Use of N-ary trees for pattern extraction from a
stream of data

Lorenzo Cioni

Dipartimento di Informatica, Universita di Pisa, Pisa 56127, Italy
e-mail: lcioni@di.unipi.it

Abstract. The paper presents the use of an N —ary tree for the extrac-
tion of certain patterns from a sequential stream of data. The data of the
stream belong to N disjoint categories whereas the patterns are defined
with an ex-ante fixed set of K rules. The paper presents an algorithm
written using a pseudo-code and shows an application for the extraction
of particular patterns from a stream of written Italian.

1 Introduction

Let us suppose we have a stream F of data whose elements o; belong to NV
disjoint categories C= {C; | i = 0,..., N — 1} so that we have an alphabet
Y ={o; :i=1,...,1} with a partitioning! with | ¥ |= 1.

Our aim is the extraction from F of certain patterns as specified by an ex-ante
fixed set of K rules R={R; | j =0,...,K — 1}. In this paper we present an
algorithm that allows such extraction through the use of a generalisation of the
concept of binary tree, the N —ary tree, and we show an application to written
Italian. A companion paper ([1]) is devoted to the use of a similar algorithm for
data segmentation.

2 Binary and N —ary trees

A tree ([2], [4]) is usually defined as a graph without cycles where? we have a
set of nodes N and a set of arcs A with | N |= n and | A |= m, we have a
special node called root, any pair of nodes is connected by exactly one path and
a tree with n nodes has exactly m = n — 1 arcs. A node can be an inner node
if it is the root of a non empty sub-tree otherwise it is a leaf. For any node we
define its degree as the number of its direct descendants and say that a tree is
balanced if every inner node has the same number of descendants otherwise is

! We have a classical partitioning: ¥ = U;N;UICi and C; NC; = P for all i # j,
i,7=20,...,N — 1. It is obvious that | > N.

2 The symbol N is used to denote the set of the nodes, the number of the categories
and the number of the descendants of a node. Context makes clear, in each case,
which is the correct meaning. The cardinality of N (and so the number of nodes of
the tree) will be denoted with n as the number of input data. Again, the context
will make clear which is the correct meaning.

said unbalanced. In a balanced binary tree every node is either a leaf (and
it has a degree 0) or it has a degree equal to 2. A balanced N—ary tree ([2],
[4]), analogously, is a tree whose nodes have degree either 0 (leaves) or N. In the
latter case, the descendants are numbered, from left to right, form 0 to N — 1.
In what follows we are going to consider also unbalanced N —ary trees.

3 N -—ary trees and pattern extraction

An N-—ary tree can be used for pattern extraction i. e. for the extraction from
F of certain pre-defined patterns. Every such pattern corresponds to a string,
with repetitions, of category identifiers. If we identify the arcs of the tree with
labels C; € C that are distinct for nodes at the same level®, we can associate to
each leaf of the tree a distinct string of category identifiers. Every such a string,
that can contain repeated category identifiers, identifies a meaningful succes-
sion of categories whose occurrence allows the use, on F, of one of the extraction
rules. According to this definition we can have the pattern CoCyC;Cn_1 corre-
sponding to a leaf at level 4.

Let us suppose we have, at a certain point of the processing, a given input data
stream F and that, among the others, we are looking for a pattern of the type
CiCn-1C;. If a1asaszay .. .a, represents the initial part of F and if a» € Cj,
az € Cn—1 and a4 € C; we have identified a pattern that is instance* of one of
the searched for patterns. During the tree traversal we have therefore reached
one of the leaves.

Now, since during the scan of both the input string and the tree we have reached
a leaf, we have identified a meaningful succession of categories to which it cor-
responds an extraction rule: from the input data stream F the instance pattern
asasay is therefore extracted and written on the output data stream, according
to a format to be specified, whereas on the input stream as .. .a, the algorithm
is recursively applied. The algorithm ends when there are no more data in F.
The algorithm does not really need the tree to be statically built since such a
tree can be dynamically built if the input data belong to IV disjoint and a priori
defined categories. All it is needed is, indeed, only the weight of a node and such
a weight can be evaluated as a running sum of the weight of each category to
which the data belong (cf. section 5.1).

