions:

1. aiizl

o= L
2. aj; = ”

If matrix A satisfies such properties it is called positive reciprocal. We note
that a;; can assume a value (that represents the relative importance of ele-
ment ¢ with respect to element j) from the following scale of values ([Saa80]):

With the term depth we define the number of arcs from an element of the hierarchy
to the root along the shortest path.



1 to denote equal importance, 3 to denote a weak importance of one over the
other, 5 to denote essential or strong importance of one over the other, 7 to
denote very strong or demonstrated importance of one over the other, 9 to
denote absolute importance of one over the other, 2, 4, 6 and 8 to denote
intermediate values whereas a;; assumes the reciprocal value (or vice versa).
At this point (see Figure 1) we have to switch to the synthesis phase®
whose aim is the definition of a normalized vector of priorities of the three
alternatives with respect to the main goal. The calculation of such vector
turns into a series of eigenvalue/eigenvector problems. To see how this can
hold we need some preliminary steps.

Once the matrices have been defined we have to define for each of them a
normalized vector” w of weights w; € [0, 1]. Such weights are obviously not
known in advance otherwise we could write:

Wy
i =y (1)
with 7,7 = 1,...,n. For the moment let us suppose we live in an ideal world

so that the weights are known. From (1) we can get:

w.
ay—t =1 (2)
13

or (through simple algebra):

n

Z ai]-wj = nw; (3)

j=1
with i = 1,...,n. In compact form we can write equation (3) as:

Aw = nw (4)
with w = (wq,...,w,). It is easy to see that (4) is an eigenvalue/eigenvector
problem where n is the eigenvalue and w is the associated eigenvector. Owing
to the particular form of the matrix A, if we denote with \; (i = 1,...,n) its
eigenvalues, we have:

n
i=1

We know from equation (4) that n in an eigenvalue of A so that (from
equation (5)) all the other eigenvalues are equal to 0. The case where we

6The synthesis phase is a purely computational phase whose aim is the evaluation of a
vector of priorities with the highest accuracy.
TAs a normalization condition we have Y i, w; = 1.
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know the elements of A through the elements of w is the so called consistent
case. In this case matrix A is said consistent®. If we now suppose to know the
elements of the matrix A (through a set of pairwise comparisons) but not the
weights w we can solve the problem® (4) and obtain the maximum eigenvalue
Amaz and the associated eigenvector w. We note that if A is consistent, from
the preceding remarks we have that A,,,, = n is the only non null eigenvalue
to which the required eigenvector of the weights is associated.

If, on the other hand, A is not fully consistent we have that \,,.,, & n and
the other eigenvalues are such that A; ~ 0. In this case the eigenvector!'® w/’
represents a proxy of the “real” eigenvector w and such approximation is the
better the more \,,,; tends to n. The methods has been indeed endowed by
Saaty ([Saa80]) with a criterion that allows the evaluation of the consistency
both of the matrix A and of eigenvector w we obtain from it. Such criterion,
if it is violated, does not prevent the use of such results but simply gives a
strong hint that pairwise comparisons must be carefully revised so to attain
to a better set of pairwise rankings.

The criterion is basically grounded on the definition of a consistency index
C.I. and a comnsistency ratio C.R. The former is defined as:

)\ma:r —-n
—_— 8
— (8)
Such index is compared with the average random index R.I. R.I. represents
the consistency index of a randomly generated reciprocal matrix on the scale
1+ 9. It allows us to obtain the C.R. index as a ratio:
C.I.
C.R =— 9
R.I. )
Values of C.R. lower than 0.10 defines the matrix A we are working with as
acceptable, slightly higher values must be considered with care, really higher

8We note that in the general case the matrix A is consistent if and only if its elements
satisfy conditions 1. 2. and the following transitive relation:

Aij = QikQkj (6)

with i,5,k=1,...,n.
9We note that owing to the structure of a consistent matrix A all the eigenvalues are
non negative. In the general case a problem such as:

Aw = lw (7)

can be solved by imposing det(A — AI) = 0 so to define the eigenvalues and the associated
eigenvectors.
'9Again such a vector must satisfy the normalization condition Y\ w} = 1.



values should turn into the rejection of the matrix A. On [Saa80] the follow-
ing table of averages R.I. values is provided:

121345 |6 |7 8]9 10|11 12|13 | 14| 15
00 ].58|.9] 112 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 151 | 1.48 | 1.56 | 1.57 | 1.59

where the values on the first row are the dimension of A whereas those on
the second row are the values of the corresponding average'! R.T.
At this point we have the matrices A; and the associated eigenvalues A; and
eigenvectors w; and of each matrix we can say if it is enough consistent or
not. We have to combine all these bricks together so to obtain a ranking of
the alternatives with respect to the main goal.
If we call A; the matrix of the pairwise comparisons between the n; elements
at level 1 with respect to the main goal (level 0) we have a vector of the
weights of n; components that we may call L. If at level 2 we have ny ele-
ments through pairwise comparisons we get n; matrices ns X ny and therefore
ny eigenvectors of n, elements each. In this way we can construct a matrix
no X ny and call it Ly. At this point if we want to evaluate the weights of
the elements at level 2 with respect to the main goal we can simply evaluate
the product:

Ly Ly (10)

so to get a normalized vector of ny elements. In a similar way we can define
the matrices of the pairwise comparisons of the elements at level 3 with
respect to those at level 2, be it Ay, and define the matrix Ls; of the vectors
of the weights. In order to get the weights of the elements at level 3 with
respect to the main goal we can evaluate:

LsLyL, (11)

so to get a normalized vector of n3 elements. Further practical details will
be given in the next Sections. For the moment we only note that through
equations such as (10) and (11) we flatten the hierarchy by evaluating the
priorities of the elements of any level with respect to the main goal.

