A simple algorithm for the segmentation of a
stream of data

Lorenzo Cioni

Department of Computer Science, University of Pisa
e-mail: Icioni@di.unipi.it

keywords: real time processing, string processing, data segmentation,
syllabification, trees

1 The nature of the problem

In this paper we face the problem of the segmentation of a stream .# of
data i.e. the insertion in such a stream of a certain number of markers in
positions defined through the use of a certain number of rules Z.

The problem is solved with an ad hoc algorithm that uses the rules of the set
Z. Such rules can vary depending both on the nature of the segmentation
and on the type of data contained in .%. If, for instance, the data in .%
represent a stream of words written in Italian and the rules of % provide
instructions on how to identify the syllable boundaries for written Italian,
the algorithm can provide the syllabified version of such a stream ([Cio96],
[Cio97]). By changing the rule set we can obtain the syllabification of any
other language. In more abstract cases the algorithm allows the segmenta-
tion of .%, whose elements belong to a generic finite alphabet ¥ that can be
partitioned in a set € of disjoint categories! C;.

The algorithm works in ”real time” on the incoming data in .% without re-
quiring the full data set to be pre-loaded in any data structure for processing
and so can work on input stream of any [finite| length n not ex ante known.
As a result the algorithm produces an output data stream consisting of the
original data and a set of segmentation markers at the suitable positions (cf.

'We have a classical partitioning: ¥ = Uf\;lCi and C;NC; =0 forall i #j,14,j =
0,...,N — 1. We have, obviously, | > N with | ¥ |= 1.

Figure 1). In the present paper we use, as a segmentation marker, the char-
acter — that, therefore, cannot be a legal character of the input stream .%#.

Segmentation

. Segmented strearm
Eules

Figure 1: Data segmentation

2 The general structure of the algorithm

The algorithm scans .% until a segmentation marker can be inserted. At

this point the data before the insertion position are written out followed by
a marker whereas those after the insertion position are appended back on .#
and a recursive call occurs. All this goes on until the EOF marker is reached
on 7.
The algorithm is, therefore, composed of a main loop within which we
have, in sequence: a scanning step? (implemented with the procedure
scan_in(stream in)), a category matching step (implemented with the pro-
cedure match_category(char car_m)), a rule matching step (implemented
with the procedure match_rule(int weight)) and a certain number of con-
ditional tests and assignment instructions. Procedure scan_in(stream in)
scans in with a pointer m € [0,n — 1] and loads each character or symbol3in
a current temporary string! curr_string and in a variable car_m. Procedure
match_category(char car_m) assigns each character to one of the categories
C; whose identifier 7 is used to evaluate a weight as a running sum on the el-
ements of curr_string. Last but not least, procedure match_rule(int weight)
uses such a weight to identify, among the rules, the one that can be applied,
if it exists, on curr_string. Owing to the application of the rule, curr_string
is divided in two parts: the former is written on out whereas the latter is
written back in front of ¢n. This process has some variants that will be
evident in the pseudo-code.

2Within pseudo-code we use in to denote the input stream associated to .% and out to
denote the output stream. We also use car_-m to denote the current symbol on the input
stream whereas with o; we denote an element of X.

3In this paper we use the terms symbol and character as synonyms.

4As it will be evident from the pseudo-code in practice we need only a pointer that
gives access to the elements of curr_string.

3 The main ingredients

The main ingredients of the algorithm are: the alphabet ¥ partitioned
in a set of categories %, the set of rules # used to segment the data in
and an abstract data structure 7. X contains all the legal characters
that can be contained in .# and cannot include the character we choose as
the segmentation marker®. Every element of ¥ belongs to only one of the
categories C;. Strings on in and curr_string belong to >*.

The rules form a set Z = {R; | j =0,..., K — 1} where, roughly speaking,
every j corresponds to a value of the running sum weight even if not to
every such a values it corresponds a value of j and so a rule. In this case by
evaluating weight and comparing it with the values j that indexes Z it is
possible to identify the rule to be applied or to conclude that no rule can be
applied.

