Use of N—ary trees for the segmentation of a
stream of data

Lorenzo Cioni

Department of Computer Science, University of Pisa

e-mail: Icioni@di.unipi.it

1 Introduction

Let us suppose we have a stream of data .% whose elements o; belong to
N disjoint categories € = {C; | i = 0,..., N—1} so that we have an alphabet
Y ={o; :i=1,...,1} with a partitioning’. Our aim is the segmentation
of .Z as a succession of disjoint groups of elements according to an ex-ante
fixed set of K rules Z = {R; | j =0,..., K—1} ([Cio06]). Such rules could
be used also for the extraction of predefined subsets of data from the given
data stream but, it the present paper, we do not examine such a possibility
any further. We introduce an algorithm that gives us such a segmentation
(cf. figure 1) through the use of a generalisation of the concept of binary
tree, the N—ary tree, and we show an application to the syllabification of
written Italian ([C1096 [Ci097]).

Data stream> Segmentation
. segmented strearm
Eules

Figure 1: Data segmentation

IWe have a classical partitioning: ¥ = UY'C; and C; N C; = @ for all i # j, i,j =
0,...,N — 1. We have, obviously, I > N.

2 Binary and N—ary trees

A tree ([Ros99]) is usually defined as a graph without cycles where? we
have a set of nodes N and a set of arcs A with | N |[=n and | A |= m, we
have a special node called root, any pair of nodes is connected by exactly
one path and a tree with n nodes has exactly m = n—1 arcs. A node can be
an inner node if it is the root of a non empty sub-tree otherwise it is a leaf.
For any node we define its degree as the number of its direct descendants
and say that a tree is balanced if every inner node has the same number
of descendants otherwise is said unbalanced. In a balanced binary tree
every node is either a leaf (and it has a degree 0) or it has a degree equal to
2. A balanced N—ary tree ([R0s99]), analogously, is a tree whose nodes
have degree either 0 (leaves) or N. In the latter case, the descendants are
numbered, from left to right, form 0 to N — 1. In what follows we are going
to consider also unbalanced N—ary trees. A binary tree is, obviously, an
N —ary tree with N = 2.

3 N-—ary trees and segmentation

An N—ary tree can be used for data segmentation i. e. for the splitting
of Z in a stream of segments (cf. figure 1). If we identify the arcs of the
tree with labels C; € € that are distinct for nodes at the same level®, we
can associate to each leaf of the tree a distinct string of category identifiers.
Every string identifies a meaningful succession of categories to which the
data to be classified through the tree belong or a succession of categories
whose occurrence allows the use, on %, of one of the segmentation rules.
Figure 2 shows an example of a part of an N—ary segmentation tree with
the data in .# that belong to N disjoint categories: the black dots represent
inner nodes whereas the white dots represent leaves. Near to the root we
have an example of a string to be segmented, be it yoaf....

We have v € C;, 0 € Cy_; and o € (. Now, since during the scan of both
the input string and the tree we have reached a leaf, we have identified an
instance of a meaningful succession of categories to which it corresponds a
segmentation rule: the input data stream .# is therefore segmented as yo«

2The symbol N is used to denote the set of the nodes, the number of the categories
and the number of the descendants of a node. Context makes clear, in each case, which is
the correct meaning. The cardinality of N (and so the number of nodes of the tree) will
be denoted with n as the number of input data. Again, the context will make clear which
is the correct meaning.

3The level of a node in a tree is the length of the path, as a number of arcs, from that
node to the root, that has level 0.

and (.... The substring yo« is written on the output data stream followed
by a marker, be it —, whereas on the new input stream ... the algorithm
is recursively applied. The algorithm stops when there are no more data in
F.

Figure 2: N—ary trees and segmentation

The algorithm does not really need the tree to be statically built since such
a tree can be built dynamically if the input data belong to N disjoint and a
priori defined categories. All is needed is, indeed, only the weight of a node
and such a weight can be evaluated as a running sum of the weight of each
category to which the data belong (cf. section 5.1).

4 Segmentation rules

4.1 Introduction

A segmentation rule (simply rule) can be expressed as:
R; = if condition; then action; for j =0,...,K —1 (1)

where condition; represents a logical condition that, in our context, is an
equality test on substrings of .%#. If the condition is verified the specified
action; can be applied to .#. The action turns in the segmentation of .7
through the insertion of a marker in the stream so to identify a segment of
data within it as included in a pair of markers (or the beginning of the stream
and a marker or a marker and the end of the stream).

