An algorithm for the detection of cycles in
directed graphs

Lorenzo Cioni

Computer Science Department, University of Pisa
e-mail: lcioni@di.unipi.it

Abstract

The present paper contains the description of an algorithm that has
been devised for the determination of the cycles in a (even complete)
directed graph (digraph for short). Given a digraph G = (N, E) the
algorithm maps it on a string and then process the string to find
within it substrings that satisfy certain properties. Each substring
corresponds to a cycle within the given digraph. The paper opens with
a short introduction of the problem, then we introduce the algorithm
and describe it using a pseudo-code. In the closing section we discuss
in short issues of computational complexity.

1 Introduction

The present paper contains the description of an algorithm for the detec-
tion and listing of the cycles that are present in a digraph ([Cio03], [Cio06]).
Given a digraph G = (N, E), as a set of nodes N and a set of directed arcs
or edges F, the algorithm maps it on a string o € ¥ whose elements are the
identifiers of the nodes that in pairs identify the arcs (and form the alphabet
/) and then process the string to identify substrings that satisfy certain
properties. To each substring corresponds a cycle in the original digraph.
Each of these cycles is identified by listing the identifiers of the nodes of the
composing arcs.

If 0 € ¥ is the string corresponding to a given digraph G, the detection of
cycles turns, therefore, into the detection of both connected and closed or
cyclical substrings i. e. strings' o* =o0y...0, = a;...a, C o such that:

lg* is a string composed of n elements o; = a;, each element is a substring of length

1 and a member of .« and corresponds to a node identifier. We suppose that o7 contains

1. n=1(c*) > 3 so that any possible cycle contains at least two arcs?;
2. a; == a;qq for i =2,4,...,n— 2 (connectedness);
3. a; == a, (closeness);

4. for i =1...n we have® #a; = 2.

The last condition assures that substrings do not contain any cyclical sub-
substring and prevents the presence of loops®. After having identified all the
cyclical substrings, the algorithm discards all the substrings that are equiv-
alent among themselves but one. The equivalence criterion is based on the
definition of substrings that are equivalent through shifting. A string:

0 = Q1090905 . . . Qp_90y_10n—_10n (1)

can be seen, owing to closeness, as a cyclical structure so that a shift right
of one position (i. e. of one arc) gives us:

rs(0o,1) = ap_1a4,01020903 . . . Ay _90y_1 (2)

where a; = a,. In a dual way we define a shift left of one position whereas
in a similar way we define a right/left shift of k& positions. We say that two
strings (and two substrings too) o® and o are equivalent through shifting if
it exists k£ > 1 such that:

0" =rs(o’ k) (3)
or, equivalently:

o’ = 1s(c®, k) (4)
Two such strings contain the same arcs but starting from distinct nodes so
that they define the same cycle. They are, therefore, equivalent and must be
counted as a single cycle.

2 The determination of cycles in directed
graphs

A digraph G = (N, E) (Figure 1) is characterised by a set of nodes i € N
and a set of oriented arcs (i,j) € E between pairs of nodes i, j € N.

enough symbols to code all the node identifiers of a digraph. If this is not the case we can
always find a coding scheme that uses a constant and fixed amount of symbols to code
any node identifier so that what follows remain true except for a constant factor.

2With I(o) we denote the number of elements of the string o or its length.

3With #0; = #a; we denote the number of occurrences of o; within the string o.

“If a closed path contains only one node is called a loop. A loop represents the reflexive
property of the relation & associated to the arcs of the digraph.

Figure 1: Example of an acyclic digraph

A digraph contains a cycle if there is a directed closed path starting and
ending on the same node. The cycle is made up of at least two arcs and none
of the nodes (but the starting and ending node) is used more than once. In
this way we consider only simple cycles. The digraph of Figure 1 does not
contain cycles and is termed acyclic. If a digraph contains a closed directed
path starting and ending on the same node and containing at least two arcs
it is said to contain a cycle. The digraph of Figure 2 contains three cycles
(described by listing the composing arcs) and precisely:

1. (1,4)(4,1)
2. (1,3)(3,4)(4.1)
3. (1,3)(3,2)(2,4)(4,1)

If we compare figures 1 and 2 we see that the addition of the arc (4, 1) has
turned in the definition of the three cycles. In a dual way if we remove one
node and the incident arcs® we obtain the cancellation of one or more cycles.
In Figure 2, if we remove node 1 (and the incident arcs) we get the removal
of all the cycles contained in the digraph.

®We say that an arc is incident on a node if it has such a node as the source or as
destination so that arc (i, 7) is incident on the nodes ¢ and j.

