
YASAYet Another Sorting AlgorithmLorenzo CioniDepartment of Computer S
ien
e, University of Pisae-mail: l
ioni�di.unipi.itkeywords: algorithms, data sorting, real time sorting, data stru
turesAbstra
tThe paper presents an algorithm for real time sorting of a streamof data. It is based of an abstra
t data type 
alled pro
ession inwhi
h the elements are inserted from the head, from the tail and be-tween su
h extremes but are extra
ted only from the head when theyhave been fully 
olle
ted (and ordered). The paper 
ontains a highlevel des
ription of the algorithm together with a dis
ussion of its
omputational 
omplexity and 
loses with some possible variations.1 The problemThis paper addresses a very 
lassi
al problem, that of sorting a streamof n data, with an hopefully new algorithm. We show the algorithm appliedto a stream of n integers (on whi
h a total order is de�ned) that 
an assumeany value but it is easy to generalise it on 
ondition that a 
omparator1 isde�ned on the 
lass to whi
h the data belong2.1With this term we identify an operator that, given a 
lass of elements, allows thede�nition on that 
lass of a total ordering among any set of its elements. In 
ase ofintegers, 
lassi
al 
omparators are <, >, �, �. Ea
h of su
h 
omparators de�nes a binaryrelation on integers, ea
h with its own properties ([Ros99℄).2The basi
 impli
it hypothesis is that the n data 
an assume any value so that we 
animagine to have n distin
t data to order. The algorithm should work pretty well also inpresen
e of repetitions. We note that if the data are bounded within min and Max valuesthey 
an assume l = Max � min + 1 values so that, if n > l, it is impossible to avoidrepetitions. 1



2 The stru
ture of the paperThe paper is stru
tured as follows. In the next se
tion a set of traditionalalgorithms for sorting is shortly presented together with a dis
ussion of the
omputational 
omplexity of ea
h ([Dro01℄, [GT97℄). Next we des
ribe thebasi
 idea of Y ASA, present its stru
ture with the use of a pseudo-
odeand examine its working with an example. Then we fa
e the problem ofhow we 
an adjust the middle insertion point. The paper 
loses with some
omments on the 
omputational 
omplexity of the proposed algorithm anda se
tion where some variations are shortly examined.3 Some 
lassi
al solutionsIn s
ienti�
 literature the problem of sorting a set of n integers is fullydes
ribed and many solutions are available that form the basi
 
ulture ofany person working in the �elds of Computer S
ien
e, Data Stru
tures andAlgorithms.For our purposes we present here some of the 
lassi
s ([Dro01℄, [GT97℄) su
has: bubble sort, heap sort, merge sort, qui
k sort, bu
ket sort and radixsort. We note that all the aforesaid methods but the last two are basedon 
omparisons between the elements of a sequen
e that 
an assume anyvalue. In these 
ases ([GT97℄) we have that for sorting a sequen
e of nelements we need a running time that is 
(nlog n) in the worst 
ase. As tothe last two algorithms we note that they are based on spe
ial assumptionson the data to be sorted ([GT97℄). Bu
ket sort assumes that the n dataare 
hara
terised by a key that is an integer in the range [0; N � 1℄. Inthis 
ase, with the use of a bu
ket array and without exe
uting 
omparisonsbetween the data, the algorithm runs in O(n+N) and uses O(n+N) spa
e.Under similar hypotheses radix sort sorts lexi
ographi
ally a sequen
e ofdata in O(d(n+N)) time, where d represents the number of the keys , ea
hassuming a value in the range [0; N�1℄. These algorithms, however, representa parti
ular 
ase owing to the assumption they make on the input data andthat does not hold both in the other algorithms and in Y ASA. As to theother algorithms we have:1. bubble sort ([GT97℄) exe
utes a series of passes over the sequen
e ofn elements performing pairwise 
omparisons and possible swaps andexe
utes in O(n2) in the worst 
ase, provided that a

