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Abstract

In this paper we present an application of the auction mechanisms
to the allocation of a chore to one of the bidders belonging to a given
set B. We also discuss an extension of such an application to the
allocation of a set of chores among an initial set of bidders B. The
paper aims at showing how the classic auction mechanism can be
modified and adapted for the allocation of bads (chores) instead of
the allocation of goods.

1 Introduction

In this paper we present an application of the auction mechanisms to the
allocation of a chore to one of the bidders belonging to a given set B. We
also discuss an extension of such an application to the allocation of a set of
chores among an initial set of bidders B.
The paper aims at showing how the classic auction mechanism can be modi-
fied and adapted for the allocation of bads (chores) instead of the allocation
of goods.
The paper opens with some theoretical discussions of the characteristics and
properties of some types of auctions then we present the basic motivations of
the types of auction we propose. The following sections present the algorithm,
the rules for the compensations, the strategies, the preferred compensation
schemes and the possible extensions.
The paper closes with a section devoted to conclusions and future plans.
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2 The theoretical background

In this section we present some theoretical considerations about a set of
classical auction mechanisms as well as some basic considerations about the
notion of chore and its main properties.
As to the auctions (Klemperer (1999), Wooldridge (2002), Milgrom (2004),
Fragnelli (2005) and Patrone (2006)) we note how they are usually used for
the allocation of goods so we are going to start with this case. A perspective
that we fully disregard in this paper is how auctions can be used to get a fair
division of goods (Brams and Taylor (1996)).
A good has a (not only monetary) value for both a seller and a buyer and
this value may turn into the sum of money the seller gets from the buyer
if the sale occurs. The seller is characterized by the minimum amount of
money he is willing to accept for the good (ms) and the buyer by the max-
imum amount of money he is willing to pay for the same good (mb). It is
easy to establish that the sale occurs only if ms ≤ mb so that mb−ms is the
so called negotiation space.
We introduce at this point the main characteristics of the auctions so to de-
fine a not fully exhaustive set of classical auctions types for the exchange of
goods.
Auctions (Klemperer (1999) and Wooldridge (2002), chapter 7) are charac-
terized by a set of factors that can influence both the protocol and the
strategy the agents use. Agents are the auctioneer and the bidders: the
auctioneer tries to allocate a good to one of the bidders using an auction as
an allocation mechanism.
Among the aforesaid factors we cite the value of the auctioned good that can
be either private of each bidder, common to all the bidders or correlated
if for each bidders it depends on the use the bidder is going to make with
the good after having obtained it.
The other factors are how the winner is determined, whether the bids of the
bidders are common knowledge among them or not and the number of rounds
the bidders have for bidding.
The winner is the bidder who gets the auctioned good. In general the win-
ner is the bidder who bids the most and that can pay such sum (first-price
auction) or a sum equal to the second highest bid (second-price auction). If
the bids are common knowledge among the bidders we speak of open cry
auctions otherwise we speak of sealed-bid auctions. As to the number of
rounds if there is only one round for bidding we speak of one shot auction
whereas if the auction is based on a succession of rounds (or it is multi shot)
it can be ascending if the price starts low (possibly with a lower bound or
reservation price) and rises up or descending if the price starts high and
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then descends up to a minimum value.
In the following subsections we are going to examine very briefly the follow-
ing types of auctions: English auctions, Dutch auctions, First price auctions,
Second price or Vickrey auctions. Of each type we describe the main fea-
tures and state if bidders have an optimal strategy or not. We also devote a
subsection to the definition of the concept of chore.
As to the auctioneer his goal is to maximize the revenue. It is possible to
show1 that (Fragnelli (2005)):

1. in case of private evaluations we have English auction ∼
Dutch auction ∼ First price auction ∼ Second price auction

2. in case of common evaluations we have English auction �
Second price auction � Dutch auction ∼ First price auction

As to the bidders an optimal strategy (Fragnelli (2005)) is a strategy that
guarantees a bidder the highest expected outcome. We comment on this for
each type of auction we deal with2.

2.0.1 English auctions

In this case we have first-price, open cry ascending auctions where bidders
make their public bids and the one who makes the current highest bid gets
the auctioned good. The auctioneer starts from a low price (or reservation
price that may be equal to 0) and the bidders begin offering higher and higher
bids. The last offering bidder is the winner of the auction and the price he
pays is the bid he made. We disregard many details and do not make any
consideration about the so called winner’s course or the over evaluation of
the good from the winner, further details on Wooldridge (2002), Fragnelli
(2005) and Patrone (2006). We only note that a dominant strategy is to
bid a little more than the current bid and stop when the price reaches one
bidder’s evaluation of the auctioned good.