The last step is a set of computationally “light” procedures for the evaluation
of the normalized eigenvectors from the matrices A; without solving the as-
sociated characteristic equations. In [Saa80], pages 19 and 20, five methods
of increasing precision and complexity are provided. All such methods are
based on the particular form of matrix A.

Tt is easy to understand why in cases n = 1 and n = 2 the problem of consistency
cannot arise. More precisely the problem of consistency arises only when the dimension
of the matrices is greater than 2.



1. The less precise—+less complex. We sum the elements of each row and
divide such a value with the sum of all the elements of the matrix. The
ratio for the i-th row gives the i-th element of the eigenvector w that
is normalized by construction.

2. Higher precision+higher complexity. We sum the elements of each
column and then we evaluate the reciprocal of each sum. To normalize
we divide each reciprocal with the sum of the reciprocals.

3. Good precision--higher complexity. We evaluate the sum of the ele-
ments of each column and divide each element of a column for that
sum (we normalize each column) so to obtain a new matrix. At this
point we sum the elements on each row of the new matrix and divide
the sum for the dimension of the matrix. In this way we evaluate an
average over the normalized columns.

4. Good precision+higher complexity. We multiply the elements of each
row among themselves, evaluate the n—th root (if n is the dimension
of the matrix) of that value and, lastly, normalize each of such values.

5. Exact solution+highest complexity. We raise the matrix A to an ar-
bitrarily large power and then divide the sum of the elements of each
row of the resulting matrix by the sum of the elements of such matrix.

Precision of every method is measured by comparing the results with those
obtained by solving the corresponding characteristic equations. We note that
if we evaluate the principal eigenvector w we can evaluate the associated
eigenvalue by solving directly equation (7). In this way, if the matrix A
is consistent, we get n identical values otherwise we get n slightly different
values that we can average to get the “true” value of \,,; to be used to
evaluate the degree of consistency of the matrix.

3 A few short notes on electoral systems

At this point we present some short notes and comments on electoral
systems'?. An electoral system represents a process ([dCMPT99]) that can
be decomposed in four phases:

1. the definition of the electoral rules,

2Further and better details can be found on [dCMP*99], [Saa01] and [BMMP*00]
among the many.



2. the vote expression,
3. the vote-to-seat translation,

4. the government formation.

As such it is a very complex process, nevertheless well suited for a unified
formal description with the language of elementary set theory ([dACMP*99]),
and whose performance can be “measured” with a set of criteria and indica-
tors ([ACMP*99]).

Though complex, an electoral system, starting from each voter’s ranking of a
set of alternatives (the candidates) from the best to the worse without ties!'3,
aims at aggregating such rankings in a global social ranking. Unfortunately
this is a very hard task and literature is full of impossibility results (see
[Saa01] for many paradoxes and some possible solutions). The main results
we want to cite in passing here are:

1. Arrow’s [im]possibility Theorem!* that ([BMMP*00]), roughly speak-
ing, states that, with more than three candidates, there is no aggrega-
tion methods that can satisfy simultaneously the properties of Univer-
sal Domain, Transitivity, Unanimity or Pareto condition (or principle),
Binary Independence and Non-dictatorship (see Section 4 for the defi-
nitions);

2. Sen’s Theorem ([Saa01]) that is based on a condition of Minimal Liber-
alism (ML) and states that with three or more alternatives and two
or more voters with a Social Welfare Function, if Universal Domain,
ML and Pareto are satisfied we are damned to have profiles (or sets
of preferences) that have cyclic outcomes (and so fall in the Condorcet
paradox of voting);

3. Gibbard-Satterthwaite Theorem ([BMMP*00]) that concerns strategic
voting (or the convenience of not expressing one’s true preferences) and
that states that with more than two candidates there exists no aggre-
gation method that satisfies simultaneously the properties of Universal
Domain, Non-manipulability and Non-dictatorship.

13 As it will be evident from our examples, in this paper we are going to relax such a
hypothesis and use also an indifference relation among the alternatives.

14Such a theorem comes in three versions ([Tay05]): one for the Social Choice Functions,
one for the Social Welfare Functions and one for the Voting Rules. Anyway, in all the
versions it prevents even a minimal set of properties from being satisfied at the same time.

15 A Social Welfare Procedure or Function, or a procedure for the ranking of a set of
alternatives, is said to satisfy ML if ([Saa01]) each of at least two voters is decisive over
a pair of alternatives so that his/her ranking of such pair determines that pair’s societal
ranking.



We note that:

4

In this Section we start with the

1. the properties we have listed with Arrow’s [im|possibility theorem are

really minimal for any real democratic process and that things are even
worse ([BMMPT00]) if we wished to define a method that satisfied
additional properties such as Neutrality, Separability, Monotonicity,
Non-manipulability and so on;

. similar considerations hold also for Gibbard-Satterthwaite Theorem

and Sen’s Theorem. Both are hard to accept (this is true also for
Arrow’s Theorem, see [Saa01] for a deep discussion and some tentative
solutions) and stir up our hope of designing a perfect voting system.
Anyway ranking alternatives is needed in many fields so that many
“imperfect” voting systems have been devised and used since a long
time. Here we only note that ML maybe should be put in context
with a new examination of the Condorcet voting paradox and that the
danger of manipulability can be reduced by imposing constraints that
make harder the presentation of stray (dummy) candidates.