4 Extraction rules

4.1 Formal definition
An extraction rule (simply rule) can be expressed as:
R; = if condition; then action; (1)

3 The level of a node in a tree is the length of the path, as a number of arcs, from that
node to the root, that has level 0.

* A pattern is a set of categories whereas an instance pattern is a string o every element
of which orderly belongs to each category of the pattern.

(for j = 0,...,K — 1) where condition; represents a logical condition that,
in our context, is a type test on substrings of F. If the condition is verified
the specified action; can be applied to F. The action turns in the extraction
from F of a given instance pattern that is written on the output stream for
further processing. In practice, every rule R; is univocally identified by a numeric
identifier r; € [rmin, "maz] 50 that condition; is implemented as an equality test
between a current identifier (to be defined shortly) and the various r;: in the only
positive case the action associated to the rule who triggers is executed. Since the
aforesaid range contains k = rmaz — Tmin + 1 integer values whereas the rules
are K < k we have that, in general, not all the values of r; are associated to a
rule but some are associated to a null value®.

4.2 Characterisation and properties

When we define the extraction rules we have to face a trade—off between quan-
tity and complexity since we can realistically devise either many simple rules
or a restricted set of complex rules®.

In the former case we have fine grained rules and categories and each rule sim-
ply defines the position of every instance pattern within F. In the latter case
we have coarse grained rules and categories and each rule contains a set of sub
cases for the detection of instance patterns. We will briefly describe the second
approach in section 6. From here on we, therefore, suppose to be in the first
scenario so that the set of rules forms a suitable set and can be implemented
with an array of integers R]] of size rmae — Tmin + 1. The indexing scheme is
id= Ty = Tmin-

Rules are, moreover, characterised by the following properties: uniformity and
completeness. Uniformity means that every rule works on the same number
of input symbols whereas completeness means that to every r; € [Fmin, maz]
is associated a rule (cf. further on). In reference to the N—ary tree, complete-
ness means that we have the same number of descendants for every inner node
whereas uniformity means that all the leaves are at the same level. Usual cases
are: completeness and uniformity, non completeness but uniformity. If we have
completeness but non uniformity we have conflicting rules where shorter rules
(that should correspond to inner nodes), owing to rule according to which we
choose among them, hide the longer ones (though they are associated to leaves).
We disregard this case. We are going to examine the last case of non complete-
ness and non uniformity in section 6. In our cases, if the rules form a suitable
set, we have that the generic element R[id] contains either a null value, if to
it there corresponds no rule, or an integer value delta if to it there corresponds

® null is a mnemonic for —1 and, therefore, represents an integer value that cannot
identify any instance pattern.

 The other two cases are: few simple rules and many complex rules. The former case
has a little utility and can only be used in very special cases whereas the latter case
can be computationally heavy. We are not going to examine such possibilities any
further in this paper.

a rule (cf. section 5.1). Every rule can turn, therefore, in the extraction of an
instance pattern from F and in its insertion in the output data stream.

Before stepping to the next section, where we present the pseudo code of the
algorithm and show how the current identifier is evaluated, we give here one
simple example.

Example. Many simple rules, uniformity and completeness. Let us suppose we
have ¥ = {a,b,c} and Cy = {b}, C1 = {c}, C3 = {a} so that N = 3. If we look
for patterns of length 2 we have to consider the elements of {b,c,a} x {b,c,a}
so that we may have the following rules” where curr_string identifies the data
on which rules act:

1. Ry = if curr_string ==" bb" then write(out,” i — bb \ n');
2. Ry =if curr_string ==" ¢b" then in :=" b" + in;

3. Ry =if curr_string ==" ab"” then in :=" b" + in;

4. Rz = if curr_string ==" bc" then in :=" " + in;

5. Ry = if curr_string ==" cc" then write(out,” i — cc \ n");
6. Rs = if curr_string ==" ac" thenin :=" ¢ +in;

7. Rg = if curr_string ==""ba" then in :=" a" + in;

8. Ry =if curr_string ==" ca” then in :=" a" + in;

9.

