
An algorithm for the dete
tion of 
y
les indire
ted graphsLorenzo CioniComputer S
ien
e Department, University of Pisae-mail: l
ioni�di.unipi.itAbstra
tThe present paper 
ontains the des
ription of an algorithm that hasbeen devised for the determination of the 
y
les in a (even 
omplete)dire
ted graph (digraph for short). Given a digraph G = (N;E) thealgorithm maps it on a string and then pro
ess the string to �ndwithin it substrings that satisfy 
ertain properties. Ea
h substring
orresponds to a 
y
le within the given digraph. The paper opens witha short introdu
tion of the problem, then we introdu
e the algorithmand des
ribe it using a pseudo-
ode. In the 
losing se
tion we dis
ussin short issues of 
omputational 
omplexity.1 Introdu
tionThe present paper 
ontains the des
ription of an algorithm for the dete
-tion and listing of the 
y
les that are present in a digraph ([Cio03℄, [Cio06℄).Given a digraph G = (N;E), as a set of nodes N and a set of dire
ted ar
sor edges E, the algorithm maps it on a string � 2 � whose elements are theidenti�ers of the nodes that in pairs identify the ar
s (and form the alphabet
A ) and then pro
ess the string to identify substrings that satisfy 
ertainproperties. To ea
h substring 
orresponds a 
y
le in the original digraph.Ea
h of these 
y
les is identi�ed by listing the identi�ers of the nodes of the
omposing ar
s.If � 2 � is the string 
orresponding to a given digraph G, the dete
tion of
y
les turns, therefore, into the dete
tion of both 
onne
ted and 
losed or
y
li
al substrings i. e. strings1 �� = �1 : : : �n = a1 : : : an � � su
h that:1�� is a string 
omposed of n elements �i = ai, ea
h element is a substring of length1 and a member of A and 
orresponds to a node identi�er. We suppose that A 
ontains1



1. n = l(��) > 3 so that any possible 
y
le 
ontains at least two ar
s2;2. ai == ai+1 for i = 2; 4; : : : ; n� 2 (
onne
tedness);3. a1 == an (
loseness);4. for i = 1 : : : n we have3 #ai = 2.The last 
ondition assures that substrings do not 
ontain any 
y
li
al sub-substring and prevents the presen
e of loops4. After having identi�ed all the
y
li
al substrings, the algorithm dis
ards all the substrings that are equiv-alent among themselves but one. The equivalen
e 
riterion is based on thede�nition of substrings that are equivalent through shifting. A string:� = a1a2a2a3 : : : an�2an�1an�1an (1)
an be seen, owing to 
loseness, as a 
y
li
al stru
ture so that a shift rightof one position (i. e. of one ar
) gives us:rs(�; 1) = an�1ana1a2a2a3 : : : an�2an�1 (2)where a1 = an. In a dual way we de�ne a shift left of one position whereasin a similar way we de�ne a right/left shift of k positions. We say that twostrings (and two substrings too) �a and �b are equivalent through shifting ifit exists k > 1 su
h that: �a = rs(�b; k) (3)or, equivalently: �b = ls(�a; k) (4)Two su
h strings 
ontain the same ar
s but starting from distin
t nodes sothat they de�ne the same 
y
le. They are, therefore, equivalent and must be
ounted as a single 
y
le.2 The determination of 
y
les in dire
tedgraphsA digraph G = (N;E) (Figure 1) is 
hara
terised by a set of nodes i 2 Nand a set of oriented ar
s (i; j) 2 E between pairs of nodes i; j 2 N .enough symbols to 
ode all the node identi�ers of a digraph. If this is not the 
ase we 
analways �nd a 
oding s
heme that uses a 
onstant and �xed amount of symbols to 
odeany node identi�er so that what follows remain true ex
ept for a 
onstant fa
tor.2With l(�) we denote the number of elements of the string � or its length.3With #�i = #ai we denote the number of o

urren
es of �i within the string �.4If a 
losed path 
ontains only one node is 
alled a loop. A loop represents the re
exiveproperty of the relation R asso
iated to the ar
s of the digraph.2



