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Abstract

The paper presents an algorithm for real time sorting of a stream
of data. It is based of an abstract data type called procession in
which the elements are inserted from the head, from the tail and be-
tween such extremes but are extracted only from the head when they
have been fully collected (and ordered). The paper contains a high
level description of the algorithm together with a discussion of its
computational complexity and closes with some possible variations.

1 The problem

This paper addresses a very classical problem, that of sorting a stream
of n data, with an hopefully new algorithm. We show the algorithm applied
to a stream of n integers (on which a total order is defined) that can assume
any value but it is easy to generalise it on condition that a comparator! is
defined on the class to which the data belong?.

'With this term we identify an operator that, given a class of elements, allows the
definition on that class of a total ordering among any set of its elements. In case of
integers, classical comparators are <, >, <, >. Each of such comparators defines a binary
relation on integers, each with its own properties ([Ros99]).

2The basic implicit hypothesis is that the n data can assume any value so that we can
imagine to have n distinct data to order. The algorithm should work pretty well also in
presence of repetitions. We note that if the data are bounded within min and Maz values
they can assume | = Maxz — min + 1 values so that, if n > [, it is impossible to avoid
repetitions.



2 The structure of the paper

The paper is structured as follows. In the next section a set of traditional
algorithms for sorting is shortly presented together with a discussion of the
computational complexity of each ([Dro01], [GT97]). Next we describe the
basic idea of YASA, present its structure with the use of a pseudo-code
and examine its working with an example. Then we face the problem of
how we can adjust the middle insertion point. The paper closes with some
comments on the computational complexity of the proposed algorithm and
a section where some variations are shortly examined.

3 Some classical solutions

In scientific literature the problem of sorting a set of n integers is fully

described and many solutions are available that form the basic culture of
any person working in the fields of Computer Science, Data Structures and
Algorithms.
For our purposes we present here some of the classics ([Dro01], [GT97]) such
as: bubble sort, heap sort, merge sort, quick sort, bucket sort and radix
sort. We note that all the aforesaid methods but the last two are based
on comparisons between the elements of a sequence that can assume any
value. In these cases ([GT97]) we have that for sorting a sequence of n
elements we need a running time that is (nlog n) in the worst case. As to
the last two algorithms we note that they are based on special assumptions
on the data to be sorted ([GT97]). Bucket sort assumes that the n data
are characterised by a key that is an integer in the range [0, N — 1]. In
this case, with the use of a bucket array and without executing comparisons
between the data, the algorithm runs in O(n+ N) and uses O(n+ N) space.
Under similar hypotheses radix sort sorts lexicographically a sequence of
data in O(d(n + N)) time, where d represents the number of the keys , each
assuming a value in the range [0, N—1]. These algorithms, however, represent
a particular case owing to the assumption they make on the input data and
that does not hold both in the other algorithms and in YASA. As to the
other algorithms we have:

1. bubble sort ([GT97]) executes a series of passes over the sequence of
n elements performing pairwise comparisons and possible swaps and
executes in O(n?) in the worst case, provided that accesses and swaps
are implemented so to execute in O(1) time;



2. heap sort ([GT97]) uses a heap to implement a priority queue and
sort a sequence of n elements in O(nlog n) time;

3. merge sort ([GT97]) is based on the principle of divide-and-
conquer to sort a sequence S of n elements by splitting it in two
subsequences S; and S5, each containing about half of the elements,
and recursively sorting them and runs in O(nlog n) time in the worst
case;

4. also quick sort ([GT97]) is based on the principle of divide-and-
conquer to sort a sequence S of n elements by using an element as a
pivot p to split the sequence in three parts L (the elements i < p), E
(those equal to p) and G (those ¢ > p), recursively sort L and G and
put back the elements in an ordered sequence as first L then E and
after G and all this in O(n?) time in the worst case.