2.0.2 Dutch auctions

Dutch auctions are open cry descending auctions where the price starts
high and then descends up to a lower bound. At any moment any of the
bidders can call stop and get the good for that current price. Winner’s

1We use � to denote a greater expected revenue and ∼ to denote the same expected
revenue.

2We note that the naming convention we use is not universally accepted since, for
instance, in Klemperer (2002) page 181 what we call a sealed-bid auction is termed Dutch
auction.
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course can be present also in this case but in this case we have no optimal
strategy.

2.0.3 First price auctions

In this case we have a sealed bid, one shot auction where the bidders
submit a bid for the auctioned good. The bidder who makes the highest bid
wins that good and pays his own bid. As a tentative dominant strategy we
have that each bidder must bid a little less than his own evaluation of the
good, how much less depends on the bids of the other bidders. There is no
general rule and so there is in general no optimal strategy. The sure thing
is that there is no worth in bidding more than one’s own evaluation of the
auctioned good.

2.0.4 Second price or Vickrey auctions

In this case we have a one-shot, sealed bid auction where the bidder
who makes the highest bid wins the good but, for getting it, pays only the
second highest bid. In this kind of auction every bidder’s dominant strategy
is bidding his true evaluation of the good. By bidding more, a bidder has
higher probabilities to get the good but runs the risk of paying for it a price
greater that his evaluation of the good. Bidding less a bidder has lower
probabilities of winning the good and, if he wins, he must pay the same sum
as if he had made a bid equal to his true evaluation.
This kind of auction makes it possible the so called antisocial behaviour since
a bidder can act spitefully and bid more than his true evaluation but less
that the highest bid so to force the winner to pay a higher price. Of course
this is a risky attitude and needs a strong knowledge of the other bidders’
bids.

2.0.5 Other types of auctions

Other types of auctions include all the variations of first/second type auc-
tions, so we can imagine n-th price auctions with n > 2, and all pay auctions,
a variation of first price auction where the bidder who bids more gets the
goods but all the bidders pay the bid they made, and so on.
The treatment of all these other types of auction is outside the scope of the
present paper. For further details see Klemperer (2002). A very brief treat-
ment of some of the formal properties of auctions (such as the possibilities of
lies and collusions among the bidders) will be made in section 3. For further
details see Wooldridge (2002), chapter 7, and Klemperer (2002).
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2.0.6 The concept of chore

The other concept we introduce is the concept of chore. With this term
we denote “a difficult or disagreeable task” (from the Merriam-Webster On-
line Dictionary). In this case the seller of a chore (we denote him as the
auctioneer) is willing to pay somebody else (a bidder or a server) to carry
out the chore.
We note that the possible servers must have the possibility to refuse such a
chore even if such possibility may have some cost. From its definition we see
how the chore has a negative value for both the auctioneer and each bidder
so that we can say that a chore is something that nobody wants.
We can say that each server is characterized by an evaluation of a chore
under the form of:

1. either a sum that he is willing to pay for not performing it,

2. or a sum that he is willing to get for performing it.

The former parameter is at the core of the mechanism we propose from
section 5 to section 9 whereas the latter is used in the mechanism we propose
in section 12.

2.0.7 Modified auctions

We extend the auction mechanism so to have an auctioneer that proposes
a chore to a set of bidders.
As to the bidders side we can devise one of the following three mutually
exclusive mechanisms, the first two of multi shots type and the latter of one
shot type:

1. the auctioneer proposes a chore together with an increasing amount of
money to the bidders until one of them accepts the chore;

2. the auctioneer proposes a chore together with a starting amount of
money to the bidders that start bidding lower and lower amounts of
money until one of them stops the descent and gets the chore;

3. the auctioneer proposes a chore, each of the bidders makes a bid and
the one who bids less gets the chore.

Within this framework we can imagine the point by point corresponding
situations involving an auctioneer who wants to assign a chore to a bidder
from a set B.
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1. The auctioneer offers the chore and a sum of money m and raises the
offer (up to an upper bound M) until when one of the bidders accepts
it and gets both the chore and the money. The auction ends if either
one of the bidders calls “stop” or if the auctioneer reaches M without
none of the bidders calling “stop”. In the latter case we have a void
auction sale, though this is not in the best interest of the auctioneer.
The auctioneer can avoid this by properly selecting the bidders that
attend the auction.