The abstract data structure .7 ([Ros99], [Die05]) is a generalisation of the
binary tree and we call it N—ary tree 7 = (N, A) with® | A |=| N | -1 =
n—1. We have inner nodes with direct descendants and leaves as nodes with
no direct descendants. Every inner node can have the same number of direct
descendants, lower than N, and we speak of a balanced N—ary tree, can
have exactly N direct descendants, and we speak of a complete N—ary
tree, or can have any number of direct descendants between 1 and N and
we speak simply of a generic N—ary tree (since all category identifiers are
used as least once as a label of one of the arcs). We note that completeness
implies balancedness but the converse is not true: indeed we can only state
that balancedness is a relaxed version of completeness.

3.1 The successions of categories

After m steps we have that curr_string contains m characters, each be-
longing to one of the C;. We have, therefore, a succession on m instances of
[repeated] categories. If we define a succession of categories” Cj, ... Cj, as a
meaningful succession (ms) we have that o;, ...0;, (where 0;, € C}, for
i=1,...,m) represents a meaningful instances succession (mis). Such
kind of successions play a role both in the N—ary tree and in the segmenta-

5This condition is introduced mainly for practical purposes and can be easily relaxed.
SWith | A | we mean the number of elements in the set A. The symbol N is used
to denote both the set of the nodes and the maximum number of the descendants of a
node. Context makes clear, in every case, which is the correct meaning. In some case the
cardinality of N (and so the number of nodes of a tree) will be denoted with n as the
number of input data. Again, the context will make clear which is the correct meaning.
"We note that since we can have repeated categories not all the j; are distinct.

tion rules since such successions can have either the same length or distinct
lengths: in the first case we speak of uniform mli|ss whereas in the second
case we have non uniform mfi|ss.

3.2 The N—ary tree

In our case the N—ary tree .7 is characterised by the fact that every arc
is labelled with exactly one category identifier C;. Inner nodes can have any
number of direct descendants depending on the nature of the tree (balanced,
complete or generic) but they cannot be associated to any segmentation rule
that is associated only to one of the leaves. If the leaves are all at the same
level® we speak of a uniform N—ary tree: in this case leaves are associated
to mss of the same length. If the tree is not uniform, leaves are associated to
mss of different length. We note that an uniform tree describes mss of the
same length and vice versa whereas mss of different lengths are associated
to leaves at different levels and so to a non uniform tree and vice versa.
Both completeness and balancedness involve inner nodes whereas uniformity
concerns only the leaves so they form two groups of independent properties.
The root of 7 (at level 0 and with weight 0) is associated to the empty
curr_string, the nodes at level 1 are associated to the types’ of the first
element of curr_string whereas the nodes at level ¢ are associated with the
types of the i—th element in curr_string, if it is present. The outgoing
arcs from every node are labelled with the categories to which the associated
symbol can belong. When we reach a leaf we have identified a ms of categories
to which is associated one of the segmentation rules that can be applied to
curr_string and, then, to in (and correspondently to .7%).

3.3 The running sum

In practice .7 is not effectively built since it can be simulated with the
use of a running sum. If we denote with p the running sum or weight we
have:

p=p+iN’ (1)

where N is the number of categories, ¢ is the index of the category to which
car_m belongs, j € [0, M — 1] is the position'? of car_m in curr_string and

8The level of a node is the length of the path, as a number of arcs, from that node to
the root, that therefore has level 0.

9We say that a character is of a type or belongs to a category Cj.

0With M we denote the maximum length of curr_string that is significant for the
problem we are facing. In case of syllabification of written Italian M corresponds to the
longest sequence of characters to which we associate a rule and is greater than the longest

p is put to 0 whenever curr_string is emptied. The value of i is obtained as
i = match_category(car_m) and requires the scan of the [elements of ¥ so
to define the category to which every symbol belongs!!.

In this way we evaluate all the integer values in the interval [0, N* — 1] even
if, in the general case, only to some of these values it corresponds a leaf and
so a segmentation rule.