The desired properties or the “wish lists”

‘

‘wish lists” of the electoral systems.

Unfortunately such lists, as it should be clear after Section 3, are nothing
more than impossible dreams. Anyway, our main goal is to recall some basic
definitions so to frame them in the context of the present paper. We start
with a first “wish list” or a first group of basic properties that are involved
in Arrow’s Theorem. We derive our definitions essentially from [BMMP*00]
and [dCMP*99].

1. Universal Domain means that the chosen aggregation method must

be universally applicable so that from any rankings of the voters it
must yield an overall ranking of the candidates.

. Transitivity requires that the aggregation of the rankings must be a

ranking, with possible ties, that satisfies transitivity.

. Unanimity or Pareto condition' implies that, if each voter ranks

a candidate higher than another, this ranking must be reflected in the
overall ranking.

6We note that though [Tay05] differentiates the two properties we consider them as

synonyms.



4. Binary Independence (or Independence from Irrelevant Alterna-

tives) requires that the relative position of two candidates in the overall
ranking depends only on their relative position in each voter’s ranking
so that all the other alternatives are seen as irrelevant with regard to
those candidates.

Non-dictatorship means that there is no voter that can impose
his/her ranking as the overall social ranking.

In passing we note that.

1.

Condorcet method (the one of the pairwise comparisons between candi-
dates) satisfies properties 1., 3., 4. and 5. so that, by Arrow’s Theorem,
it must fail property 2. and indeed a Condorcet winner does not nec-
essarily exists owing to the existence of cycles among candidates;

. Borda method (the one of the global ranking of the candidates) satisfies

properties 1., 2., 3. and 5. so that, by Arrow’s Theorem, it must fail
property 4. and indeed Borda method suffers from this drawback that
can be exploited to manipulate the overall ranking'”.

At this point we could enlarge the basic list (and make things even worse)
by adding the following properties'®.

1.

Anonymity ([Tay05]) requires that voters are treated the same way
so that the overall ranking is independent from any permutation of the
voters.

Neutrality ([Tay05]) means that alternatives are treated the same way
so that the overall ranking is independent from any permutation of the
alternatives.

Separability ([BMMP*00]) requires that if we perform an election
with two separate set of voters and obtain a winner candidate on each
set such candidate remains a winner if we repeat the election with the
same method on the union of the two set of voters.

Monotonicity ([Tay05]) requires that a winner remains a winner when
a voter interchanges the winning alternative with the one that voter
ranks immediately above it.

17We note however that [Saa01], at page 148, states that “when ways to circumvent the
difficulties of Arrow’s Theorem are examined ...only the Borda Count survives all of the
different requirements”.

18We note that some of these properties may take a different meaning when we will
examine proportional and majoritarian methods.
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5.

Non-manipulability is a very complex issue ([Tay05] but essentially
it means that the overall ranking of a set of candidates does not depend
either on the agenda or on the presence or stray candidates or on the
expression of non true preferences.

At this point, in order to deepen our examination of electoral systems,
we can give the “wish lists” of properties for both majoritarian methods
(where only one seat is assigned in every district) and proportional methods
(where S seats are assigned in every district). We takes the definitions from
[dCMP*99] and list them very concisely mainly as a help for a better under-
standing of subsequent Sections.

Majoritarian methods are characterized by the following properties.

1.

Condorcet winner: it is the winner of all pairwise comparisons, if it
exists it should be the winner of the electoral competition.

Condorcet loser: a method should not choose the candidates that
loses every pairwise comparison with all the other candidates.

Monotonicity: a method is monotone if the number of seat assigned
to a party does not decrease if the number of its supporters grow.

. Pareto principle: if all the voters prefer a candidate to another the

latter cannot be chosen.

. Weak Axiom of Revealed Preference: it requires that, (a), if a

candidate is a winner on a set X it must remain a winner also on any
subset X’ C X to which he/she belongs and that, (b), if there are
ties among candidates in X' C X those candidates at par must be all
either included or excluded from X. This axiom is used to get voting
methods immune from manipulations on the set of candidates through
the addition of stray candidates.

. Path independence: a method satisfies path independence if the

outcome is independent from the ordering of the phases that are used
for the selection of the candidates.

11



We note, in passing, that First-past-the-post!® method satisfies anonymity
(as already defined), 4. and 5. whereas Double ballot and Single trans-
ferable vote methods satisfy anonymity, 2. and 4.

Proportional methods are characterized by the following properties.

1. House monotonicity means that if the number of seats passes from
S to S + 1 no party gets fewer seats.

2. Quota satisfaction requires that the number of seats each party re-
ceives is as close as possible to its exact quota and so to a percentage
of the total seats that is almost equal to the percentage of the votes it
receives.

3. Population monotonicity ([dCMP*99]) “if a party (or state) with
a growing weight cannot lose a seat in favour of a party (or state) with
a declining weight”.

4. Consistency requires that any partial assignment is itself propor-
tional.

5. Stability means that whenever two parties merge in a coalition (or a
new party) they do not get fewer seats that those they get as separate
entities.

We note, in passing, that Quota method?® satisfies anonymity, 1., 2., 4.
(only with regard to pairs of eligible parties) and 5. whereas Largest re-
mainders method satisfies anonymity, 2. and 5.