Figure 2: Example of a digraph with cycles

3 Digraphs over strings, substrings and cy-
cles

The nodes i of a digraph G = (N, E) are characterised by identifiers id,
belonging to the alphabet o7 on whose strings ¢ € ¥ the graphs are mapped.
Mapping can occur inserting every arc (as a pair of nodes) in the string og
corresponding to digraph G. As to the digraph of Figure 2 we can describe
it, among the others, in two ways: as a list of arcs and an adjacency
matrix®.

In the first case, if we use a lexicographic order” we get the following array
of arcs:
(1,3)(1,4)(2,4)(3.2) (3, 4) (4. 1) (5)

6An adjacency matrix is a square matrix whose dimension is the same as the number
of the nodes and whose elements assume one of the values: —1, 1 or 0. Values —1 are only
on the main diagonal and identify a node as the source of the arcs with heads corresponding
to the 1 on the same row. The 0s means absence of a direct connection between the two
row—column nodes.

"With lexicographic order we mean that we list in increasing order the nodes and,
for each node, we list the head of the outgoing arcs in increasing order too.

In the other case we get the square matrix of Table 1. Such a matrix is
of easy interpretation. From the representation as the adjacency matrix as

11213]4
1(-1]0|1]1
210]-110]1
31011 1-1]1
411 0 -1

Table 1: Adjacency matrix for the digraph of Figure 2

that of Table 1 it is easy to derive a representation such as that given by
expression (5). If we denote with A the adjacency matrix we can use the
following algorithm®:

procedure matrixToArray(matrix A)
{
int size = 0;
int r = size_of(A);
int ¢ = r;
for(int i=1;i<=r;i++)
for(int j=1;j<=c;j++)
if (A[i,jl==1) size++; //count the number of arcs
//in the digraph
arcs[] array0fArcs := new arcs[size];
int k=0;
for(int i=1;i<=r;i++)
if (A[i,i]==-1)
for(int j=1;j<=c;j++)
if (Al[i,jl==1)
array0fArcs[k++] :=(i,j);
return arrayOfArcs;

}

Given the representation (5) or of Table 1 it is, therefore, very easy to get
a mapping on a string that successively must be processed in search for the
cycles of the corresponding digraph. Every cycle corresponds, indeed, to

8We use the type arcs as a primitive type: an instance of that type is of the form
(i,7) with 4,7 € N. We suppose the type arcs is endowed with the necessary primitive
operations. We are going to use a pseudo-Java syntax so to make the code more easily
readable.

a substring that is both closed and connected (cf. section 1). Tt is very
easy both to modify such an algorithm so to get matrizToString(matrizA)
return directly a string (we have only to modify the second pair of nested
for loops) and to conceive an algorithm that maps an array of arcs onto a
string. In this case we have:

procedure arrayToString(arcs[] Ar)

{
int 1 = Ar.length;
String s = "";
for (int i=0; i < 1; i++)
s = s+toString(Ar[i]);
return s;
b

where toString() is a primitive operation of type arcs that transforms a
structure such as (4,7) in the string I.J where I is the symbol of 3 corre-
sponding to identifier ¢ (that may span over more than one digit) and J is
the analogous for j. If we apply what we have said to the graph of Figure 2
(as represented e. g. with expression (5)) we obtain the following string:

131424323441 (6)

that must be processed for the detection of closed and connected substrings.

4 The algorithm

4.1 Introduction

Now we give a description of the algorithm in pseudo-code under the
hypothesis that the graph is represented with an adjacency matrix A. The
algorithm gets, as input data, a digraph G = (N, E) coded as A and returns
an array of strings whose dimension is equal to the number of cycles that are
present in G: every string contains the coding of the arcs that form a cycle
in G. If it is necessary we can use a decoding procedure so to obtain all the
cycles in terms of the composing nodes identifiers.

4.2 The general structure

The proposed algorithm has a structure composed of the mapping of a
digraph over a string, the search for all the closed and connected substrings

and the removal of all the duplicate substrings®.

public String[] findLoops(matrix A)

{
String s=matrixToString(A);
int lmax=size_of (A)-countEmptyStars(A);
String[] loops=findClosedStrings(s, lmax);
loops=removeDuplicates(loops);
return loops;

+

The first step is implemented by a suitable procedure that returns a string
corresponding to the digraph G with m = |E| arcs and represented with
an adjacency matrix A. The second step defines the maximum length of
the cycles whereas the third step (findClosedStrings(s)) finds all the con-
nected and closed substrings contained in the string s and returns an array of
possibly duplicate strings. The last step (removeDuplicates(loops)) remove
equivalent through shifting substrings and defines an array of singletons.
Before examining in some detail the third step we make some comments on
the second step and so on the maximum length of the cycles Imaz. If G has
n nodes a cycle can contain at the most n arcs. We note, however, that nodes
with empty either forward or backward star'® cannot belong to any cycle so
that, if we denote with k£ the number of such nodes, we have:

Imax =n—k (7)

It is easy to evaluate k from the adjacency matrix A: k counts the number
of rows or columns that contain at the most a —1 on the main diagonal and
no other element equal to 1'!:

procedure countEmptyStars(matrix A)

{
int k = 0;

9Within the pseudo-code we suppose the primitive types we use (array, matrices, strings
and so on) are endowed with the suitable usual primitive procedures. We therefore limit
to the description of some unusual and ad hoc procedures.

19Given a node identifier i we can identify with the column indexes of the elements equal
to 1 of the i—th row of the matrix A the elements of its forward star whereas those of its
backward star are identified in a similar way but referring to the rows.

1'We note that there can be a domino effect that we do not investigate in detail since
we aim at an algorithm that works well even with complete digraphs. If we find a node
i whose forward or backward star is empty we remove both the i—th row and the i—th
column from the matrix A so that it can happen that other nodes get either their forward
or their backward star emptied.

int r = size_of(A);
boolean empty = true;
for(int i=1;i<=r;i++)
{
if (A[i,i]1==0) \\FS(i)=emptyset
k++;
else
{
for(int j=1;j<=r;j++)
if (A[j,i]==1) empty=false;\\BS(i)!=emptyset
if (empty)
k++;
else
empty=true;
}
}
return k;

3

The value of equation (7) is used within both findClosedStrings(s) and
removeDuplicates(loops). In the case of Figure 2, since all the nodes
have non empty forward and backward stars, we have that £ = 0 so that
Imaxr =n = 4.

We now examine the procedure findClosedStrings(s) that gets a string as
its input and returns an array of connected and closed substrings'?.

public String[] findClosedStrings(String s, int lmax)
{
int 1 = s.strlengthQ);
String[] loops = new Stringl[];
for(int i=2; i <=lmax;i++)
{
for(int cur=0; cur<l-1;cur+2)
{
FARE
}
}

12The array loops is created with no elements and is dynamically increased as needed
with a primitive operation loops.add(s), where s denotes a closed and connected string. In
a dual way we can remove any string from the array with the operation loops.remove(pos)
that removes the element in position pos. Operation s.substring(pos,2) extracts from
string s a substring of length 2 starting at the integer position pos.

where we have:

public boolean checkCloseness{String s}
{
boolean closed = false;
int 1 = s.strlength();
if (s.charAt(0) == s.charAt(1-1))
closed = true;
return closed;

}
and:

public boolean checkConnectedness{String s1, s2}
{
boolean connected = false;
int 1 = sl.strlength();
if(s1.charAt(1-1) == s2.charAt(0))
connected = true;
return connected;

}

The last step is the procedure removeDuplicates(loops) that gets an array
of strings and removes from it all the strings equivalent through shifting.
The array contains closed and connected strings ordered in increasing length
order.

public String[] removeDuplicates(String[] loops)
{
}

5 Some notes on complexity issues

RIVEDERE!!! We now examine various aspects of the algorithm for what
concerns its computational complexity. We suppose to work with a complete
digraph G with n nodes and m arcs so that:

m=n(n—1) (8)

The number of cycles that can be detected in the digraph can be evaluated
according to the following considerations. We have to consider cycles of two

arcs and cycles of more that two arcs up to n: the former are counted only
once whereas the latter are counted twice because they can be traversed both
clockwise and counterclockwise. The number of the cycles that are contained
in a complete digraph with n nodes is therefore equal to:

(5)+2(7))

6 Closing remarks and plans for future work

The proposed algorithm represents the implementation of an attempt to
analyse complex data structures, such as digraphs, with simpler structures,
such as strings, by establishing a one-to-one correspondence between a di-
graph and a string and between some properties of the digraph with some
properties of such a string.

The algorithm must be tuned up, improved as to computational complexity
and extended so to allow the detection of other topological properties of the
digraphs than the presence and the counting of cycles.

References

[Cio03] Lorenzo Cioni. Implementazione in Java di strumenti per la
stmulazione di sistemi dinamici. Master Degree Thesis ”Scienze
dell’Informazione”, 2003.

[Cio06] Lorenzo Cioni. Graphs and trees: cycles detection and stream seg-
mentation. Oral presentation AIRO 2006, Cesena 12-15 September
2006.

10