esses and swapsare implemented so to exe
ute in O(1) time;2



2. heap sort ([GT97℄) uses a heap to implement a priority queue andsort a sequen
e of n elements in O(nlog n) time;3. merge sort ([GT97℄) is based on the prin
iple of divide-and-
onquer to sort a sequen
e S of n elements by splitting it in twosubsequen
es S1 and S2, ea
h 
ontaining about half of the elements,and re
ursively sorting them and runs in O(nlog n) time in the worst
ase;4. also qui
k sort ([GT97℄) is based on the prin
iple of divide-and-
onquer to sort a sequen
e S of n elements by using an element as apivot p to split the sequen
e in three parts L (the elements i < p), E(those equal to p) and G (those i > p), re
ursively sort L and G andput ba
k the elements in an ordered sequen
e as �rst L then E andafter G and all this in O(n2) time in the worst 
ase.4 The basi
 idea of Y ASAThe algorithm is based on a very simple idea. Given a sequen
e on n in-tegers to be ordered in non de
reasing order using the 
lassi
al 
omparator3� we use the �rst value i0 as the initial pivot and, for j = 1; : : : ; n � 1, we
onsider all the other values ij and try to insert ea
h of them in the properposition as fast as we 
an.For that purpose we de�ne three pointers on the newly 
reated ordered se-quen
e4: H, to the head of the pro
ession, T , to its tail, and M to its"middle". Initially all su
h pointers refers to5 i0.Now we 
an have:1. if ij � H() we update the pointer H and insert ij there (i.e. at thehead of the pro
ession);3For our purposes we 
onsider also other 
omparators su
h as <, > and � with theusual meanings, in 
ase of integer values.4We ni
kname su
h a stru
ture pro
ession sin
e the elements enter from both endsand in the amidst but they pro
eed from the head only when they have been 
olle
tedand ordered.5We use the notation H(), M() and T () to denote the elements lo
ated, respe
tively,at the beginning, in the "middle" and at the end of the pro
ession. With � � H andH � � we denote an unitary [pre j post℄ de
rement of H . In similar ways we de�ne a[pre j post℄ in
rement and/or de
rement of T and of M . Other operations are introdu
edas needed and must be 
onsidered as primitive operations of the data type that we willuse to implement the pro
ession. All of them are 
orre
tly supposed to exe
ute in O(1)time. 3



2. if T () � ij we update the pointer T and insert ij there (i.e. at the tailof the pro
ession);3. if H() < ij < T () we have to insert the value ij somewhere in themiddle of the pro
ession, between the two other pointers.In the last 
ase we take into 
onsideration the third pointer M . For thispurpose we de�ne a fun
tion distan
e6 d(x; y) that returns the distan
e of xfrom y and a fun
tion proxy(x; y; z) that returns a pointer to x if d(x; z) <d(y; z) otherwise it returns a pointer to y. At this point we have the followingthree 
ases.1. If ij = M() we insert the value either on the left (ad exe
ute M � �)or on the right (and exe
ute M + +)7 and update the pointer, if it isthe 
ase, as it is shown in the next point.2. If ij < M() we have to insert ij in the �rst part of the pro
ession. Thenext step is to �nd the right pla
e so that the ordering is guaranteed.For this purpose we use proxy(H();M(); ij) and get either H or M .In the former 
ase we s
an the pro
ession from H with a temporarypointer until we �nd the element after whi
h we have to insert ij andinsert it. In the latter 
ase we work similarly fromM but stop when we�nd the element before (looking at the head of the pro
ession) whi
hwe have to insert ij. At this point we have to de
ide if we have to moveM or not. To do so we 
an use two 
ounters 
h, to 
ount the number ofelements between H and M , and 
t, to 
ount the number of elementsbetween M and T . After ea
h insertion we evaluate 
h � 
t. If su
h anumber ex
eeds the value of a given threshold � we step M toward Hby de
rementing it otherwise we do nothing on M . The threshold 
anbe set either stati
ally at a 
onstant value or dynami
ally at a valuethat depends on the values inserted up to that point. With a stati
 �we simply exe
ute8 M =M �dde, 
h = 
h�dde and 
t = 
t+ bd
 withd = �=2. If � is dynami
ally de�ned we a
t on M in a more 
omplexway, to be shortly des
ribed in se
tion 7.3. If ij > M() we behave as in the previous 
ase but with respe
t to Tinstead of H. In this 
ase M is in
remented, if it is the 
ase. We note6In our 
ontext we have d(x; y) =j x � y j. In other 
ases su
h a fun
tion depends onthe type of the data to be sorted.7We note that if use a doubly linked list to implement our pro
ession all these operations
ost O(1) in time.8With da=be we mean the smaller integer greater than or equal to a=b whereas withba=b
 we mean the smaller integer lower than or equal to a=b. Of 
ourse, if � = 0 pointerM stays �xed in its initial position. 4