5 The light stuff

Let us start with a very simple exercise. We suppose to have three voters
and four alternatives that must be ranked so to define the best alternative

4

19This is a method of the majoritarian family where “winner takes all” so that in every
uninominal district the candidate that receives a majority of votes is elected independently
from the obtained percentage. Double ballot is articulated into two rounds (with or
without threshold) so that the second occurs only if in the first no candidate gets an
absolute majority of votes. If this occurs the most voted candidate is elected. In the case
of Single transferable vote we have an iterative procedure where the less voted candidate
is dropped and his votes are transferred to his next most preferred candidate still in
competition until when one candidate reaches more that 50% of the votes cast.

20Quota method assigns the seats by evaluating a quota and rounding it up or down.
Such a quota is evaluated as ¢; = %vi where S is the total number of seats, V' is the total
number of votes and v; is the number of votes of party i. Largest remainder method uses
such a quota ¢; to evaluate a remainder r; = ¢; — [¢ — i to assign the not yet directly
assigned seats to the parties with the highest values of the remainder.

12



among the four or, at least, a total ordering on them.

Figure 2: Three voters and four alternatives

The situation is shown in Figure 2. The Main Goal (i.e. the ranking of the
alternatives) is labelled as MG whereas voters are labelled as v1,v2,v3, v4
and a similar convention holds also for the four alternatives. As a first step
we evaluate the normalized vector of the weights of the voters with regard to
MG Tt is easy to see that imposing a full symmetry of the three voters we get
a fully consistent 3 x 3 matrix with all elements at 1 to which it corresponds
the eigenvalue \,,,, = 3 and an eigenvector L; = (1/3,1/3,1/3). This result
is consistent also with our intuition of a fair evaluation tool since it seems
obvious that the three voters have the same weight in the process. As the
successive (and last in this case) step we have to evaluate three matrices 4 x 4
of the pairwise comparisons of the four alternatives, each matrix with regard
to a single voter. For these evaluations we use the scale 1 <+ 9 we introduced
in Section 2 and suppose that the four voters have respectively the following
preferences on the alternatives?':

1. al > a2 > a3 > a4,
2. a4 > a3 > a2 > al,
3. a3 ~ad > a2 ~ al.

As to the three matrices we have those in Tables 1, 2 and 3.

By using the method of the n—th root of the product it is easy to evaluate
the eigenvectors of such matrices, the corresponding eigenvalues and verify
that every C.R. falls below the threshold suggested by Saaty so that each
matrix is consistent. Such eigenvalues form the matrix Ly of Table 4. At this

2'We denote with > a binary relation of strict preference and with ~ a binary relation
of indifference. No rationality hypothesis is imposed on the voters and such relations are
supposed to be endowed with classical properties.

13



vli| al | a2 | a3 | a4
al | 1 2 5
a2 | 1/2 | 1 2
a3 | 1/511/2 ] 1
ad | 1/711/3]1/2

=N W~

Table 1: Pairwise comparisons with regard to v1

v2| al |a2 | a3 | a4
al | 1 2 |1/2]1/4
a2 | 1/2| 1 |1/3|1/6
a3 | 2 3 1 [1/3
ad | 4 6 3 1

Table 2: Pairwise comparisons with regard to v2

point the normalized vector of the weights of the alternatives with respect to
the main goal can be easily evaluated as:

W == L2L1 (12)

so to get:
W = (0,25590,13710,2571 0, 3498) (13)

From expression (13) we can easily deduce the following (and possibly counter
intuitive) ordering on the alternatives:

ad > a3 > al > a2 (14)

At this point a question (at least) spontaneously arises: and now? We got a
ranking, right. Can we use it as if it was an election outcome? Maybe. The
main problem to face is the inconsistency issue. In the general case, indeed,
we can have one or more inconsistent matrices: how can we deal with this?
There is any threshold above which we should reject a ranking? Or should
we consider it anyhow valid? Anyway be patient, we are going to give some
more hints in Section 8.

6 Some harder stuff

After that simple exercise, in this Section we have major aims. We use
a set of properties that characterize the families of majoritarian and propor-
tional methods to obtain a ranking of those properties and, depending of

14



vd|lal|a2| a3 | a4
al| 1 |1 |1/5|1/5
a2 | 1 | 1 |1/5|1/5
a3 | 5 | 5 1 1
ad | 5 | 5 1 1

Table 3: Pairwise comparisons with regard to v3

Wi | W2 | W3
0,5488 | 0,1355 | 0,0833
0,2497 | 0,0782 | 0,0833
0,1269 | 0,2279 | 0,4167
0,0745 | 0,5583 | 0,4167

L,

Table 4: Matriz Lo

this ranking, define the “preferred” method within each family. Of course
what we present suffers some drawbacks but our intent is to introduce the
hierarchic method and to show how it can be used to perform such tasks (see
[dCMP199]).

Among the drawbacks we cite:

1. the rankings have been executed by a single person (or two at the most),

2. in many cases they have not been performed having a deep and sound
knowledge and experience of the involved properties,

3. many of the rankings have been performed having in mind more the
need to get consistent matrices than any deep comparison among the
involved properties.

The first very simplified situation is illustrated in Figure 3 where we suppose
to have (only) four voters who rank the six main properties that character-
ize proportional methods and so: Anonymity (A), House Monotonic-
ity (HM), Quota Satisfaction(RS), Population Monotonicity (PM),
Consistency (C) and Stability (5).

If we perform the pairwise rankings for each voter we can get the Tables 5,
6, 7 and 8.