Figure 1: Example of an a
y
li
 digraphA digraph 
ontains a 
y
le if there is a dire
ted 
losed path starting andending on the same node. The 
y
le is made up of at least two ar
s and noneof the nodes (but the starting and ending node) is used more than on
e. Inthis way we 
onsider only simple 
y
les. The digraph of Figure 1 does not
ontain 
y
les and is termed a
y
li
. If a digraph 
ontains a 
losed dire
tedpath starting and ending on the same node and 
ontaining at least two ar
sit is said to 
ontain a 
y
le. The digraph of Figure 2 
ontains three 
y
les(des
ribed by listing the 
omposing ar
s) and pre
isely:1. (1,4)(4,1)2. (1,3)(3,4)(4,1)3. (1,3)(3,2)(2,4)(4,1)If we 
ompare �gures 1 and 2 we see that the addition of the ar
 (4; 1) hasturned in the de�nition of the three 
y
les. In a dual way if we remove onenode and the in
ident ar
s5 we obtain the 
an
ellation of one or more 
y
les.In Figure 2, if we remove node 1 (and the in
ident ar
s) we get the removalof all the 
y
les 
ontained in the digraph.5We say that an ar
 is in
ident on a node if it has su
h a node as the sour
e or asdestination so that ar
 (i; j) is in
ident on the nodes i and j.3



Figure 2: Example of a digraph with 
y
les3 Digraphs over strings, substrings and 
y-
lesThe nodes i of a digraph G = (N;E) are 
hara
terised by identi�ers idibelonging to the alphabet A on whose strings � 2 � the graphs are mapped.Mapping 
an o

ur inserting every ar
 (as a pair of nodes) in the string �G
orresponding to digraph G. As to the digraph of Figure 2 we 
an des
ribeit, among the others, in two ways: as a list of ar
s and an adja
en
ymatrix6.In the �rst 
ase, if we use a lexi
ographi
 order7 we get the following arrayof ar
s: (1; 3)(1; 4)(2; 4)(3; 2)(3; 4)(4; 1) (5)6An adja
en
y matrix is a square matrix whose dimension is the same as the numberof the nodes and whose elements assume one of the values: �1, 1 or 0. Values �1 are onlyon the main diagonal and identify a node as the sour
e of the ar
s with heads 
orrespondingto the 1 on the same row. The 0s means absen
e of a dire
t 
onne
tion between the tworow�
olumn nodes.7With lexi
ographi
 order we mean that we list in in
reasing order the nodes and,for ea
h node, we list the head of the outgoing ar
s in in
reasing order too.4



In the other 
ase we get the square matrix of Table 1. Su
h a matrix isof easy interpretation. From the representation as the adja
en
y matrix as1 2 3 41 -1 0 1 12 0 -1 0 13 0 1 -1 14 1 0 0 -1Table 1: Adja
en
y matrix for the digraph of Figure 2that of Table 1 it is easy to derive a representation su
h as that given byexpression (5). If we denote with A the adja
en
y matrix we 
an use thefollowing algorithm8:pro
edure matrixToArray(matrix A){ int size = 0;int r = size_of(A);int 
 = r;for(int i=1;i<=r;i++)for(int j=1;j<=
;j++)if (A[i,j℄==1) size++; //
ount the number of ar
s//in the digraphar
s[℄ arrayOfAr
s := new ar
s[size℄;int k=0;for(int i=1;i<=r;i++)if (A[i,i℄==-1)for(int j=1;j<=
;j++)if (A[i,j℄==1)arrayOfAr
s[k++℄:=(i,j);return arrayOfAr
s;}Given the representation (5) or of Table 1 it is, therefore, very easy to geta mapping on a string that su