2. The auctioneer offers the chore and fixes a sum of money L. The bidders
start making lower and lower bids. The bidder who bid less gets the
chore and the money. Of course the auctioneer has no lower bound.
Under the hypothesis that the bidders are not willing to pay for getting
the chore we can suppose a lower bound l = 0. If this hypothesis is
removed we can, at least theoretically, have l = −∞. It is possible to
have a void auction sale if no bidders accepts the initial value L. The
auctioneer can avoid this by fixing a high enough value L.

3. The auctioneer offers the chore and the bidders bid money for not
getting it under the proviso that the one who bids less will get the chore
whereas the bids of the others will be used (in a way to be specified)
to form a monetary compensation for the loser. Also in this case it is
possible to have a void auction sale, see section 5 for further details,
though this is not in the best interest of the auctioneer.

In the first case the auctioneer has a maximum value M he is willing to pay
for having somebody else carry out the chore otherwise he can either give
up with the chore, choose a higher value of M or repeat the auction with
a different (new or wider) set of bidders. This type of auction is a sort of
Dutch auction with negative prices paid by the bidders to get the chore. We
are going to examine it in some detail in section 12.
In the second case the bidders are influenced by the value of L that can act
as a threshold since if it is too low none of them will be willing to bid. This
case is as if the bidders start bidding from −L and raise their bids up to −l
so that the one who bids the most gets the chore and pays that negative sum
of money. In this case we have a sort of English auction with negative bids
that we are not going to deal with in this paper.
The last case will be fully dealt with in the present paper, starting from
section 5.
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3 Performance and design criteria

In this section we introduce a small set of performance criteria and
design criteria that can be applied to mechanism design (Rapoprt (1989),
Myerson (1991), Wooldridge (2002), Klemperer (2002) and Patrone (2006)).
As to the performance criteria we use:

1. guaranteed success,

2. Pareto efficiency,

3. individual rationality,

4. stability,

5. simplicity.

We say that a mechanism guarantees success if its goal is guaranteed to
be reached in a finite amount of time whereas one of its outcomes is Pareto
efficient if there is no other outcome where one of the participants is better
off while all the others are no worse off. Success requires termination (or the
fact that any process based on a mechanism ends in a finite time) but in
many cases we can have mechanisms that terminate without any guarantee
of success.
Individual rationality means that following the rules of a mechanism is
in the best interests of the participants. This is a key parameter since if it
is absent potential participants have no incentive in participating. Stabil-
ity means that a mechanism has incentives for participants to behave in a
certain way whereas simplicity means that such a way is obvious to the
participants themselves.
Our aim is to check if the auction mechanisms we propose satisfy or not those
performance criteria and, if it is the case, why some of them are violated.
As to the design criteria (Klemperer (2002)) we cannot use the possibility
of collusions or the entry deterrence or the predation or similar param-
eters that refer to the bidders with regard to the auctioneer since in the
mechanism we propose (from section 5 on) bidders play against each other
and any collusion (for instance) turns in a redistribution of money among
the bidders themselves without any involvement (as to possible losses) of the
auctioneer.
The only design criterion we can introduce involves the strategies that the
auctioneer can adopt in fixing the fee (see section 5.2). Similar considerations
hold for what concerns the profitability of the bidders to bid untruthfully (see
section 8). For further and more targeted comments see section 9.
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We end this section with some comments about social welfare. As to this
point we note how we may define it either from an utilitarian point of view
(as the sum of the welfare of the individuals) or from an egalitarian point of
view (as the welfare of the worse off individual). In both cases what we want
is to maximize such social welfare.

4 The framing situation

The mechanism we propose in this paper (from section 5 to section 9) is
inspired by the following situation.
We have an authority (commissioning authority) that wants to find a place
where to implement a controversial plant such as an incinerator, a dumping
ground, a heavy impact industrial plant or something like that. The essential
feature is that the planned infrastructure is something that nobody wants
but whose services, if the infrastructure is effectively implemented, may be
used by a wide group of other authorities. From this perspective it could also
be a commercial port or a marina or an airport. The discriminating criterion
is that the object of the agreement causes problems mainly to the accepting
authority but has a use value for possibly that authority also and for a wider
group of authorities that may include also the commissioning authority. We
therefore explicitly disregard situations where an agreement among a set of
authorities is needed for building the infrastructure as it happens in cases
such has railway lines, highways, shipways and the like.
We have therefore an authority that makes a request and another authority
(to be selected in some way) that accepts to satisfy the request by essentially
providing a portion of “its” territory.
The commissioning authority therefore can identify such an authority
through an auction like mechanism that involves the selection of a certain
number of potential contractors (on the base of technical and economical con-
siderations) over which it has no binding authority but with which it tries to
achieve an agreement.
Such an agreement may be achieved either directly through a negotiation
(such as Contract Net, Wooldridge (2002) or the mechanism we propose in
section 12) or indirectly through a “negative” approach: according to this
approach the selected authorities must take part to an auction and bid so to
avoid the auctioned chore.
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5 Basic features