We note that the four voters have respectively the following preference or-
derings:

1. A>HM >QS >PM >C > S

15



Figure 3: Ranking properties of proportional methods

vi] A [OM][ QS [PM| C | S
A | 1,00 [ 2,00 | 3,00 | 4,00 | 6,00 | 9,00
HM | 0,50 | 1,00 | 2,00 | 2,00 | 3,00 | 4,00
QS [ 0,33 10,50 | 1,00 | 1,00 | 2,00 | 2,00
PM | 0,25 | 0,50 | 1,00 | 1,00 | 2,00 | 2,00
C |0,17 0,33 0,50 | 0,50 | 1,00 | 2,00
S 0,11 0,25 0,50 | 0,50 | 0,50 | 1,00

Table 5: Pairwise comparisons with regard to v1

2. A~HM >QS~PM>C>S
3. S>C~PM>A>HM~QS
4. QS >HM ~A>PM ~C ~ S

Also in this case, by using the method of the n—th root of the product,
it is easy to evaluate the eigenvectors of such matrices, the corresponding
eigenvalues and verify that every C.R. falls below the threshold suggested by
Saaty so that each matrix is consistent. Such eigenvalues form the matrix Lo
of Table 9. Also in this case, if we suppose that the four voters have the same
weight with regard to the Main Goal (MG) and define the proper matrix at
level 1, we get a matrix whose elements are all 1. Both by performing the
calculations and by using fairness considerations it is easy to see that as
eigenvector of level 1 we get L; = (0,25 0,250,250,25) so that as LyL; we
get the content of Table 10. In that table the first column contains the vector
of the rankings of the properties with regard to the main goal, the second
contains the listing of the mnemonics of the properties and the last their
place in the classification. A close inspection of Table 10 and a comparison
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v2 ] A [OM| QS [PM| C [ S
A [ 1,00 1,00 [ 3,00 | 3,00 | 5,00 | 7,00
HM | 1,00 | 1,00 | 3,00 | 3,00 | 5,00 | 7,00
QS [0,330,33 | 1,00 | 1,00 | 5,00 | 7,00
PM | 0,33 [ 0,33 1,00 | 1,00 | 5,00 | 7,00
C [0,20]0,20 [ 0,20 | 0,20 | 1,00 | 2,00
S 0,14 0,14 | 0,14 | 0,14 | 0,50 | 1,00

Table 6: Pairwise comparisons with regard to v2

v3 1 A [OM| QS [PM| C | S
A | 1,00 [ 2,00 [ 2,00 | 1,00 | 1,00 | 0,20
HM | 0,50 | 1,00 | 1,00 | 0,50 | 0,50 | 0,14
QS [ 0,50 | 1,00 | 1,00 | 0,50 | 0,50 | 0,14
PM | 1,00 | 2,00 | 2,00 | 1,00 | 1,00 | 0,33
C [1,00]2,002,00]1,00]1,00]0,33
S 5,00 | 7,00 | 7,00 | 3,00 | 3,00 | 1,00

Table 7: Pairwise comparisons with regard to v3

with the results of the table at page 83 of [ACMPT99]?? allow us to assert
that on the basis of our results the “best” proportional method (or, more
correctly, the method the four voters prefer) is the quota method. We note
indeed how the properties A, HM and @)S summed up have a weight of 0, 65
or:

Wais+Wyu + WQS =0,65 (15)

It is obvious that by changing the preferences of the voters (and also by
augmenting their number) we surely get a different ordering, probably with
ties, to which, again with regard to the cited table of of [ACMP*99], can
correspond either another “winner” or a pair of “winners” or no winner at
all. Let us suppose, for instance, that only voter v2 changes his/her pair-
wise comparisons and takes those of Table 11 (associated to the following
preference ordering PM > A ~ C > S > HM > QS). If we evaluate the
new eigenvector W2 we get, obviously, a different vector that gives rise to a
different second column of matrix Ly. This turns into a somewhat different
final priority vector, see Table 12. A close inspection of Table 12 and a com-

22From that table we have that largest remainders methods satisfy A4, Q.S and S;
divisor methods satisfy A, HM, PM, C and S (but only in special cases) and quota
method satisfies A, HM, @S, C (but only in special cases) and S.
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vi | A [OM| QS [PM| C | S
A | 1,00 [ 1,00 | 0,33 [ 2,00 | 2,00 | 2,00
HM | 1,00 | 1,00 | 0,33 | 2,00 | 2,00 | 2,00
QS [3,00 | 3,00 | 1,00 | 7,00 | 7,00 | 7,00
PM | 0,50 | 0,50 | 0,14 | 1,00 | 1,00 | 1,00
C | 0,50 | 0,50 | 0,14 | 1,00 | 1,00 | 1,00
S 10,50 [ 0,50 | 0,14 | 1,00 | 1,00 | 1,00

Table 8: Pairwise comparisons with regard to v4

W1 | W2 [ W3 | W4
0,43 [ 0,31 ] 0,13 | 0,15
0,22 | 0,31 | 0,07 | 0,15
0,12 | 0,15 | 0,07 | 0,48
0,11 | 0,15 | 0,14 | 0,07
0,07 | 0,05 | 0,14 | 0,07
0,05 | 0,03 | 0,47 | 0,07

L,

Table 9: Matrix Lo

parison with the results of the table at page 83 of [ACMP*99] (see footnote
22) allow us to assert that on the basis of our results the “best” proportional
method (or, more correctly, the method the four voters prefer) are, in this
case, the largest remainder methods: we note indeed that the properties
A, QS and S weigh almost 60% over the total of the six properties.