R; = if curr_string ==""

aa" then write(out,” i —aa \ n'');

In this case we define as patterns to be extracted pairs of equal symbols.

If we code Cy with 2, C; with 1 and Cy with 0 we have the following corre-
sponding identifiers (evaluated from left to right): ro = rpi, = 0,71 = 1, ro = 2,
rg =3, 74 =4, r5 =5, r6 = 6, 77 = e = 7. Moreover we have the following
vector of delta values: R[] = [2,0,0,0,2,0,0,0,2]. If we denote with p the current
identifier we have that the first of the above rules can be rewritten as:

if p==rq then write(out,” i — bb\ n"); (2)

and the same holds for the others. In practice such rules are coded within an ad
hoc procedure under the following form:

if p == 0then delta = 2; (3)

If as F we have aabacbcababbaccac, we get (disregarding newlines) 0 —aa, 10— bb
and 13 — cc.
If we have uniformity but not completeness we can have:

1. Ry = if curr_string ==" bb" then write(out,” i — bb\ n");
2. Ry =if curr_string ==" aa" then write(out,” i — aa \ n");

" With in and out we define the input and the output stream respectively whereas ” +”
is, in this case, a classical concatenation operator between a string and a stream, in
this case represented by the input string. With ¢ we define the global starting position
of the pattern on the input stream and \n is the newline character.

so that we have: R[] = [2, null, null, null, null, null, null, null, 2]. If as F we have
aabacbeababbaccac, we get (disregarding newlines) 0 — aa and 10— bb (cf. section
5.2).

In all the cases we define two integers trigln and trigOut as, respectively, the
minimum and maximum number of input data to be considered in the evalu-
ation of the rules (in the present cases they are both equal to 2). Such values
are statically fixed, given the structure of the rules. If we have, for instance,
trigIn = 3 and trigOut = 5 we have that the rules involve strings of at least
three characters but of five characters at the most. In this case, the first two
characters are not disregarded and contribute to the identification of one of the
rules and, at the same time, of one of the patterns. On the other hand characters
beyond the trigOut—th cannot contribute but cannot be fully disregarded, as it
is shown by rules such as R; and the like.

5 The algorithm

5.1 Introduction

The algorithm accepts a stream of data F and a set of rules R (input) and
produces (output) a stream of instance patterns. Each instance pattern is written
out on a distinct line preceded by the value of the pointer that defines its global
position within F.

We remind that F is made of n elements, with n not known a priori but finite,
and the algorithm scans it sequentially with the aid of a pointer m € [0,n — 1].
The algorithm executes two steps of matching:

1. a weighted category matching step that assigns every element of F to
one of the N categories and evaluates a current identifier or weight for the
substring scanned up to that point;

2. arule matching step that, according to the weight associated to the current
substring, locates the rule to be applied for the processing of F.

If cary, € X is the current element on F (in relative position m) and p denotes
the current weight of the current substring, we have:

p=p+iN™ (4)

where p and m are put to 0 at every recursive call or general reset and ¢ =
match_category(car,,) identifies the category to which the current element be-
longs. Since we have N categories and each category contains m; elements
match_category(car,,) looks for car,, among Zf\gl m; = [elements and re-
turns the index of the category to which car,, belongs. The value of p from (4)
represents the current identifier and it is used to locate the rule to be applied,
if any. If such a rule exists it allows the definition of a shift value delta that can
assume three values: 0, j or null. Formally we have:

delta = match_rule(p) (5)

Under the condition trigin < strlength(curr_string) < trigOut we have the
following cases.