essively must be pro
essed in sear
h for the
y
les of the 
orresponding digraph. Every 
y
le 
orresponds, indeed, to8We use the type ar
s as a primitive type: an instan
e of that type is of the form(i; j) with i; j 2 N . We suppose the type ar
s is endowed with the ne
essary primitiveoperations. We are going to use a pseudo-Java syntax so to make the 
ode more easilyreadable. 5



a substring that is both 
losed and 
onne
ted (
f. se
tion 1). It is veryeasy both to modify su
h an algorithm so to get matrixToString(matrixA)return dire
tly a string (we have only to modify the se
ond pair of nestedfor loops) and to 
on
eive an algorithm that maps an array of ar
s onto astring. In this 
ase we have:pro
edure arrayToString(ar
s[℄ Ar){ int l = Ar.length;String s = "";for (int i=0; i < l; i++)s = s+toString(Ar[i℄);return s;}where toString() is a primitive operation of type ar
s that transforms astru
ture su
h as (i; j) in the string IJ where I is the symbol of � 
orre-sponding to identi�er i (that may span over more than one digit) and J isthe analogous for j. If we apply what we have said to the graph of Figure 2(as represented e. g. with expression (5)) we obtain the following string:131424323441 (6)that must be pro
essed for the dete
tion of 
losed and 
onne
ted substrings.4 The algorithm4.1 Introdu
tionNow we give a des
ription of the algorithm in pseudo-
ode under thehypothesis that the graph is represented with an adja
en
y matrix A. Thealgorithm gets, as input data, a digraph G = (N;E) 
oded as A and returnsan array of strings whose dimension is equal to the number of 
y
les that arepresent in G: every string 
ontains the 
oding of the ar
s that form a 
y
lein G. If it is ne
essary we 
an use a de
oding pro
edure so to obtain all the
y
les in terms of the 
omposing nodes identi�ers.4.2 The general stru
tureThe proposed algorithm has a stru
ture 
omposed of the mapping of adigraph over a string, the sear
h for all the 
losed and 
onne
ted substrings6



and the removal of all the dupli
ate substrings9.publi
 String[℄ findLoops(matrix A){ String s=matrixToString(A);int lmax=size_of(A)-
ountEmptyStars(A);String[℄ loops=findClosedStrings(s, lmax);loops=removeDupli
ates(loops);return loops;}The �rst step is implemented by a suitable pro
edure that returns a string
orresponding to the digraph G with m = jEj ar
s and represented withan adja
en
y matrix A. The se
ond step de�nes the maximum length ofthe 
y
les whereas the third step (findClosedStrings(s)) �nds all the 
on-ne
ted and 
losed substrings 
ontained in the string s and returns an array ofpossibly dupli
ate strings. The last step (removeDupli
ates(loops)) removeequivalent through shifting substrings and de�nes an array of singletons.Before examining in some detail the third step we make some 
omments onthe se
ond step and so on the maximum length of the 
y
les lmax. If G hasn nodes a 
y
le 
an 
ontain at the most n ar
s. We note, however, that nodeswith empty either forward or ba
kward star10 
annot belong to any 
y
le sothat, if we denote with k the number of su
h nodes, we have:lmax = n� k (7)It is easy to evaluate k from the adja
en
y matrix A: k 
ounts the numberof rows or 
olumns that 
ontain at the most a �1 on the main diagonal andno other element equal to 111:pro
edure 
ountEmptyStars(matrix A){ int k = 0;9Within the pseudo-
ode we suppose the primitive types we use (array, matri
es, stringsand so on) are endowed with the suitable usual primitive pro
edures. We therefore limitto the des
ription of some unusual and ad ho
 pro
edures.10Given a node identi�er i we 
an identify with the 
olumn indexes of the elements equalto 1 of the i�th row of the matrix A the elements of its forward star whereas those of itsba
kward star are identi�ed in a similar way but referring to the rows.11We note that there 
an be a domino e�e
t that we do not investigate in detail sin
ewe aim at an algorithm that works well even with 
omplete digraphs. If we �nd a nodei whose forward or ba
kward star is empty we remove both the i�th row and the i�th
olumn from the matrix A so that it 
an happen that other nodes get either their forwardor their ba
kward star emptied. 7