4 The basic idea of YASA

The algorithm is based on a very simple idea. Given a sequence on n in-
tegers to be ordered in non decreasing order using the classical comparator?
< we use the first value iy as the initial pivot and, for j = 1,...,n — 1, we
consider all the other values ¢; and try to insert each of them in the proper
position as fast as we can.

For that purpose we define three pointers on the newly created ordered se-
quence?: H, to the head of the procession, T, to its tail, and M to its
"middle”. Initially all such pointers refers to® i.

Now we can have:

1. if 4; < H() we update the pointer H and insert i; there (i.e. at the
head of the procession);

3For our purposes we consider also other comparators such as <, > and > with the
usual meanings, in case of integer values.

4We nickname such a structure procession since the elements enter from both ends
and in the amidst but they proceed from the head only when they have been collected
and ordered.

®We use the notation H(), M() and T() to denote the elements located, respectively,
at the beginning, in the "middle” and at the end of the procession. With — — H and
H — — we denote an unitary [pre | post] decrement of H. In similar ways we define a
[pre | post] increment and/or decrement of T and of M. Other operations are introduced
as needed and must be considered as primitive operations of the data type that we will
use to implement the procession. All of them are correctly supposed to execute in O(1)
time.



2. if T() < i; we update the pointer 7' and insert i; there (i.e. at the tail
of the procession);

3. if H() < i; < T() we have to insert the value i; somewhere in the
middle of the procession, between the two other pointers.

In the last case we take into consideration the third pointer M. For this
purpose we define a function distance® d(z,y) that returns the distance of x
from y and a function proxy(z,y, z) that returns a pointer to z if d(z, z) <
d(y, z) otherwise it returns a pointer to 3. At this point we have the following
three cases.

1. If 4; = M() we insert the value either on the left (ad execute M — —)
or on the right (and execute M + +)7 and update the pointer, if it is
the case, as it is shown in the next point.

2. If i; < M() we have to insert i; in the first part of the procession. The
next step is to find the right place so that the ordering is guaranteed.
For this purpose we use proxy(H(), M(),i;) and get either H or M.
In the former case we scan the procession from H with a temporary
pointer until we find the element after which we have to insert 7; and
insert it. In the latter case we work similarly from M but stop when we
find the element before (looking at the head of the procession) which
we have to insert 7;. At this point we have to decide if we have to move
M or not. To do so we can use two counters ¢, to count the number of
elements between H and M, and ¢;, to count the number of elements
between M and 1. After each insertion we evaluate ¢, — ¢;. If such a
number exceeds the value of a given threshold 7 we step M toward H
by decrementing it otherwise we do nothing on M. The threshold can
be set either statically at a constant value or dynamically at a value
that depends on the values inserted up to that point. With a static 7
we simply execute® M = M — [d], ¢, = ¢, — [d] and ¢; = ¢; + | d] with
d = 7/2. If 7 is dynamically defined we act on M in a more complex
way, to be shortly described in section 7.

3. If i > M() we behave as in the previous case but with respect to T
instead of H. In this case M is incremented, if it is the case. We note

In our context we have d(z,y) =|  — y |. In other cases such a function depends on
the type of the data to be sorted.

"We note that if use a doubly linked list to implement our procession all these operations
cost O(1) in time.

8With [a/b] we mean the smaller integer greater than or equal to a/b whereas with
la/b] we mean the smaller integer lower than or equal to a/b. Of course, if 7 = 0 pointer
M stays fixed in its initial position.



that we have to check if ¢;, — ¢, > 7 in order to update the position of
M.