Now we go through a similar exercise but with regard to the properties of
majoritarian methods. In Figure 4 we again suppose to have (only) four
voters who, in this case, rank the six main properties that characterize ma-
joritarian methods and so: Anonymity (A4), Condorcet Winner (CW),
Condorcet Loser(CL), Pareto Principle (PP), Weak Axiom of Re-
vealed Preferences (IWARP) and Path Independence (PI).

In this case we give only the matrix Ly of the eigenvectors and the vector of
the priorities of the properties with regard to the main goal (and make some
comments). We note that the four matrices that provide the eigenvectors of
Ly are based on the following preference orderings:

1. A>CW >CL > PP >WARP > PI
2. CW ~CL>PP>PI>A~WARP
3. PP>A>PI >WARP >CW ~CL
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W

0,25 | A |1

0,19 | HM | 3
L,L, =021 QS |2

0,12 | PM | 5

0,08] C |6

0,16 | S |4

Table 10: Final ranking and classification

v2 ] A [OM| QS [PM| C | S
A | 1,00 [ 3,00 | 6,00 | 0,50 | 1,00 | 3,00
HM | 0,33 | 1,00 | 2,00 | 0,20 | 0,33 | 0,50
QS | 0,17 [ 0,50 | 1,00 | 0,14 | 0,14 | 0,20
PM | 2,00 | 5,00 | 7,00 | 1,00 | 2,00 | 4,00
C [ 1,00 | 3,00 | 7,00 | 0,50 | 1,00 | 2,00
S 10,33 ]2,00]5,00]0,25] 0,50 | 1,00

Table 11: New pairwise comparisons with regard to v2

4. PP > PI > A~ WARP >CW >CL

The four matrices can be shown to be fully consistent according to the Saaty
criterion. The final results are those of Table 13. The sixth column of that
table is obtained by a matrix-vector multiplication between the first four
columns and the fifth column. From the values of the last column we can
devise the following ordering:

PP>A>CW>CL>PI>WARP (16)

with:
Wpp + W4 +Wer = 0.64 (17)

and:
Wpp + Wy + Wwarp = 0.57 (18)

Result (16), in the light of the table at page 78 of [dCMP*99]?* and equations
(17) and (18), can be a little bit tricky to interpret. By confronting all such
informations we can say that:

Z3From that table we have that:
1. First-past-the-post method satisfies A, PP and W ARP;
2. double ballot and single transferable vote satisfy A, CL and PP;
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W

023 A |1

0,13 | OM | 5
L,L, =[0,18] QS |2

0,17 | PM | 4

012 C |6

0,18 S |2

Table 12: Another final ranking and classification

Figure 4: Ranking properties of majoritarian methods
1. both Double ballot and Single transferable vote methods satisfy
A, CL and PP (and only these properties);
2. only First-past-the-post method satisfies A, PP and WARP.

By adding the corresponding elements of the priority vector up, all we can
devise therefore is the following preference ordering:

Single trans ferable vote ~ Double ballot > First — past — the — post (19)

and reach a final decision by using other criteria.

7 Two other attempts of ranking

In this Section we show two other attempts of performing a ranking of
electoral systems. In the first simple exercise we consider high level properties
such as TRansitivity (TR), Universal Domain (UD), Binary Indepen-
dence (BI) and Pareto condition (P). Figure 5 shows the case of four

3. approval voting satisfies A, WARP and PI.
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WI W2 [ W3 [ W4 [W0 ]| W
0,49 0,05|021 0,17 ]025(0,23| A
0,16 | 0,35 | 0,06 | 0,05 | 0,25 | 0,15 | CW
0,13 | 0,35 | 0,06 | 0,03 0,25 | 0,14 | CL
0,11]0,121043 (0,420,725 |0,27| PP
0,07 | 0,05 | 0,10 | 0,08 0,07 | WARP
0,04 | 0,08 | 0,15 | 0,24 0,13 | DI

Table 13: Majoritarian methods: the vectors of the weights and the final
ranking

Figure 5: Ranking electoral systems through ranking some basic properties

voters that perform a ranking (trough pairwise comparisons) of these basic
properties. The four matrices of the pairwise comparisons are those of Tables
14, 15, 16 and 17.

Such Tables are respectively based on the following preference orderings of
the four voters:

1. TR>UD ~ BI ~P
2. P>TR>UD > BI
3. TR>P~UD > BI
4. UD > P >TR > BI

By performing the proper calculations it is easy to verify that all such ma-
trices are consistent and that the eigenvectors®® are those of the first four

241t is obvious that in all the following cases:
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vi [TR|UD| Bl | P
TR [ 1,00 | 3,00 | 3,00 | 3,00
UD [ 0,33 | 1,00 | 1,00 | 1,00
BT | 0,33 1,00 | 1,00 | 1,00
P | 0,33 1,00 1,00 1,00

Table 14: A first ranking of electoral systems, case of vl

v2 [TR|UD| BIL | P
TR | 1,00 | 1,00 | 2,00 | 0,33
UD | 1,00 | 1,00 | 2,00 | 0,20
BI | 0,50 | 0,50 | 1,00 | 0,14
P | 3,00 5,00 | 7,00 | 1,00

Table 15: A first ranking of electoral systems, case of v2

columns of Table 18 whereas the fifth column represents the eigenvector of
the matrix of the pairwise comparisons of the four voters with regard to the
main goal. From both calculations and fairness considerations it is easy to
see that such a vector has all components equal to 0,25. The sixth column
gives the global weights or priorities of the four properties with regard to the
main goal. With our data we have TR ~ P > UD > BI. Such a ranking
is satisfied, for instance, by the Borda count that does not satisfy binary
independence. This does not mean of course that Borda count is the only
method that satisfies our data but only that it is one of the methods that do
that and, so, can be legitimately chosen. We note indeed that:

Wrr+Wyp +Wp =0.90 (20)

so that Binary independence can be surely neglected.