3.4 The rules

The rules can be described with the following high level syntax:
R; = if condition; then action; (2)

with j = 0,..., K —1. With condition; we identify an equality test between
the current value of the running sum and the identifiers associated to the rules
whereas with action; we define, possibly with the use of sub cases, essentially
the position of a segmentation marker. To every rule R; it corresponds a
meaningful succession of categories Cj, (withi = 0,...,I—1 if the succession
has a length equal to I') so that every rule is indeed characterised by an integer
valued identifier that is evaluated as follows:

-1
ri=> jmN™ (3)
m=0

where j,, is the identifier of the symbols of ¥ that belong to the category!?
(., and that is in position m on curr_string. In this way we get a range
[T'mins Tmaz) to which all the K category identifiers belong. We note that we
can have:

1. K = Tmaz — Tmin + 17
2. K < 7Tmaz — "min + 1.

In the former case we have a complete array of rules with K values
whereas in the latter case we have an incomplete array of rules. In both
cases we indeed store the rules in an array R[] of 7z — Tmin + 1 elements

syllable.

"U'We can use an array of pairs symbol <+ category_to_which_it_belongs so to have an
access with a cost O(l) in time. If such an array is ordered we can perform a binary search
on it in O(In!) time.

12We remind that we are interested in mss and that to each ms is associated an integer
evaluated according to relation (3). We note also that the mss are associated to leaves so
that we cannot have a ms as a proper substring of another ms.

C1 C2

o1} 2
] e] 3 (9]

@ ® T
1 o o cz @ oz o
c1 o1 o1
® ®

Figure 2: Non completeness and non uniformity (left), completeness and
uniformity (right)

with an indexing scheme id = r; — 7, so that the search for a rule turns in
a direct access to an element of an array.

In each position R[id] of the array we can have either an integer value delta
that defines the position of the marker with respect to the current position
in curr_string or a null value'? if "no rule” has been devised for that array
position. In all these cases we have:

delta = match_rule(p) (4)

Within such procedure, in the simplest cases, we execute R[p—r,,,] whereas,
in more complex cases, we have to access to a certain number of sub cases
(that can be implemented with a switch statement or with more abstract and
general structures) to which there correspond distinct values of delta.

Figure 2 shows (on the left) an example of non completeness and
non uniformity where inner nodes are labelled as 1,2,3,4 and black
dots are the leaves. In this case we have six mss (C1Cy, C,CiCY,
C,C,Cy, C1Cy, CyCy and CoC3) to which there corresponds? six effec-
tive rules’ on an range [1,106]. On the right side of Figure 2 we
have an example of a complete and uniform graph where the mss are

CoCo, CoCy, CyCs, C1Cy, C1Cy, C1Cy, CoCy, CoCh, C5C; in the range'® [0, 8].

13pull is a mnemonic for —1 and, therefore, represents an integer value.
14Tn this case we code C; as i, with i =0,1,2,3,4, and we have N = 5.
15As a general rule we have as many rules as leaves.

16In this case too we code C; as i, with i = 0, 1,2 whereas we have N = 3.

3.5 Other parameters

From the previous section it is easy to see how we have both a lower and

an upper bound on the length len of curr_string on which we can try to
apply one of the rules. We define such bounds respectively as trigIn and
trigOut. In the case of figure 2 (left) we have trigln = 2 and trigOut = 3.
In case of figure 2 (right) we have trigln = trigOut = 2.
If we have len < trigln the algorithm can only go on with scanning in and
evaluating p since the number of symbols is insufficient whereas if we have
len > trigOut no rule can be applied any more so that the algorithm writes
out the initial element of curr_string without any marker, writes back the
others on in and goes on'’. If trigIn < len < trigOut the value of p we get
at any step is used to access R[] and obtain a value for delta to be used for
subsequent computations.