that we have to 
he
k if 
t � 
h > � in order to update the position ofM .5 The stru
ture of Y ASA and its pseudo-
odeIn this se
tion we present the stru
ture of the algorithm in the base 
aseof a 
onstant threshold and postpone a brief examination of the dynami

ase to se
tion 8.We start with the de�nition of the abstra
t data type (ADT ) Pro
essionwith its basi
 methods and implement it with a stru
ture that allows the ex-e
ution of the required operations with the required time 
omplexity9. Sin
ewe need a stru
ture that 
an be easily and dynami
ally extended allowingeasy (and 
onstant time) insertions at the head, at the tail and in the middlebut extra
tions only from the head (when all the insertions are over) we usea doubly linked list with the aforesaid three pointers, some other auxiliaryvariables and a set of primitive operations.publi
 abstra
t 
lass Pro
ession {//publi
 methodspubli
 abstra
t Pro
ession(){};publi
 abstra
t void insert(int el){};publi
 abstra
t int extra
t();//private methodsprivate abstra
t int distan
e(int x, int y){};private abstra
t Pro
essionEl proxy(int x, int y, int z){};//data stru
turesprivate Pro
essionEl H, M, T;private int 
_h, 
_t; //
ounters of the elements on the//left and on the right of Mprivate int tau; //threshold value}At this level a Pro
ession is a set of Pro
essionEl elements, ea
h withthree �elds: a �eld 
ontaining the value to be sorted and two pointers, to theprevious and next elements, respe
tively.On
e we have de�ned the ADT and we have established that we implement itwith a doubly linked list we 
an show the high level stru
ture of the algorithm.We think we have an input stream of integers in, a pointer m through whi
h9In what follows we are going to use a pseudo-Java 
oding s
heme so to make thepseudo-
ode more easily readable ([Dro01℄ and [GT97℄).5



we a

ess the stream and an output stream out on whi
h the algorithm putsthe ordered elements of the pro
ession.pro
edure YASA(){ P=new Pro
ession(); //(1)m=0;
ount=0;i=read(in, m);while (i !EOF){ P.insert(i);
ount++;i=read(in, ++m);}for(i=0;i<
ount;i++){ write(out, P.extra
t());}}where P:insert(i) inserts element i in the proper position within the pro
es-sion and P:extra
t() pops ea
h element of the pro
ession P from P 's headuntil P is empty. Instru
tion (1) requires some 
omments. To understandit we must 
onsider that we are using an algorithm at an abstra
t level thatuses an instan
e of an ADT. In a low level algorithm, written in real Java,we would use a 
lass10 DLLPro
ession that implements the abstra
t 
lassPro
ession and all its methods (
onstru
tors, methods for both insertionand extra
tion and pointers management).Going ba
k to the pseudo-
ode of Y ASA we note that:1. the method extra
t() 
an be easily implemented as a method on adoubly linked list sin
e it involves the a