int r = size_of(A);boolean empty = true;for(int i=1;i<=r;i++){ if(A[i,i℄==0) \\FS(i)=emptysetk++;else{for(int j=1;j<=r;j++)if (A[j,i℄==1) empty=false;\\BS(i)!=emptysetif(empty)k++;elseempty=true;}}return k;}The value of equation (7) is used within both findClosedStrings(s) andremoveDupli
ates(loops). In the 
ase of Figure 2, sin
e all the nodeshave non empty forward and ba
kward stars, we have that k = 0 so thatlmax = n = 4.We now examine the pro
edure findClosedStrings(s) that gets a string asits input and returns an array of 
onne
ted and 
losed substrings12.publi
 String[℄ findClosedStrings(String s, int lmax){ int l = s.strlength();String[℄ loops = new String[℄;for(int i=2; i <=lmax;i++){ for(int 
ur=0; 
ur<l-1;
ur+2){ FARE}}12The array loops is 
reated with no elements and is dynami
ally in
reased as neededwith a primitive operation loops:add(s), where s denotes a 
losed and 
onne
ted string. Ina dual way we 
an remove any string from the array with the operation loops:remove(pos)that removes the element in position pos. Operation s:substring(pos; 2) extra
ts fromstring s a substring of length 2 starting at the integer position pos.8



}where we have:publi
 boolean 
he
kCloseness{String s}{ boolean 
losed = false;int l = s.strlength();if(s.
harAt(0) == s.
harAt(l-1))
losed = true;return 
losed;}and:publi
 boolean 
he
kConne
tedness{String s1, s2}{ boolean 
onne
ted = false;int l = s1.strlength();if(s1.
harAt(l-1) == s2.
harAt(0))
onne
ted = true;return 
onne
ted;}The last step is the pro
edure removeDupli
ates(loops) that gets an arrayof strings and removes from it all the strings equivalent through shifting.The array 
ontains 
losed and 
onne
ted strings ordered in in
reasing lengthorder.publi
 String[℄ removeDupli
ates(String[℄ loops){}5 Some notes on 
omplexity issuesRIVEDERE!!! We now examine various aspe
ts of the algorithm for what
on
erns its 
omputational 
omplexity. We suppose to work with a 
ompletedigraph G with n nodes and m ar
s so that:m = n(n� 1) (8)The number of 
y
les that 
an be dete
ted in the digraph 
an be evaluateda

ording to the following 
onsiderations. We have to 
onsider 
y
les of two9



ar
s and 
y
les of more that two ar
s up to n: the former are 
ounted onlyon
e whereas the latter are 
ounted twi
e be
ause they 
an be traversed both
lo
kwise and 
ounter
lo
kwise. The number of the 
y
les that are 
ontainedin a 
omplete digraph with n nodes is therefore equal to:� n2 �+ 2 nXi=3 � ni � (9)6 Closing remarks and plans for future workThe proposed algorithm represents the implementation of an attempt toanalyse 
omplex data stru
tures, su
h as digraphs, with simpler stru
tures,su
h as strings, by establishing a one-to-one 
orresponden
e between a di-graph and a string and between some properties of the digraph with someproperties of su
h a string.The algorithm must be tuned up, improved as to 
omputational 
omplexityand extended so to allow the dete
tion of other topologi
al properties of thedigraphs than the presen
e and the 
ounting of 
y
les.Referen
es[Cio03℄ Lorenzo Cioni. Implementazione in Java di strumenti per lasimulazione di sistemi dinami
i. Master Degree Thesis "S
ienzedell'Informazione", 2003.[Cio06℄ Lorenzo Cioni. Graphs and trees: 
y
les dete
tion and stream seg-mentation. Oral presentation AIRO 2006, Cesena 12-15 September2006.

10