4 Two toy examples and an application

4.1 Two toy examples

In the first toy example we have ¥ = {a,b}, Cy = {a} and C; = {b}. We
can have (uniformity and completeness)'®:

1. Ry =if curr_string =="bb" then write(out,” b—");in =" " + in; and
delta = 1;

2. Ry = if curr_string ==" ab" then write(out,” ab—"); and delta = 0;

3. Ry =if curr_string ==" ba" then write(out,” ba—"); and delta = 0;

4. Ry = if curr_string ==" aa" then write(out,” a—");in =" " + in and
delta = 1;

Though the general form of a rule should be Ry = if curr_string €
CoCy then write(out,” Co—");in =" C§ + in; it is easy to see that this is
not necessary. If we code C; with 1 and Cy with 0 we have that to the above
rules there correspond the following identifiers: ro = i, =0, 71 =1, 19 = 2
and r3 = e = 3. In this way we define R[] = [1,0,0,1]. If on in we have
aabababbaa . .. using the above rules we get a — ab — ab — ba— on out and
a... at the beginning of in.

7In this case we speak of a step back that has effects on the computational complexity.
18With ”+” we define a classical concatenation operator between strings, streams and
strings and the like.

As another toy example we can refer to the right side of Figure 2 and
consider (without assigning any particular meaning to the symbols) ¥ =
{a,b,c,d,e, f,g,h,i,1}. We can define the partition (Cy = {a,e, i}, C; = {b},
Cy = {c,h}, C3 ={d,l}, Cy = {f,g}) and the set of mss we saw at the end
of section 3.4. If we code C; as ¢ for t = 0,...,4 and use N = 5 in equation
(3) we get that in the range [1,106] only 6 positions of R[] (precisely posi-
tions 1,11,12,17,31, 106) are associated to a not null value of delta. If these
values, in an orderly way, are 1,0, 1,0, 2, 2 this means that!® C,Cy is split up
as C1— and Cy, C1C5 and CyC5 are written out as C1Cy— and CoC3—, CyC5
is split up as Cy— and Cy, C;CC} is split up as C;C1— and C; and the same
holds also for C,C,C;.

4.2 An application: the syllabification of written Ital-
ian

In this case we use the algorithm to solve a real problem. We have
the alphabet ¥ of written Italian that contains all the legal symbols of any
written Italian text. In this case (if we use V' to denote the set of unstressed
vowels, V to denote the set of stressed vowels?® and C to denote the set of
consonants) we have the partition ¥ = V' U V UC. In addition to these sets
we have the set P of the punctuation marks and the set S of the spacing
symbols. Such sets can be considered both as a part of the partition of ¥
and external to it. In the former case we have N = 5 and the rules we devise
must consider this full set of characters. In the latter case we have N = 3
and the rules are simpler since any occurrence of one element from either P
or S brings about the direct writing on out of the content of curr_string®..
In the present paper we follow the second approach.

At this point we have defined the alphabet ¥ and the set of categories % .
We have to define a proper coding of each category C; and the set of rules
Z. We note that in this case we are in a situation like that of Figure 2, right
side, and so we have neither completeness nor balancedness nor uniformity.
In this paper it is not possible to give a full listing of the needed rules and we
only give some examples. Further details can be found in ([Ci096], [Cio97]).

19Tn these cases the former part is written on out whereas the latter, if it exists, is put
back at the beginning of in. We speak in terms of mss but similar considerations hold
also for the corresponding miss.

20Guch a set contains both wovels with an acute stress and vowels with a grave stress.

21'We note that in cases like "fra me e te ne se né ma” (i.e. ”between me and you neither
if nor but”) we have non syllabification at all and spaces are, as usual, markers of word
ends. The same holds for all the words of two characters and for many words of three
characters that can constitute a noticeable percentage of a written text.

We therefore consider ¥ =V UV UC, N = 3 and the corresponding coding
2,1,0 since the syllabification process (at least in Italian) is vowel driven.
We remind that sets P and S (that we code respectively as 3 and 4) must
anyway be known even if their elements have no role in the rules since their
occurrences simply turns in the writing of the content of curr_string on out
without any marker insertion.