5 The structure of Y ASA and its pseudo-code

In this section we present the structure of the algorithm in the base case

of a constant threshold and postpone a brief examination of the dynamic
case to section 8.
We start with the definition of the abstract data type (ADT) Procession
with its basic methods and implement it with a structure that allows the ex-
ecution of the required operations with the required time complexity®. Since
we need a structure that can be easily and dynamically extended allowing
easy (and constant time) insertions at the head, at the tail and in the middle
but extractions only from the head (when all the insertions are over) we use
a doubly linked list with the aforesaid three pointers, some other auxiliary
variables and a set of primitive operations.

public abstract class Procession {

//public methods

public abstract Procession(){};

public abstract void insert(int el){};

public abstract int extract();

//private methods

private abstract int distance(int x, int y){};

private abstract ProcessionEl proxy(int x, int y, int z){};

//data structures

private ProcessionEl H, M, T;

private int c_h, c_t; //counters of the elements on the
//left and on the right of M

private int tau; //threshold value

3

At this level a Procession is a set of ProcessionEl elements, each with
three fields: a field containing the value to be sorted and two pointers, to the
previous and next elements, respectively.

Once we have defined the ADT and we have established that we implement it
with a doubly linked list we can show the high level structure of the algorithm.
We think we have an input stream of integers in, a pointer m through which

%In what follows we are going to use a pseudo-Java coding scheme so to make the
pseudo-code more easily readable ([Dro01] and [GT97]).



we access the stream and an output stream out on which the algorithm puts
the ordered elements of the procession.

procedure YASA(Q)
{
P=new Procession(); //(1)
m=0;
count=0;
i=read(in, m);
while (i 'EOF)
{
P.insert(i);
count++;
i=read(in, ++m);
}
for(i=0;i<count;i++)
{
write(out, P.extract());
}
+

where P.insert(i) inserts element 7 in the proper position within the proces-
sion and P.extract() pops each element of the procession P from P’s head
until P is empty. Instruction (1) requires some comments. To understand
it we must consider that we are using an algorithm at an abstract level that
uses an instance of an ADT. In a low level algorithm, written in real Java,
we would use a class!® DLLProcession that implements the abstract class
Procession and all its methods (constructors, methods for both insertion
and extraction and pointers management).

Going back to the pseudo-code of Y ASA we note that:

1. the method extract() can be easily implemented as a method on a
doubly linked list since it involves the access to H() and an increment
of H after each extraction until procession gets emptied;

2. the method insert(i) uses a certain number of private methods that
implement the mathematical operators d(z,y) and prozy(z,y, z), the
updating of one of the three pointer and the effective insertion.

As to insert(i) we can devise the following high level algorithm!'!:

1Where DLL stands for Doubly Linked List.
"'We note that if we use a doubly linked list to implement procession P the instructions
that are executed follow a distinct procedure since we have, first, to create a new element



procedure insert(int el)
{
ProcessionEl pt;
if (el <= HQ))
{
__H;
H()=el;
return;
}
if(el >= T())
{
++T;
T()=el;
return;
}
if(el <= M()) //insert in the higher part of procession
pt = proxy(H(), M(), el);
else //insert in the lower part of procession
pt = proxy(T(), M(), el);
P.scan_insert(pt, el);
return;

3

where scan_insert(pt,el) scans the procession P from pt and insert el in the
proper position. We note that procedure P.scan_insert(pt, el) represents the
time consuming step of the algorithm but can be easily translated in a low
level version on a doubly linked list.

6 One example

We give now one example of a short sequence to which the algorithm is
applied.
Let use suppose to have the following short sequence!?:

7,4,8,2,5,3,9 (1)

to be inserted in the list with the proper value and then to insert it in the proper position.
Instructions such as — — H and H() = el, therefore, must be translated in the proper
instructions on a doubly linked list. The same holds for the other instructions that we use
in procedure insert(int el).

2For a better readability we use commas to separate the elements of the sequence that
can be thought either as being read form the input stream or as being stored in the cells
of an array.