ess to H() and an in
rementof H after ea
h extra
tion until pro
ession gets emptied;2. the method insert(i) uses a 
ertain number of private methods thatimplement the mathemati
al operators d(x; y) and proxy(x; y; z), theupdating of one of the three pointer and the e�e
tive insertion.As to insert(i) we 
an devise the following high level algorithm11:10Where DLL stands for Doubly Linked List.11We note that if we use a doubly linked list to implement pro
ession P the instru
tionsthat are exe
uted follow a distin
t pro
edure sin
e we have, �rst, to 
reate a new element6



pro
edure insert(int el){ Pro
essionEl pt;if(el <= H()){ --H;H()=el;return;}if(el >= T()){ ++T;T()=el;return;}if(el <= M()) //insert in the higher part of pro
essionpt = proxy(H(), M(), el);else //insert in the lower part of pro
essionpt = proxy(T(), M(), el);P.s
an_insert(pt, el);return;}where s
an insert(pt; el) s
ans the pro
ession P from pt and insert el in theproper position. We note that pro
edure P:s
an insert(pt; el) represents thetime 
onsuming step of the algorithm but 
an be easily translated in a lowlevel version on a doubly linked list.6 One exampleWe give now one example of a short sequen
e to whi
h the algorithm isapplied.Let use suppose to have the following short sequen
e12:7; 4; 8; 2; 5; 3; 9 (1)to be inserted in the list with the proper value and then to insert it in the proper position.Instru
tions su
h as � � H and H() = el, therefore, must be translated in the properinstru
tions on a doubly linked list. The same holds for the other instru
tions that we usein pro
edure insert(int el).12For a better readability we use 
ommas to separate the elements of the sequen
e that
an be thought either as being read form the input stream or as being stored in the 
ellsof an array. 7



The algorithm exe
utes the following steps:
urrent element 
onditions pointer pro
ession 
omplexity7 empty H,M,T 7 O(1)4 4 < 7 H 4; 7 O(1)8 8 > 7 T 4; 7; 8 O(1)2 2 < 4 H 2; 4; 7; 8 O(1)5 5 > 2; 5 < 7 M 2; 4; 5; 7; 8 O(?)3 3 > 2; 3 < 5 M 2; 3; 4; 5; 7; 8 O(?)9 9 > 8 T 2; 3; 4; 5; 7; 8; 9 O(1)Table 1: Example 1In the example shown in Table 1 we have the following steps13:1. when the �rst element 7 is read in, it is inserted in the empty pro
essionP and the pointers H;M; T point to it;2. then follows 4 < 7 and we have P = 4; 7 H ! 4 and T = M ! 7,
t = 0 and 
h = 1;3. then follows 8 > 7 and we have P = 4; 7; 8 H ! 4, M ! 7 and T ! 8,
t = 1 and 
h = 1;4. then follows 2 < 4 and we have P = 2; 4; 7; 8 H ! 2, M ! 7 andT ! 8, 
t = 1 and 
h = 2;5. then follows 2 < 5 < 7 with proxy(2; 7; 5) = 7 so the insertion o

ursexamining the pro
ession from M , we have P = 2; 4; 5; 7; 8 H ! 2,M ! 7 and T ! 8, 
t = 1 and 
h = 3;6. we have an update of M so that M ! 5 and 
t = 2 and 
h = 27. then follows 2 < 3 < 5 with proxy(2; 5; 3) = 2 so the insertion o

ursexamining the pro
ession from H, we have P = 2; 3; 4; 5; 7; 8 H ! 2,M ! 5 and T ! 8, 
t = 2 and 
h = 3;8. then follows 9 > 8 and we have P = 2; 3; 4; 5; 7; 8; 9 H ! 2, M ! 5and T ! 9, 
t = 3 and 
h = 3.13We remind that with 
h and 
t we de�ne two 
ounters of the elements, respe
tively,on the left of M and on its right. 8