Starting with a simple rule we have that to the ms CV CV it corresponds the
weight (or identifier®?) 30 so that whenever the current identifier, evaluated
according to relation (1), is equal to 30 we have that any combination of the
form CVCV is segmented as C'V — and CV': the first substring is written on
out whereas the second one is inserted back at the beginning of in. According
to this rule the Italian word lato (side) is syllabified as la— and to. We note
that we have a step back since to apply the rule we have to scan the data up
to the symbol o but the substring to is put back on the input stream.
Another really more complex rule, to which it corresponds an identifier equal
to 28, states that the group?® V,C,C, Vs is segmented as:

1. ‘/101— and CQ‘/Q if Cl == (C2

2. Vi— and C1C,V, if C) == ¢ | g and Cy == h or if C; == ¢ and
CQ ==nNn

3. Vi—and C1CyV4 if Cy ==l or rand Cy # L and r

4. ViCi— and CoV5 if Cy == sand Cy == sor V1— and C;C, V5 if C) = s
and Cy # s

5. V1Ci— and C,V; in any other case: such open case must be handled
depending on the nature of Cj.

In this case we can appreciate the complexity of a rule with all its sub cases.
According to these rules we can segment words such as assassinare (to mur-
der) as®* as — sas — si — na — re.

We now give some indications about the cases of groups of two or more
consecutive vowels. The presence?® of group of vowels makes the syllabifica-
tion harder since in Italian we can have up to six consecutive vowels (as in

22Weight and identifier are synonyms.

23We use subscripts for notational purposes, they do not affect in any way the categori-
sation. It is obvious that V; represents a variable of "type” V and assumes, as its value,
one of the elements of the set V' = {a,e,4,0,u}. The same holds for C, and the like, with
respect to category C' and V1 and the like, with respect to category V.

24We show here only how the word is presented on the output stream. To each hyphen
there corresponds a recursive call of the algorithm

25The closing part of this section is based on [Ci097].

cuoiaio, a person who sells or tans leather, to be segmented as cuo — ia — io)
though no more than three vowels can be contained in a single syllable. The
algorithm, in presence of three or more consecutive vowels, first looks for
triphthongs?® and then for diphthongs. We first introduce some group of two
vowels that define a hiatus?’. Vowels like a, e and o when are one after the
other never belong to the same syllable so that boa (buoy) is segmented ad
bo — a. Now we step to diphthongs. In a group like quV the vowel u form
always a diphthong with V', where V, in this case, can be a, e, i or 0*®. This
allows us to segment quindi (therefore) as quin — di and quindici (fifteen) as
quin — di — ci. We have diphthongs in cases such as:

1. V4V, where either Vi =i and Vo, = a,e,0,u or V; =w and V5, = a,e, 0,1
2. V1Vy where either Vo =7 and V) = a,e,o,uor Vo =w and V; = a,e, 0,1
3. V1V, where either V; =i and V, = a,e,0,uor V;, =u and V, = a,e,0,1
4. V1V, where either V5, =7 and V] = a,e,o,uor Vo =u and V] = a,e,0,1

According to these rules in the word? cioccolato (chocolate) we have a diph-
thong so that the segmented word is cioc — co — la — to.

The algorithm scans groups of three or more consecutive vowels from left to
right and examines the first three vowels it finds. At this point the three
vowels either form a triphthong, so that they must be considered a single
character, or they do not form a triphthong and so the group of vowels must
contain the syllable boundary.

In the first case the character that follows the triphthong can be either a
vowel or a consonant. If it is a vowel, the algorithm insert the marker on its
left and starts another recursive cycle. If it is a consonant, the first two vow-
els are written on the output stream (without any following marker) whereas
the remaining vowel and the consonant are inserted back on the input stream
and a recursive call occurs.

In the second case we have that the group V;V5V3 is segmented either as
Vi—and V,V3 or as ViVo—and Vi, where only one of the V; can be stressed.
If the group does not contain any stressed vowel the algorithm behaves ac-
cording to the following rules:

26 A triphthong is a group of three consecutive vowels that must be seen as a single
character.

?Ttwo vowels form a hiatus if they belong to distinct syllables whereas they form a
diphthong if they belong to the same syllable.

28Tn written Italian we cannot have two consecutive w.

29Tn such and similar words character i plays the role of a semi vocalic sound.

10

1. if Vi == a, 0, e then the output is V;— and V4 V3 ;
2. if Vi == and V5 # u then the output is V;Vo— and Vs;
3. if Vi == wu and V5 # i then the output is V;Vo— and Vs;

4. if Vi == i and V5 == w or V; == u and V5 == i then the output is
V1 and VoV — 3.