The algorithm executes the following steps:

current element | conditions | pointer procession complexity
7 empty H,M,T 7 O(1)
4 4 <7 H 4,7 O(1)
8 8>7 T 4,7,8 O(1)
2 2<4 H 2,4,7.8 O(1)
5 5>25<7 M 2,4,5,7,8 O(7)
3 3>23<5 M 2,3,4,5,7,8 O(7)
9 9>8 T 2,3,4,5,7,8,9 O(1)

Table 1: Example 1

In the example shown in Table 1 we have the following steps!3:

1. when the first element 7 is read in, it is inserted in the empty procession
P and the pointers H, M, T point to it;

2. then follows 4 < 7 and we have P = 4,7 H — 4and T = M — 7,
¢ =0and ¢, =1;

3. then follows 8 > 7 and we have P =4,7,8 H -4, M — 7and T — 8,
¢ =1and ¢, =1;

4. then follows 2 < 4 and we have P = 2,4,7,8 H — 2, M — 7 and
T —8, ¢ =1and ¢, =2;

5. then follows 2 < 5 < 7 with prozy(2,7,5) = 7 so the insertion occurs
examining the procession from M, we have P = 2,4,5,7,8 H — 2,
M—T7and T — 8, ¢, =1 and ¢;, = 3;

6. we have an update of M so that M — 5 and ¢, =2 and ¢, = 2

7. then follows 2 < 3 < 5 with prozy(2,5,3) = 2 so the insertion occurs
examining the procession from H, we have P = 2,3,4,5,7,8 H — 2,
M —5and T — 8, ¢, =2 and ¢;, = 3;

8. then follows 9 > 8 and we have P = 2,3,4,5,7,8 9 H — 2, M — 5
and T"— 9, ¢, = 3 and ¢, = 3.

13We remind that with ¢; and ¢; we define two counters of the elements, respectively,
on the left of M and on its right.



At step 5, if we have a static threshold 7 = 2, we have a shift of M as it is
showed by the following step.

When the algorithm inserts 5 it performs the prozxy test to define a direction
of scanning from M so that it immediately finds the place where such a
value must be inserted. Similar considerations holds when the algorithm has
to insert 3 (in this case it works on the updated middle pointer M).

When algorithm inserts 5, in this case, the operation costs O(1) and the same
holds when it inserts 3. This occurs mainly because the procession is very
short and cannot be generalised.

7 Dynamic thresholds

We have already seen how to use a static threshold to keep almost bal-
anced the two halves of the procession. In this section we examine very
briefly the use of a dynamic threshold 7 so to define a rule for the updating
of M after a certain number of insertions. For this purpose we have to define
both the amount and the direction of the updating.

At the beginning (we have ¢ = 0) 7 assumes an initial low value 7y. After
each insertion we can have:

L lep—ca |<m
2. lep—e |>m

In the former case we put:
T, = Ti—1 + 1 (2)

fors=1,...n—2. In the latter case we have to balance the two halves, reset
T to its initial value 7y and restart the process of updating the threshold 7.
The balancing requires:

1. the definition of the direction of the updating of M as sign(c, — ¢;);
2. its entity as [7;/2].

Besides the sizes of the two halves of the procession for the updating of the
threshold we can use the density of each half that is defined as'*:

5, = Zpt:H pt() (3)

Ch

14 According to an already used convention with pt() we denote the value pointed by pt.
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The basic idea is to use the densities instead of the sizes. Apart from this all
the other computations follow analogous lines, mutatis mutandis. Both these
variations, however, must be carefully evaluated to see if they can influence
positively someway the computation complexity and are not a pure waste of
code if not a useless complication.

8 Computational complexity

Termination of the algorithm is out of the question so let us say something
about its computational complexity. From a classical perspective we should
define its best, average and worst cases. The best case occurs whenever the
succession to be ordered requires insertions only in H or in T' (or also in M).
If we implement the procession with a doubly linked list the insertions at 7',
H and M cost O(1) in time so that, e. g., a sequence of n integers iy ...i, 1
formed by two subsequences'® iy, increasing, and s, decreasing, can be
sorted in O(n) time. The same is true also for an already sorted sequence or
for a sequence sorted in inverse order.