1. If delta == j we have a pattern of length j from the current position that
must be written out preceded by its global position and with a trailing
newline. In this case we have a recursive call in the form of tail recursion

([3])-

2. If delta == 0 we have no pattern but one character must be put back on
the input stream and a general reset follows.
3. If delta == null none of the rules is associated to the current value of p so

that the algorithm must go on scanning F till one of the two preceding cases
occurs or strlength(curr_string) > trigOut.

Until strlength(curr_string) < trigIn the algorithm goes on with input scan-
ning one character at a time whereas if strlength(curr_string) > trigOut we
have that no rule can be applied. This case can occur only if rules do not satisfy
completeness. In this case the algorithm behaves as in the case delta ==

5.2 The structure
The algorithm has the following structure®.:

R=read_rules(rules_file); \\loads the set of rules in the array
\\R[] from a text file rules_file
trigIn=find_min(R);
trigOut=find_max(R);
C=read_categories(categories_file); \\loads the set of categories in the
\\array C[] from a text file categories_file
N=size_of(C); \\evaluates the number of the categories
pt=0; \\global position of patterns within the input stream
procedure extract(in, pt)
{
<<initial_step>>
while not EOF do
{
<<current_step>>
if (delta > 0)
{
<<extract_data>>
extract(in, pt);

}

8 We remind that trigIn and trigQut statically define the range of lengths for which
the algorithm can apply one of the extraction rules. If rules are K in K steps we can
easily find dynamically the shortest one (that defines ¢rigIn) and the longest one
(that defines trigOut). We suppose, therefore, to have the procedures find-min(R)
and find_maz(R)

<<step>>
}
}

As the < initial_step > the weight p is initialised to 0, the pointer m on the
input stream in is initialised and the first symbol is read in:

p=0;

m=0;

car_m=read(in,m);

String curr_string=car_m;

where curr_string is used to contain the input elements scanned up to the current
position m.

The < current_step > phase is composed of a weighted category matching
step and, under the condition on the substring length, a rule matching step:

i=match_category(car_m);
p=p+iN"m;
len=strlength(curr_string);
if(len >= trigIn && len <= trigOut)
delta=match_rule(p);
else
delta=null;

Procedure match_category(car,,) uses array C to define the category index to
which the current character belongs.

In any case, after the < current_step > phase, delta can have one of the fol-
lowing values: j > 0, null, 0.

In the first case the algorithm executes an < extract_data > phase followed
by a recursive call whereas in the other two cases the algorithm executes the
< step > phase.

If delta == 0 the algorithm executes a step-back so that it pushes len — 1
characters back on the input stream, updates the global pointer and performs
a general reset. If delta == null the algorithm has to discriminate between the
cases len < trigIn and len > trigOut. In the former case the algorithm reads
one more character from in whereas in the latter case the algorithm behaves as
for delta == 0. We note that the step-back affect computational complexity.

if (delta==0 || len > trigQut)

{
in=substring(curr_string,1 , len-1)+in; \\discards the first character
pt=pt-len+l;
p=0; \\these three instructions perform the general reset
m=0;
curr_string="";
}

else \\if delta < trigln

{
m=m+1;
pt=pt+1,
X
car_m:=read(in,m);
curr_string:=curr_string+car_m;

If match_rule(p) returns delta == j > 0 the algorithm processes the elements
in curr_string (so to write out those that represent an instance pattern) and
executes a recursive call:

pt=pt-delta;

sOut:=pt+’-’+substring(curr_string, len-delta, len-1)+’\n’;
write(out,s0Out);

extract(in, pt);

5.3 Something about the computational complexity

What follows is true in both the scenarios we have outlined in section 4.2. We
note, however, that in the "few but complex” rules scenario, though the rules
require a longer time to execute (since each of them is made of sub cases that
must be sequentially checked), the execution time of every rule is independent
from the length of the input data so that it can be considered constant.

As a first step we consider the termination of the algorithm. If n is finite, since
at every recursive iteration the algorithm removes at least one element from the
input stream, we have that the algorithm ends in finite number of steps.