Every rule R; is univocally identified by a numeric identifier 7; € [min, "maz]

so that condition; is implemented as an equality test between the current
identifier and the various 7;: in the only positive case the action associated
to the rule who triggers is executed. Since the aforesaid range contains
k= Tmaz — Tmin + 1 integer values whereas the rules are K < k we have
that, in general, not all the values of r; are associated to a rule but some are
associated to a null value*.

4.2 Characterisation and properties

When we define the segmentation rules we have to face a trade—off be-
tween quantity and complexity since we can devise either many simple
rules or a restricted set of complex rules. In the former case we have fine
grained categories and each rule simply defines the need for the marker and
its position within .%. In the latter case we have coarse grained categories
and each rule contains a set of sub cases. We will briefly describe the second
approach in section 6. Form here on we suppose to be in the first scenario
so that the set of rules forms a suitable set and can be implemented with
an array of integers R][] of size ryae — Tmin + 1. The indexing scheme is
id = rj — T'min. Rules are, moreover, characterised by the following prop-
erties: uniformity and completeness. Uniformity means that every rule
works on the same number of input symbols whereas completeness means
that to every r; is associated a true shift value (cf. further on). Usual cases
are: completeness and uniformity, non completeness but uniformity. If we
have completeness but non uniformity we have conflicting rules where longer
rules (associated to leaves) hide the shorter ones (associated to inner nodes)
so we consider this case as unrealistic and uninteresting. On the other hand,
we are going to examine briefly the case of non completeness and non uni-
formity in section 6. If the rules form a suitable set we have that the generic
element R[id] contains either a null value, if to it there corresponds no rule,
or an integer value delta if to it there corresponds a segmentation rule (cf.
section 5.1). Every action turns, therefore, in the definition of the position
of the segmentation marker within .% and in its insertion in the output data
stream (cf. figure 1) together with the original data. Such a marker is an ad
hoc symbol, such as —, that does not belong to the input data.

Before stepping to the next section, where we present the pseudo code of the
algorithm and show how the current identifier is evaluated, we give here one
simple example.

Example. Le us suppose we have ¥ = {a,b} and Cy = {b}, C1 = {a}. If
curr_string identifies the data on which rules act, we may have (in case of

4null is a mnemonic for —1 and, therefore, represents an integer value.

completeness and uniformity) the following rules®

1. Ry =if curr_string == “bb" then write(out, “b—"); in := “b" + in;
2. Ry =if curr_string == “ab” then write(out, “ab—");
3. Ry = if curr_string == “ba" then write(out, “ba—");
4. Ry = if curr_string == “ad” then write(, out“a—"); in := “a” + in;

In general we should write rules of the form:
Ry =if curr_string € CoCy then write(out, “Co—"); in := “Cf +in (2)

but the structure of the algorithm makes this form unnecessary (cf. below).
If we code ('} with 1 and C, with 0 we have the following corresponding
identifiers (evaluated from left to right): 7o = i, = 0, 711 = 1, r9 = 2,
T3 = T'maz = 3. Moreover we have the following vector of shift values: R[] =
[1,0,0,1]. If as % we have aabababbba . . ., we get a—ab—ab—ab—b—ba—. . ..
If we have uniformity but not completeness we can have:

1. Ry =if curr_string == “bb" then write(out, “b="); in := “b" + in;
2. Ry =if curr_string == “ad"” then write(out, “a="); in := “a" + in;
so that we have: R[] = [1, null, null,1]. If as .# we have aabababbba ..., we

get a — ababab — b — ba ... (cf. section 5.2). In all the cases we define the
integers as trigIn and trigOut as, respectively, the minimum and maximum
number of input data to be considered in the evaluation of the rules (in the
present cases they are both equal to 2). Such values are statically fixed, given
the structure of the rules.

5 The algorithm

5.1 Introduction

The algorithm accepts, as an input, a stream .% of n elements, with n not
known a priori but finite, and scans it sequentially with the aid of a pointer
m € [0,n — 1]. The algorithm executes two steps of matching:

®With in and out we define the input and the output stream respectively whereas 7+
is, in this case, a classical concatenation operator between a string and a stream, in this
case represented by the input stream.