The second attempt involves a ranking between majoritarian methods M
and proportional methods P if we consider them as two opposing families
of methods. The basic idea is shown in Figure 6. In this case we suppose
to have three actors (labelled as acl, ac2 and ac3) that use four properties
(labelled as p1, p2, p3 and p4) to obtain a ranking between the majoritarian
method M and the proportional method P to see which is “better” on the

1. all eigenvectors are evaluated according to the method of the n—th root of the
product,

2. all eigenvectors are normalized.
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v3 [TR|UD| BL | P
TR [ 1,00 | 3,00 | 5,00 | 3,00
UD [ 0,33 | 1,00 | 2,00 | 1,00
BT | 0,20 | 0,50 | 1,00 | 0,50
P | 0,33 1,00 2,00 1,00

Table 16: A first ranking of electoral systems, case of v3

vA [TR|UD| Bl | P
TR | 1,00 | 0,17 | 3,00 | 0,25
UD | 6,00 | 1,00 | 9,00 | 2,00
BI [ 0,33 0,11 | 1,00 | 0,14
P | 4,00 0,50 | 7,00 | 1,00

Table 17: A first ranking of electoral systems, case of vd

basis of the pairwise rankings of such properties. In this case we have a

Figure 6: Majoritarian or proportional? The basic dilemma

rooted hierarchy where the leaves are at level 3 so we have to define the
matrices for three layers and precisely:

1. 4 matrices 2 x 2 at level 3 to which there corresponds a matrix 2 x 4
of four eigenvectors Lj;

2. 3 matrices 4 x 4 at level 2 to which there corresponds a matrix 4 x 3
of three eigenvectors Ls;
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W1 | W2 [ W3 |W4[ W0 [ W
0,50 | 0,17 | 0,53 | 0,10 | 0,25 | 0,32 | TR
0,17 | 0,15 | 0,19 | 0,54 | 0,25 | 0,26 | UD
0,17 | 0,08 | 0,10 | 0,04 | 0,25 | 0,10 | BI
0,17 | 0,60 | 0,19 0,32 | 0,25 0,32 | P

Table 18: The vectors of the weights and the final ranking

3. 1 matrix 3 x 3 at level 1 to which there corresponds a matrix 3 x 1 of
one eigenvector L.

In this way we can evaluate the priorities vector W of the two alternatives
M and P with respect to the root of the hierarchy (or the main goal) as a
product of matrices:

W == L3L2L1 (21)

From considerations we have already made elsewhere in Sections 6 and 7 of
this paper it is easy to see that L; = (0,330,330,33). The hard part is the
definition of the four properties. We can try with the followings properties
(corresponding respectively to the pi of Figure 6)%°:

1. Electoral Participation (EP) defined, roughly speaking, as the ratio
between the number of vote cast and the difference between the total
number of voters and the number of vote cast;

2. Number of Political Parties (NPP) defined through parameters
that count both the number of parties that compete in a given election
and their relative strength;

3. Electoral Volatility (EV') as a measure of the electoral fluxes among
the competing parties from one electoral competition to the successive
one;

4. Government Stability (G'S) measured as a function of the longevity
of the governments.

Once the actors have been singled out (as either voters or candidates), each of
them must evaluate the matrix of the pairwise comparisons of the properties
but, together with the others, must define the needed pairwise comparisons
matrices of the alternatives with regard to each of the properties. Apart from

25We give only rough definitions of such properties. For further and more exact details
see [ACMP199].
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this potential difficulty (that we are going to examine briefly in Section 8),
our three actors are supposed to act respectively according to the following
preference orderings:

1. EP > NPP > GS ~ EV
2. EP > EV > NPP ~GS
3. GS > NPP > EP > EV

We note that the properties are considered from an abstract point of view
as to their relevance with regard to a method without considerations such as
“the higher is the better” or “the lower is the better”. Of course each of the
actors, performing a comparison, makes such considerations and the result
may differ depending on the type of each actor. We can imagine that voters
are more interested in £ P and N PP whereas candidates are more interested
in GS.

In what follows we give only a brief outline of the solution. In Table 19 we
show the four matrices at level 3.

EP| M | P [NPP| M | P [EV] M | P [GS[ M | P
M | 1,00 0,33 M | 1,00]050]| M |1,00]0,20 | M | 1,00 | 4,00
P [3,00]1,00] P |200]1,00] P [500] 1,0 | P |0,25] 1,00

Table 19: Pairwise comparisons with regard to the properties

It is easily seen how such matrices are fully consistent. Next we give the
three matrices of the pairwise comparisons of the properties with regard to
each actor. Such matrices of Tables 20, 21 and 22 are evaluated according
to the aforesaid preference orderings.

acl | EP | NPP | EV | GS
EP | 1,00 | 5,00 | 7,00 | 7,00
NPP | 0,20 | 1,00 | 2,00 | 2,00
EV 10,14 | 0,50 | 1,00 | 1,00
GS 10,14 | 0,50 | 1,00 | 1,00