As to the complexity we have that:

1. every element of the input stream must be searched for within the set of
N categories each with m; elements (i = 0,..., N — 1) and this has a cost
independent from the dimension n of the input data and equal to? O(I)
where | =| X' |.

2. the rules are loaded in an array during the initialisation phase so that the
search of a rule has a cost O(1).

As to the complexity of the scanning of the input stream we have that:

1. without any step-back it costs O(n) in the worst case;

2. in presence of step-back we may have that, in the worst case, all the elements
of current_string but one are inserted back in the input stream so that the
shortening process of the length of F is: n, n — 1, ..., 1. If we sum all such
values we get n(n + 1)/2 so that the complexity is O(n?).

9 We note that we can do better. If we store the symbols of X in an bi-dimensional
array of [rows and two columns, ordered according to the first column, whose generic
row contains (first column) a symbol o € ¥ and (second column) the identifier of
the corresponding category C;, we can obtain the desired value with a binary search
in O(Inl) steps, again independent from n.

We note that the presence of the step-back depends on the rules but that it can
hardly be avoided so that the best estimate of the complexity is O(n?) though
the presence of long patterns can contribute to a faster shortening of the input
stream.

6 An example: extraction of patterns from written Italian

6.1 Introduction

We define the following partition ¥ = CoUC, UC, with, in general, | C; |> 2 and
consider the following cases: uniformity and non completeness, non uniformity
and non completeness.

In the former case we can suppose patterns of length len = 2 and so, for instance,
of the following types: CyCqy, CoCy, CoCsy, C1Cy, C1Cy, C3Cy and CyCy. We
have a non balanced N—ary tree (non completeness) with N = 3 but with all
the leaves at the same level (uniformity).

In the latter case we can suppose patterns of length len € [2,3] and so, for
instance, of the following types: CoCoCy, CoCoCs, CoCs, C1Cy, C1Cy, Cy(Y,
C>2C1C5 and C2C1C5. We have a non balanced N—ary tree (non completeness)
with N = 3 and with all the leaves not at the same level (non uniformity). A
pattern such as CyCy corresponds to an inner node and is hidden by the patterns
corresponding to the leaves CoCoC; and CqCyCs. As to the rules we can have
only complex rules of this type:

Ro = if curr_string € CoCy then < listof subcases > (6)
or (coding C; as i and evaluating the current weight according to (4)):
if p==_0then K listof subcases > (7)

In this way we have R; «— r; «<— pattern; if pattern; is one of the patterns
and R; is the j—th element of the array of the rules with j = r; — rys,,. We are
going to show how all this works in the following section.

6.2 The application

In this section we show an application of the algorithm to the detection of special
patterns within a stream of written Italian. In this case we have that the data of
F either belong to the Italian alphabet X or to the set of punctuation symbols
P or to the set of the spacing symbols S. In this case we have a partitioning:

F=XYUPUS (8)

with: .

Y=vuvuc 9)
where V' are vowels, V are stressed vowels and C consonants. In this case we
have N = 5 and we can assign to the aforesaid categories the codes 4 to V, 3

to V, 2to C,1to P and 0 to S. According to this convention we can have the
following example of correspondence between patterns and numeric codes!'®:

1. to a pattern of the form CySC} it corresponds 150 = 2%5°4+0%5' +2%5% = 52:

2. to a pattern of the form CySVj it corresponds rigy = 2% 5%+ 0% 5" +4%5% =
102

3. to a pattern of the form V4V, SV3 it corresponds r504 = 4%5°+4x51 +4x5% =
524.