1. a weighted category matching step that assigns every element of .#
to one of the N categories and evaluates a weight for the substring
scanned up to that point;

2. a rule matching step that, according to the weight associated to the
current substring, locates the rule to be applied for the processing of
F.

We note that, in general, not to every weight is associated a rule. If the
associated rule can be applied and the input stream has been shortened, the
algorithm is recursively applied to the remaining input data of stream ..
If car,, € ¥ is the current element on .%# (in position m) and p denotes the
current weight (or current identifier) of the current substring, we have:

p:=p+iN™ (3)

where p is put to 0 at every recursive call and on every general reset and
i := match_category(car,,) (cf. section 5.2) identifies the category to which
the current element belongs. Since we have N categories and each category
contains m; elements match_category() looks for car,, among SN ''m; =1
elements and returns the index of the category to which car,, belongs. The
value of p from (3) represents the current identifier and it is used to locate
the rule to be applied, if any. If such a rule exists it allows the definition of a
shift value, relative to the current position, where the segmentation marker
must be inserted in order to split the input stream in two. Formally we have:

delta := match_rule(p) (4)

Under the condition trigin < m < trigOut we have that, if delta ==
null, none of the rules is associated to the current value of p otherwise, if
delta € [0,m — 1], one of the rules can be applied and the algorithm inserts
a marker delta positions before the current position. If the condition is false
the algorithm either goes on with input scanning (if m < t¢rigin) or (if
m > trigOut) writes out one element of the input string since no rule can
be applied. In this last case we have a reset step and a recursive call. If
delta == 0 there is no step-back whereas if delta € (0, m — 1] we have a
step-back, since only m — delta elements are removed from .% at that step.

5.2 The structure

The algorithm has the following structure®:

SWe remind that trigIn and trigOut statically define the range of lengths for which
the algorithm can apply the segmentation rules.

R:=read_rules(rules_file);
trigIn:=MIN;
trigOut :=MAX;
procedure segment (in)
{
<<initial_step>>
while not EOF do
{
<<Lcurrent_step>>
if (delta != null)
{
<<split_data>>
segment (in) ;
}
<<step>>

3

The very first statement loads, once for all, the set of rules in the array R]]
from a text file rules_file whereas the following statements give the range
of lengths of the substrings of . for which the algorithm tries to apply the
rules.

As < initial_step > we have that the pointer on the input stream in is
initialised and the first symbol is read in:

p:=0;

m:=0;

car_m:=read(in,m);

String curr_string:=car_m;

The < current_step > is composed of a weighted category matching
phase and, under the condition of the substring length, a rule matching
phase:

i:=match_category(car_m) ;
p:=p+ilN"m;
l:=strlength(curr_string) ;
if (1 >= trigln && 1 <= trigQut)
delta:=match_rule(p);
else
delta:=null;

curr_string contains the input elements scanned up to the current
position m. If match_rule(p) returns delta == null we have (cf.
< step >>) to discriminate the cases striength(curr_string) < trigIn and
strlength(curr_string) > trigOut. In the latter case the algorithm writes
out only one input symbol and performs a general reset.

if (strlength(curr_string)>trigOut)
{
sOut :=substring(curr_string, 0, 1);
write(out,sOut) ;
in:=substring(curr_string,1, 1-1)+in;
p:=0;
m:=0;
curr_string="";
}
else
m:=m+1;
car_m:=read(in(m));
curr_string:=curr_string+car_m;

If match_rule(p) returns delta ! = null we have a phase (< split_data >)
where the algorithm processes the elements in curr_string so to write out
some of them and append back the others to the input stream:

sOut:=substring(curr_string, 0, 1-1-delta)+’-’;
write (out,s0Out);
in:=substring(curr_string,l-1-delta, 1-1)+in;

We see how the < split_data > phase inserts the substring sOut (that
includes the marker) in the output stream and the remaining substring (that
can be empty) back at the beginning of the input stream in so that the
recursive call gets the right data to process.

5.3 Something about the computational complexity

What follows is true in both the scenarios we have outlined in section
4.2. We note, however, that in the ”few but complex” rules scenario, though
the rules require a longer time to execute (since each of them is made of sub
cases that must be sequentially checked), the execution time is independent
from the length of the input data so that it can be considered constant (see
further on).