The first rule accounts for the segmentation of soia (soybean) as so — ia, the
second for the segmentation ghiaia (gravel) as ghia — ia. Let us consider,
again the hard example of cuoiaio. The algorithm scans the word from the
left till it finds a group of three vowels uo: that cannot form a triphthong so
it uses the proper rule and splits the triple as uo — i, then it goes on with
scanning and find three more vowels ia: that once again cannot belong to the
same syllable and so, with another rule, it splits them as ia —i. At this point
the algorithm finds two vowels that are known to form a diphthong and so
can produce the segmented form cuo — ia — 70. Anther example is troiaio
(pigsty) that is segmented as tro — ia — io.

5 The pseudo-code

We now give the full pseudo-code of the algorithm followed by a few
comments. The pseudo-code is written using a Java-like syntax for a better
readability ([Dro01], [GT97]). We present the pseudo-code (with some in-
line comments) in the simpler version (well suited for the toy examples) and
underline where changes must be made so the adapt the algorithm to more
complex and realistic applications®°.

// global data structures

//load the identifiers of the rules in a mono dimensional
//array

int[] R=read_rules(rules_file);

//load the categories in an array of Category

//as pairs sets_of_chars-category_identifier (int)
Category[] C=read_categories(categories_file);

int trigIn=MIN; //lower threshold

int trigOut=MAX; //upper threshold

int r0=R[0]; //value used in the indexing scheme of R

30As to the syntax we only remind that if s is a String the method
s.substring(beginIndex,endIndex) returns the substring of s containing all the characters
from the one in position beginIndex to the one in position endIndex — 1.

11

int p=0, m=0;
int base=Category.size0f();
String curr_string="";
char car_m=’’;
// main method
public void segment(in)
{
scan_in() ;
while not EOF do
{

i=match_category(car_m);

p=pt+ix*base’m;

len=strlength(curr_string);

if (len >= trigln && len <= trigOut)
delta=match_rule(p) ;

else
delta=null;

if (delta >= 0)

{
sOut=curr_string.substring(0, len-delta)+’-’;
write (out,s0ut);
in=curr_string.substring(len-delta, len)+in;
reset();
segment (in) ;

}

if (len>trigOut)

{

flush();

}

else

m=m+1;
scan_in();

}
// private methods
private void reset()
{
p=0;
m=0;
curr_string="";
car_m=’’;

12

}

private void scan_in()

{
car_m=read(in,m) ;
curr_string=curr_string+car_m;

}

//performs a reset and writes out the first char of curr_string

private void flush()

{
reset();
sOut=curr_string.substring(0, 1);
write (out,sOut);
in=curr_string.substring(1l, len)+in;

}
private int match_category(char car_m)
{
for(int i=0;i<base;i++)
{
Category c=C[il];
if (c.getSet () .contains(char_m))
return c.getIndex();
}
}
private int match_rule(int p)
{
int index=p-r0;
return R[index];
}

The pseudo-code is simple and linear. Starting from the very beginning we
have a general initialisation phase followed by the method segment(in). Such
method performs an initial scan and then enters in a loop. Within the loop
we have a category matching phase, some computations, a rule match-
ing phase and either a segmentation and a recursive call or the flushing of
curr_string or an advancing on in to the following char.

Private methods include: a reset() method that gives initial values to some
global variables, a scan_in() method that reads a char from the input stream,
a flush() method, already commented, a match_category(char car_m)
method that is responsible for the matching between every symbol and a
category and a match_rule(int p) method that returns the value of delta
to be used in segmentation.