Table 20: Pairwise comparisons with regard to acl

It is easy to verify that these three matrices are fully consistent. At this
point we have:
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ac2 | EP [NPP | EV | GS
EP | 1,00 | 7,00 | 3,00 | 7,00
NPP | 0,14 | 1,00 | 0,50 | 1,00
EV [0,33] 2,00 | 1,00 | 2,00
GS | 0,14 | 1,00 | 0,50 | 1,00

Table 21: Pairwise comparisons with regard to ac2

ac3 | EP | NPP | EV | GS
EP | 1,00 | 0,50 | 2,00 | 0,20
NPP | 2,00 | 1,00 | 3,00 | 0,33
EV 0,50 | 0,33 | 1,00 | 0,11
GS | 5,00 | 3,00 | 9,00 | 1,00

Table 22: Pairwise comparisons with regard to ac3

1. a matrix L3 2 x 4 of the eigenvectors of the priorities of the alternatives
with respect to the properties,

2. a matrix Ly 4 x 3 of the eigenvectors of the priorities of the properties
with respect to the actors,

3. a matrix Ly 3 x 1 of the eigenvectors of the priorities of the actors with
respect to the main goal®.

With all the ingredients at our disposal we can obtain the priorities of the
two alternatives with respect to the main goal as:

W - L3L2L1 (22)
With some easy algebra we find:
W = (0,3970 0, 6029) (23)

so to get:
P>M (24)

26 Again we have that the vectors of priorities of the three actors with respect to the
main goal is Ly = (0,333 0,3330, 333).
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8 The hierarchy: a real solution or a blind
alley?

In the previous Sections we have introduced AHP and shown how we
think it can be used in the arena of electoral systems. In Section 5 we have
used it as a sort of voting system whereas in Sections 6 and 7 we have used
it more as a meta-voting system or as a tool to obtain a ranking of pitted
electoral systems.

In the former case (but similar considerations hold also in the latter case)
indeed we set up a hierarchy to have three voters get the ranking of four
alternatives and so a sort of “social choice function” of such alternatives.
Are we sure in this way we got an electoral system that proves to be immune
from the “contagion” of Arrow’s Theorem and the other results we listed
in section 3? Saaty ([Saa80]) is confident this is the case but this is quite
obvious, he invented the method. A more neutral neutral source such as
[Saa01] makes us almost as confident as Saaty himself. In [Saa01] the author
shows how to overcome such theoretical limitations by using methods that
do not miss useful information though performing pairwise comparisons be-
tween candidates. Our guess here is that the hierarchy (through the use of
matrices) is what allows the preservation of such global information though,
at each instant, only pairwise comparisons are performed.

So we are sure that the proposed method is a potential solution (at least
from a theoretical point of view) to the problem of defining a “perfect” vot-
ing system.

If the method we proposed is a real solution, nevertheless, many open prob-
lems are yet present and beg for a solution. Here we list only the followings:

1. how can the system shown in Section 5 scale to be used with many
more voters and alternatives?

2. how can be solved the problem of having actors evaluate the alternatives
with respect to the properties (see Figure 6)7 would this work also for
many more actors and alternatives?

3. have we to care of any inconsistency? and how? is there any incon-
sistency threshold (beyond the value of 0,10) above which we should
declare any voting outcome as null and so the ranking/voting as to
be repeated? If we are working with experts ranking policies or al-
ternatives and any of them provides a heavy inconsistent matrix it is
obviously possible to ask such an expert to be more accurate and revise
his/her own judgements but what can we do in case of an election?
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Alas, there is anyway yet the possibility that a more subtle and perverse
version e. g. of Arrow’s Theorem is lurking out there. In this case AHP
would prove nothing more than another blind alley (at least for the search
of a “perfect” voting system). Only works and research can tell us which is
the case.

9 Promising and keeping

At this point, before the final remarks and the good intentions of the

closing Section, we have to account for if we kept what we promised or not
and, in this case, why.
Really we kept a lot of what we promised by introducing a powerful and
flexible method and showing how it can be used to perform global (“social”)
rankings starting from individual judgements based on pairwise comparisons
on a fixed ratio scale. Yet we did not keep something and basically the
following points:

1. the problem of how experts or actors can rank alternatives with regard
to properties or policies (see Figure 6);

2. the problem of fully taking into account the point of views and the
goals of voters and candidates (and, why not?, the elected candidates);

3. the problem of fully framing our approach among the other proposed
approaches (see, for instance, [ICMP99]) so to put in evidence its
potential strengths and (almost surely present) weaknesses.

As to the first point we note that it involves the attainment of a consensus
among the actors/voters/experts and this can happen essentially in two ways:

1. as a co-ordinate and co-operative simultaneous effort of all the ac-
tors/voters/experts,

2. as a two step process where (a) every actor/voter/expert produces
all the pairwise rankings, including those of the others and (b) such
rankings are merged in the appropriate global rankings.

We have therefore a wide set of open problems that cannot be solved only
on a normative ground but that require a descriptive approach based on on
the field experiments, that at the present we cannot execute, and this is the
main reason we did not keep all the promises we made at the very start of
the paper.
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10 Concluding remarks and future plans

This paper presents a somewhat different approach to electoral systems.
Our approach aims both at ranking electoral systems themselves and at defin-
ing a voting method for the ranking of alternatives. It is based on a hier-
archically structuring of the voting system. In this way we define a rooted
hierarchy. At the root we have the main goal whereas at the leaves we put
the objects we want to rank through the hierarchy. The paper represents a
starting point in these two directions: much work needs indeed to be done
in the future both from a theoretical and from a practical /empirical point of
view.
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