As a first step we consider the termination of the algorithm. If n is finite,

since at every recursive iteration the algorithm removes at least one element
from the input stream, we have that the algorithm ends in finite number of
steps.

As to the complexity we have that:

1. every element of the input stream must be searched for within the set
of N categories each with m; elements (i = 0,..., N — 1) and this has
a cost independent from the dimension n of the input data and equal
to O(NM)" if M = max—,. n—1m;

2. the rules are loaded in an array during the initialisation phase so that
the search of a rule has a cost O(1).

As to the scanning of the input stream we have that without any step-back
it costs O(n). If the algorithm uses a step-back we may have that, before
each recursive call, a certain number of symbols is inserted back in the input
stream. In the worst case all symbols but one are inserted back so the
reduction process of the length of .% is: n, n — 1, ..., 1. If we sum all such
values we get n(n + 1)/2 so that the complexity is O(n?).

6 An example: the syllabification of written
Italian

The syllabification of written Italian represents an example of a segmen-
tation of a data stream where we have a set of rules that are neither complete
nor uniform. In this case the elements of a stream .%# either belong to the
Italian alphabet ¥ or represent punctuation and spacing symbols: only the
elements of the first set are processed whereas the others are simply copied
from the input to the output stream. We note that ¥ = C' UV UV where
V' are vowels, V are stressed vowels and C consonants. Stressed vowels are
the vowels with a main stress or accent ' on the right. In this case we have
the symbols of ¥ that belong to disjoint categories and a set of rules that
prescribe the position of the hyphenation marker for the substrings identified
by every rule.

We give here some examples of rules from [Cio97] and refer to [Cio96] and

"We note that we can do better. If we store the symbols of ¥ in an bi-dimensional
array of S = Zf\;l m; rows and two columns, ordered according to the first column, whose
generic row contains (first column) a symbol o € ¥ and (second column) the identifier of
the corresponding category C;, we can obtain the desired value with a binary search in
O(InS) steps.

[Ci097] for further details and a discussion of some open problems with syl-
labification, mainly in presence of prefixes.

We note that we have N = 3 and that ¥ = C UV UV is the union of disjoint
subsets. If we code the three categories of the partition of ¥ respectively as
0, 1 and 2 we can define an identifier for every rule. For instance the identi-
fier corresponding to CVCV (cf. note 8) is 12. When the current identifier,
evaluated according to relation (3), is equal to 12 we have that any combina-
tion of the form CVCV is segmented as C'V — and CV: the first substring
is written on the output stream whereas the second one is inserted back at
the beginning of the input stream. According to this rule if, on %, we have
the Italian word lato (side) we apply the rule and get la— and to. We note
that we have a step back since to apply the rule we have to scan the data up
to the symbol o but the substring to is put back on the input stream.
Another rule, with identifier equal to 28, states that the group® V,C,C, V5 is
segmented as:

1. ‘/101— and CQ% if Cl == (C2
2. Vi- and 0102‘/2 if CQ == hor if Cl ==4dg and 02 ==n
3. Vi—and C1CyV4 if Cy ==l or rand Cy # L and r

4. ViCi—and CoV5 if Cy == sand Cy == sor V1— and C;Cy V5 if C = s
and Cy # s

5. V1Ci— and C3V5 in any other case. The open case must be solved
depending on the nature of C\.

In this case we can appreciate the complexity of a rule with all its sub cases.
According to these rules (and any other we may need) we can segment words
such as assassinare (to murder) as® as — sas — si — na — re.

We now give some indications about the cases of groups of two or more
consecutive vowels. The presence!? of group of vowels makes the syllabifica-
tion harder since in Italian we can have up to six consecutive vowels (as in
cuoiaio, a person who sells or tans leather, to be segmented as cuo — ia — i0)
though no more than three vowels can be contained in a single syllable. The

8We use subscripts for notational purposes, they do not affect in any way the categori-
sation. It is obvious that V; represents a variable of "type” V and assumes, as its value,
one of the elements of the set V = {a,e,i,0,u}. The same holds for Cy, and the like, with
respect to category C' and VY, and the like, with respect to category V.

9We show here how the word is presented on the output stream. To each hyphen there
corresponds a recursive call of the algorithm

"0The closing part of this section is based on [Ci097].