In the first case we look for any combination of two consonants separated by one
spacing symbol, in the second case we look for any combination of one consonant
followed by a spacing symbol and a vowel and in the last case we look for any
combination of two vowels followed by one spacing symbol and another vowel.
An instance pattern of the first type is!! n_l whereas one of the second type
is n_a and one of the third is ai_a. With these rules we have trigIn = 3 and
trigOut = 4. To coding schemes of such a type there corresponds a set of rules
that are neither uniform nor complete:

1. if p==52then delta = 3
2. if p==102 then delta = 3
3. if p==>524thendelta =4

Such rules are coded, as in all the other cases we have examined in the paper,
in the match_rule(p) procedure. We note here what follows.

1. Also in case of non uniformity and non completeness we have to be careful
in defining the rules so to avoid the definition of conflicting rules. In the
present example, a rule associated to a pattern SpS; would hide another
rule associated to a pattern SyS1S>. The same holds also for other pairs
such as CyCy and CyC1Cs or CyC1V; and CyCy. From a theoretical point
of view this translates in the following proposition: to avoid conflicts it is
sufficient to assign rules only to the leaves of the N — ary tree.

2. If we need an ability to detect finer patterns (for instance in case of CySC
if we want the rule to be applied only if Cy € C and C; € C with C c C
and C' C C) we can:

(a) introduce sub-cases in the corresponding rule;
(b) define a finer subdivision of C, of V' or of V, depending on the need.
In the former case we can have:

if p=="52thenifco € C A ¢z € C delta=3 (10)

where A means and and ¢; is the i — th character on curr_string. This
requires only a modification of the structure of the categories_file and the

10 We use subscripts for readability so that C; has the same meaning that C and the
same holds for the other categories. We note that the values of the current identifier
p and of the identifiers r; are evaluated from left to right, according to the character
succession of written Italian.

' We use the symbol _ to render the spacing symbols.

match_rule(p) procedure.

In the latter case we require that C and C are disjoint subsets so to apply
the general scheme with N = 6 and all the rules evaluated according the
new base. This cannot be done dynamically, however, but must be foreseen
when we design an implementation of the algorithm. For this reason we say
that rules and categories are embedded in the code.

7 Conclusions and future plans

The proposed algorithm represents an efficient way for the extraction of a set of
patterns from a stream of data. Future plans include the coding of the algorithm,
its testing in real cases and the examination of the possibility of using rules and
categories not embedded in the algorithm but dynamically defined.

8 Appendix: the full pseudo-code

R=read_rules(rules_file); \\loads the set of rules in the array
\\R[] from a text file rules_file
trigIn=find_min(R);
trigQut=find_max(R);
C=read_categories(categories_file); \\loads the set of categories in the
\\array C[] from a text file categories_file
N=size_of(C); \\evaluates the number of the categories
pt=0; \\global position of patterns within the input stream
procedure extract(in, pt)
{
p=0;
m=0;
car_m=read(in,m);
String curr_string=car_m;
while not EOF do
{
i=match_category(car_m);
p=p+iN"m;
len=strlength(curr_string);
if(len >= trigln && len <= triglut)
delta=match_rule(p);
else
delta=null;
if (delta > 0)
{
pt=pt-delta;
sOut:=pt+’-’+substring(curr_string, len-delta, len-1)+’\n’;
write(out,s0Out);

extract(in, pt);
}
if (delta==0 || len > trigOut)
{
in=substring(curr_string,1 , len-1)+in; \\discards the first character
pt=pt-len+i;
p=0; \\these three instructions perform the general reset
m=0;
curr_string="";
}
else \\if delta < trigln
{
m=m+1;
pt=pt+1,
}
car_m:=read(in,m);
curr_string:=curr_string+car_m;

References

1. Lorenzo Cioni: Use of N—ary trees for the segmentation of a stream of data. Un-
published paper (2007)

2. Kenneth H. Rosen: Discrete Mathematics and Its Applications. WCB/McGraw-Hill
(1999)

3. Adam Drozdek: Algoritmi estrutture dati in Java. Apogeo (2001)

4. Michael T. Goodrich and Roerto Tamassia: Data Structures and Algorithms in Java.
John Wiley and Sons (1997)

This article was processed using the ITEX macro package with LLNCS style