13

The only methods that need a variable structure are the last two. Owing
to this fact we speak of rules and categories embedded in the code. In the
case of syllabification (and similar ones) we have that match_category must
manage the presence of elements of P and S, empty currstring and perform
a general reset and a recursive call whereas match_rule must have an inner
structure that allows the definition and the management of sub cases. In
these cases we have pieces of pseudo-code like the followings:

private int match_category(char car_m)

{
int id;
for(int i=0;i<base;i++)
{
Category c=C[il];
if (c.getSet () .contains (char_m))
id=c.getIndex();
break;
}
if(id == [l id == 4)
{
write(out,curr_string);
reset();
segment (in) ;
}
return id;
}
private int match_rule(int p)
{

int index=p-r0;
int id=R[index];
switch(id)

{

case idi:
break;
case id2:
break;

case idK:

14

break;
default:
break;
+
}

In this case (cf. section 4.2 for some examples) it is necessary indeed to
associate at each value of the running sum p either a simple rule (as in the
case of p = 30 or CVCV') or a complex rule with sub cases (as in the case of
p=28o0r VCCV).

6 The computational complexity

As it is clear from the pseudo-code, at each step at least one element is
transferred from in to out. Termination of the algorithm is therefore out
of the question so let us say something about its computational complexity.
Computational complexity depends strongly on the segmentation rules since
rules define how many input characters are processed at any application of
a rule. With this in mind, from a classical perspective we should define the
best, average and worst cases.

The worst case occurs whenever no rule can ever be applied so at any step
only one symbol is transferred form input to output stream. In this case it
is easy to see that on an input stream of length n the complexity is O(n?) in
time?!.

The best case occurs whenever we have no step back so that at any pass of
the algorithm a block of symbols is transferred form in to out: in this case
we have anyway to scan in up to the end so the complexity is O(n) in time.
The average case depends both on the distribution of input data to be
processed on ¥ and on the set of the rules and the probability with which
each rule is applied. As to the syllabification, such a complexity is strongly
dependant on the frequencies of written Italian both from what concerns the
single characters and their combinations and for what concerns the distri-
bution of the length of the words within a "normal” written text. All this
to say that, in this paper, we do not give any estimate of such a complexity

31'We have: X
(S N =, nnh+1)
Y n-i=3i="" 6)
=0 Jj=1

(with the substitution n — 4 = j) where i represents the number symbols transferred from
in to out.

15

that, anyway, must fall in the range [n, n?].
As to the other operations of the algorithm we note that:

1. the operations of input scanning, assignment to car_m and curr_string
occur in O(1) time;

2. the operation of category matching occurs in O(1) time (anyway in a
time independent from n);

3. the operation of rule matching involves a direct access to an array that
requires O(1) time and the examination of a finite set of sub-cases that
requires again O(1) time (or anyway a time independent from n).

Similar considerations holds for all the other operations that are present in
the pseudo-code and that have not been explicitly mentioned.

7 Concluding remarks

The proposed algorithm represents a flexible and efficient way to segment

in real time a stream of data of any length under the hypotheses that the
data belong to an alphabet ¥ that can be partitioned in a finite set of cate-
gories and that a finite set of rules can be applied.
Possible extensions include a more flexible and less code embedded manage-
ment of both the categories and the rules (and of the associated quantities)
and (essentially with regard to syllabification) a better processing of prefixes
based on morphological considerations.

References

[Ci096] Lorenzo Cioni. RB-tree: un algoritmo per la sillabazione
dell’italiano. In Atti del XXIV Convegno Nazionale dell’Associazione
Italiana di Acustica, volume XXIV, pages 81-84. ATA, 12-14 Giugno
1996.

[Cio97] Lorenzo Cioni. An algorithm for the syllabification of written ital-
ian. Paper accepted at the 5th International Symposium on Social
Communication, Santiago de Cuba, Cuba, January 22-24 1997 also
published on Quaderni del Laboratorio di Linguistica, volume 11,
Scuola Normale Superiore, Pisa, Italy, 1997.

[Die05] Reinhard Diestel. Graph Theory. Springer-Verlag, 2005. Electronic
Edition.

16

[Dro01] Adam Drozdek. Algoritmi e strutture dati in Java. Apogeo,
2001. Italian version of ”Data Structures and Algorithms in Java”,
Brooks/Cole 2001.

[GT97] Michael T. Goodrich and Roberto Tamassia. Data Structures and
Algorithms in Java. John Wiley & Sons, 1997.

[Ros99] Kenneth H. Rosen. Discrete Mathematics and Its Applications.
WCB/McGraw-Hill, 1999.

17