At step 5, if we have a stati
 threshold � = 2, we have a shift of M as it isshowed by the following step.When the algorithm inserts 5 it performs the proxy test to de�ne a dire
tionof s
anning from M so that it immediately �nds the pla
e where su
h avalue must be inserted. Similar 
onsiderations holds when the algorithm hasto insert 3 (in this 
ase it works on the updated middle pointer M).When algorithm inserts 5, in this 
ase, the operation 
osts O(1) and the sameholds when it inserts 3. This o

urs mainly be
ause the pro
ession is veryshort and 
annot be generalised.7 Dynami
 thresholdsWe have already seen how to use a stati
 threshold to keep almost bal-an
ed the two halves of the pro
ession. In this se
tion we examine verybrie
y the use of a dynami
 threshold � so to de�ne a rule for the updatingof M after a 
ertain number of insertions. For this purpose we have to de�neboth the amount and the dire
tion of the updating.At the beginning (we have i = 0) � assumes an initial low value �0. Afterea
h insertion we 
an have:1. j 
h � 
t j� �i2. j 
h � 
t j> �iIn the former 
ase we put: �i = �i�1 + 1 (2)for i = 1; : : : n�2. In the latter 
ase we have to balan
e the two halves, reset� to its initial value �0 and restart the pro
ess of updating the threshold � .The balan
ing requires:1. the de�nition of the dire
tion of the updating of M as sign(
h � 
t);2. its entity as d�i=2e.Besides the sizes of the two halves of the pro
ession for the updating of thethreshold we 
an use the density of ea
h half that is de�ned as14:Æh = PMpt=H pt()
h (3)14A

ording to an already used 
onvention with pt() we denote the value pointed by pt.9



Æt = PTpt=M pt()
h (4)The basi
 idea is to use the densities instead of the sizes. Apart from this allthe other 
omputations follow analogous lines, mutatis mutandis. Both thesevariations, however, must be 
arefully evaluated to see if they 
an in
uen
epositively someway the 
omputation 
omplexity and are not a pure waste of
ode if not a useless 
ompli
ation.8 Computational 
omplexityTermination of the algorithm is out of the question so let us say somethingabout its 
omputational 
omplexity. From a 
lassi
al perspe
tive we shouldde�ne its best, average and worst 
ases. The best 
ase o

urs whenever thesu

ession to be ordered requires insertions only in H or in T (or also in M).If we implement the pro
ession with a doubly linked list the insertions at T ,H and M 
ost O(1) in time so that, e. g., a sequen
e of n integers i0 : : : in�1formed by two subsequen
es15 i2k, in
reasing, and i2k+1, de
reasing, 
an besorted in O(n) time. The same is true also for an already sorted sequen
e orfor a sequen
e sorted in inverse order.Time 
onsuming operations are those marked as O(?) in Table 1 so thatas a worst 
ase we 
an imagine su

essions su
h as the followings16:min;Max; a2; : : : ; an�1 or Max;min; a2; : : : ; an�1 where the ai are in anyorder. In su
h 
ases we have n � 2 insertions in the inner positions of thepro
ession.If the algorithm su

eeds in keeping the two halves of the pro
ession of al-most the same size at the l-th step we have17 l elements in P so that wehave (l � 1)=2 elements on both sides of M . Now we have to insert elementl + 1�th. In the worst 
ases we start s
anning the pro
ession from H toinsert it just before M or from M to insert if just after H, the same holdsfor T and M . In su
h 
ases algorithm s
ans ((l � 1)=2)� 1 positions. If weevaluate: n�1Xl=3 l � 32 (5)15Obviously k 2 [0; n�22 ℄.16With min and Max we denote, respe
tively, the smaller and the bigger value of asu

ession on n integers that, anyway, 
an assume any value.17We assume l is odd so to simplify notation. The reasoning holds also without su
h anassumption but notation would be more 
luttered with symbols.10