10

algorithm, in presence of three or more consecutive vowels, first looks for
triphthongs!! and then for diphthongs. We first introduce some group of two
vowels that define a hiatus'?. Vowels like a, e and o when are one after the
other never belong to the same syllable so that boa (buoy) is segmented ad
bo — a. Now we step to diphthongs. In a group like quV the vowel u form
always a diphthong with V', where V, in this case, can be a, e, i or o'*. This
allows us to segment quindi (therefore) as quin — di and quindici (fifteen) as
quin — di — ci. We have diphthongs in cases such as:

1. V1V, where either Vi =i and Vo = a.,e,o,uor Vi, =w and V5, = a,e,0,i
2. V1V5 where either Vo, =7 and V; = a,e,o,uor Vo =wu and V; = a,e, 0,1
3. V1V, where either V; =i and V;, = a,e,0,u or Vi, =u and V5, = a,e,0,1
4. V1V, where either V, =7 and V] = a,e,o,uor Vo =u and V] = a,e,0,1

According to these rules in the word cioccolato (chocolate) we have a diph-
thong so that the segmented word is cioc — co — la — to.

The algorithm scans groups of three or more consecutive vowels from left to
right and examines the first three vowels it finds. At this point the three
vowels either form a triphthong, so that they must be considered a single
character, or they do not form a triphthong and so the group of vowels must
contain the syllable boundary.

In the first case the character that follows the triphthong can be either a
vowel or a consonant. If it is a vowel, the algorithm insert the marker on its
left and starts another recursive cycle. If it is a consonant, the first two vow-
els are written on the output stream whereas the remaining vowel and the
consonant are inserted back on the input stream and a recursive call occurs.
In the second case we have that the group V;V5V3 is segmented either as
Vi—and V,V3 or as ViVo—and V3, where only one of the V; can be accented.
If the group does not contain any accented vowel the algorithm behaves ac-
cording to the following rules:

1. if V; == a, 0, e then the output is V;— and V,V5 ;
2. if Vi == and V5 # u then the output is V;Vo— and Vs;
3. if Vi == wu and V5 # ¢ then the output is V;Vo— and Vs;

1A triphthong is a group of three consecutive vowels that must be seen as a single
character.

12Vowels form a hiatus if they belong to distinct syllables whereas they form a diphthong
if they belong to the same syllable.

13Tn written Italian we cannot have two consecutive u.

11

4. if Vi == 1 and Vo, == w or V; == u and V5, == 7 then the output is
V1 and VoV — 3.

The first rule accounts for the segmentation of soia (soybean) as so — ia, the
second for the segmentation ghiaia (gravel) as ghia — ia. Let us consider,
again the hard example of cuoiaio. The algorithm scans the word from the
left till it finds a group of three vowels uo: that cannot form a triphthong so
it uses the proper rule and splits the triple as uo — 4, then it goes on with
scanning and find three more vowels zai that once again cannot belong to the
same syllable and so, with another rule, it splits them as ia —i. At this point
the algorithm finds two vowels that are known to form a diphthong and so
can produce the segmented form cuo — ia — i0. Anther example is troiaio
(pigsty) that is segmented as tro — ia — io.

7 Conclusions and future plans

The proposed algorithm represents an efficient way for the segmentation
of a stream of data. Future plans include the coding of the algorithm, its
testing in real cases and the examination of the possibility of using rules and
categories not embedded in the algorithm but dynamically defined.

References

[Cio96] Lorenzo Cioni. RB-tree: un algoritmo per la sillabazione
dell’italiano. In Atti del XXIV Convegno Nazionale dell’Associazione
Italiana di Acustica, volume XXIV, pages 81-84. ATA, 12-14 Giugno
1996.

[Cio97] Lorenzo Cioni. An algorithm for the syllabification of written ital-
ian. paper accepted at the 5th International Symposium on Social
Communication, Santiago de Cuba, Cuba, January 22-24 1997 also
published on Quaderni del Laboratorio di Linguistica, volume 11,
Scuola Normale Superiore, Pisa, Italy, 1997.

[Cio06] Lorenzo Cioni. Graphs and trees: cycles detection and stream seg-
mentation. In oral presentation AIRO 2006, Cesena 12-15 September
2006.

[Ros99] K.H. Rosen. Discrete Mathematics and Its Applications.
WCB/McGraw-Hill, 1999.

12