Time consuming operations are those marked as O(7) in Table 1 so that
as a worst case we can imagine successions such as the followings'®:
min, Maz,as,...,a, 1 or Max,min,as,...,a, 1 where the a; are in any
order. In such cases we have n — 2 insertions in the inner positions of the
procession.

If the algorithm succeeds in keeping the two halves of the procession of al-
most the same size at the [-th step we have'” [ elements in P so that we
have (I — 1)/2 elements on both sides of M. Now we have to insert element
[ + 1—th. In the worst cases we start scanning the procession from H to
insert it just before M or from M to insert if just after H, the same holds
for T and M. In such cases algorithm scans ((I — 1)/2) — 1 positions. If we
evaluate:

—

— /-3
R )

=3

5 Obviously k € [0, 252].

16With min and Maz we denote, respectively, the smaller and the bigger value of a
succession on n integers that, anyway, can assume any value.

1"We assume [ is odd so to simplify notation. The reasoning holds also without such an

assumption but notation would be more cluttered with symbols.



we can easily see that we get a complexity of O(n?), as for quick sort and
bubble sort'®.

The average case can be estimated by assuming an uniform probability
distribution of the input values. In this case after having inserted [ values

we have, roughly speaking:
[ -3

3 ©)

values on each half of the procession (we count [ values but H(), M() and
T() and divide by 2). When we insert the [ + 1—th value we insert it with
probability:

= —— 7

y=o (7)

in either the first part (between H and M) or the second part (between M
and T') of the procession and:

n—1-3

SR 8

x 5 (8)

before H and after T'7. In these extreme cases we have a cost O(1) in time.

In the other two cases we can use (7) to evaluate the overall complexity as:

D DL SR S e UL RO

2n 4 2n

(with a change of variable i = [ — 3) and so O(n).

9 Variations on the theme

Y AS A has been designed under the assumption that sorting is performed

in real time while input data are read in and so without any preliminary phase
of data loading.
If we discard such assumption and let the algorithm pre load the data in
O(n) time, the main variations on the theme, yet to be explored, involve
mainly the selection of the initial pivot from the sequence of input data, the
selection of the next element at each step of the algorithm and the way we
move the ”middle” pointer M.

18We put | — 3 = i so that the summation of i/2 is from 0 to n — 4 and so it is equal to
(n—4)(n—3)/4.

19Tf we fix [ and let n go to infinity such probabilities tend, respectively, to 0 and to 1/2
so that 2z = 1. If, on the other hand, we fix n and let [ — 3 tend to n we have that z tends
to 0 and y to 1/2 so that 2y = 1.
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Instead of choosing the first element of the sequence as the initial pivot we
could use a randomised quick select ([GT97]) to select the median value
of the given sequence of n elements with an expected running time of O(n)?.
If we make this choice we may think that M stays fixed on that value for the
whole execution of the algorithm. Obviously, in this case, we must take care
of not inserting the pivot twice in the ordered sequence.

As to the way we pass from one element of the original sequence S to the
next we note that any choice we make is bound to cost O(1) time so that it
cannot involve any search, with or without comparisons, among the data.
Possible solutions, that can be easily implemented, include: the scanning of
S from the end toward the beginning; the scanning of S first on the even
numbered subsequence 75, and then on the odd numbered subsequence 791
or vice versa; the scanning of S from the borders to the centre according to
the following succession g, i, 1, i1, i, 2 and so on; the scanning of S from
the centre to the borders according to the following succession?! In/2; n/241;
in/Q—l; in/2—|—2; in/g_g and so on.

An interesting point to address is to understand if such variations reflect in
some positive way on the computational complexity of the algorithm or if
they are simply a waste of code.

As to the third point we have already made some comments in the past
sections of the paper. Here we only note that a preliminary examination of
the data, on condition that it costs O(n) in time, can be useful to understand
how data are distributed and so how the threshold 7 can be appropriately
updated.
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