we 
an easily see that we get a 
omplexity of O(n2), as for qui
k sort andbubble sort18.The average 
ase 
an be estimated by assuming an uniform probabilitydistribution of the input values. In this 
ase after having inserted l valueswe have, roughly speaking: l � 32 (6)values on ea
h half of the pro
ession (we 
ount l values but H(), M() andT () and divide by 2). When we insert the l + 1�th value we insert it withprobability: y = 1n l � 32 (7)in either the �rst part (between H and M) or the se
ond part (between Mand T ) of the pro
ession and: x = n� l � 32n (8)before H and after T 19. In these extreme 
ases we have a 
ost O(1) in time.In the other two 
ases we 
an use (7) to evaluate the overall 
omplexity as:1n n�1Xl=3 l � 32 = 12n n�1Xl=3 (l � 3) = 12n n�4Xi=0 i = (n� 4)(n� 3)2n (9)(with a 
hange of variable i = l � 3) and so O(n).9 Variations on the themeY ASA has been designed under the assumption that sorting is performedin real time while input data are read in and so without any preliminary phaseof data loading.If we dis
ard su
h assumption and let the algorithm pre load the data inO(n) time, the main variations on the theme, yet to be explored, involvemainly the sele
tion of the initial pivot from the sequen
e of input data, thesele
tion of the next element at ea
h step of the algorithm and the way wemove the "middle" pointer M .18We put l� 3 = i so that the summation of i=2 is from 0 to n� 4 and so it is equal to(n� 4)(n� 3)=4.19If we �x l and let n go to in�nity su
h probabilities tend, respe
tively, to 0 and to 1=2so that 2x = 1. If, on the other hand, we �x n and let l�3 tend to n we have that x tendsto 0 and y to 1=2 so that 2y = 1. 11



Instead of 
hoosing the �rst element of the sequen
e as the initial pivot we
ould use a randomised qui
k sele
t ([GT97℄) to sele
t the median valueof the given sequen
e of n elements with an expe
ted running time of O(n)20.If we make this 
hoi
e we may think that M stays �xed on that value for thewhole exe
ution of the algorithm. Obviously, in this 
ase, we must take 
areof not inserting the pivot twi
e in the ordered sequen
e.As to the way we pass from one element of the original sequen
e S to thenext we note that any 
hoi
e we make is bound to 
ost O(1) time so that it
annot involve any sear
h, with or without 
omparisons, among the data.Possible solutions, that 
an be easily implemented, in
lude: the s
anning ofS from the end toward the beginning; the s
anning of S �rst on the evennumbered subsequen
e i2k and then on the odd numbered subsequen
e i2k+1or vi
e versa; the s
anning of S from the borders to the 
entre a

ording tothe following su

ession i0, in�1, i1, in�2 and so on; the s
anning of S fromthe 
entre to the borders a

ording to the following su

ession21 in=2, in=2+1,in=2�1, in=2+2, in=2�2 and so on.An interesting point to address is to understand if su
h variations re
e
t insome positive way on the 
omputational 
omplexity of the algorithm or ifthey are simply a waste of 
ode.As to the third point we have already made some 
omments in the pastse
tions of the paper. Here we only note that a preliminary examination ofthe data, on 
ondition that it 
osts O(n) in time, 
an be useful to understandhow data are distributed and so how the threshold � 
an be appropriatelyupdated.Referen
es[Dro01℄ Adam Drozdek. Algoritmi e strutture dati in Java. Apogeo,2001. Italian version of "Data Stru
tures and Algorithms in Java",Brooks/Cole 2001.[GT97℄ Mi
hael T. Goodri
h and Roberto Tamassia. Data Stru
tures andAlgorithms in Java. John Wiley & Sons, 1997.[Ros99℄ Kenneth H. Rosen. Dis
rete Mathemati
s and Its Appli
ations.WCB/M
Graw-Hill, 1999.20We remind that the median value of a sequen
e is an element su
h that half of theother values are smaller and the remaining half are higher ([GT97℄).21This if n is even. It is easy to modify the su

ession if n is odd.12