5.1 Introductory remarks

We have an auctioneer that wants to allocate a chore to one of the bid-
ders of a set B. The n members of B are indexed by a set N = {1, . . . , n}.
The first point is to define according to which criteria the members of B are
identified then we have to define the criteria according to which the chore
itself is identified.
The bidders of B are identified by the auctioneer who is also free to identify
the chore at will. For such selections the auctioneer can:

1. identify the heaviest or highest priority chore (among those that are
present in a waiting list) for him to carry out;

2. identify a set of bidders whom he expects are willing to compete for
not getting the chore and

3. fix an exclusion fee (see further on). The exclusion fee should be fixed
by the auctioneer at a value that prevents all bidders to pay it and do
not take part to the auction.

In this way the auctioneer selects the potential members of B and defines
both the exclusion fee and the chore to be auctioned. Such potential members
may accept to pay the exclusion fee as a fee for being excluded from B.

5.2 The role and meaning of the fee

Before stepping any further it is necessary to explain the role and meaning
of the fee so to avoid any misunderstanding.
The auctioneer fixes a fee to allow the members of B (that have been selected
against their will) to escape from the auction but, at the same time, his main
goal is the allocation of a chore to one of the bidders.
It is therefore easy to understand how the condition B = ∅ (where the
auction is void) is not a good one for the auctioneer.
The auctioneer’s strategy is to choose the k potential bidders and to fix a fee
f so that some (say m) of the potential bidders can prefer to pay the fee but
all the others (say n = k −m > 1) prefer to attend the auction and bid.
If this is the case the auctioneer has:

1. a sum m × f and can use it as a further compensation for the losing
bidder;

2. a set of n bidders that attend the auction and form the set B̂.
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The amount of the sum paid by the bidders who left the auction (and so the
exact number of those bidders) is a private information of the auctioneer and,
therefore, cannot be used by the remaining bidders to guide their strategic
behaviour.
If, anyway, all the potential bidders prefer to pay the fee so that B = ∅ the
auction is void and the auctioneer must refund the sums he received since
he cannot keep them for himself and there is no losing bidder to be compen-
sated.
If the auctioneer chooses a null fee then the potential bidders can leave the
auction for free and therefore it is not in the auctioneer’s best interest to
choose a null fee.
In is way we try to model the principle of individual rationality (Wooldridge
(2002) and Myerson (1991)) within an auction mechanism where the atten-
dance is not on a voluntary basis.

5.3 The basic structure

The basic structure of the game is the following:

1. a presents the chore to the bidders bi ∈ B̂,

2. each of the bidders bi bids a sum xi for not having the chore,

3. who bids less gets the chore.

In what follows, without any loss of generality, we suppose to have only one
losing bidder and that such a sole bidder3 is bidder b1 whereas all the other
bidders can be called winning bidders and are indexed by the set N−1 =
N \ {1}.
Such basic structure must be enriched to take into consideration both the
possibility of having monetary compensations for the losing bidder and some
particular distributions of the various bids.
Moreover we have to specify the role of the bids xi within the model.
In the present paper, see section 2, we are interested mainly4 in auctions that
are:

1. one shot,

2. sealed bid,

3See section 10 for the case of more than one losing bidder.
4We present a different model in section 12.
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3. with private values expressed on a common scale5,

though in some cases it may be necessary to use further rounds of auction
(see section 10). We note how this type of auction is a sort of inverse first
price auction where the chore replaces the good, who bids less gets it and
receives a compensation for this. We also note how we cannot have a common
value auction since every bidder values the chore differently from the others.
We moreover note (see section 2) how all sealed bid auctions are one shot
auctions and that we disregard open cry auctions since the mechanism we
want to design is based on the fact that no bidders must be influenced by
the bids made by the others (Wooldridge (2002) and Klemperer (2002)).
Since b1 is the lone loser who gets the chore we surely have:

x1 = min{xi | i ∈ N} (1)

where x1 is b1’s willingness to pay for not having the chore and represents
how much the chore is worth for him. We say that x1 is the loss of b1.
We can define, at this point, the following quantity:

X =
∑

j∈N−1

xj (2)

as the gain of the set of winning bidders where the single xj are the sums
that each bj saved or, in a certain sense, gained. We note, indeed, that xj is
the sum that each bidders is willing to pay for not getting the chore but it
is what each bidder gets for sure if he loses the auction and gets the chore.
At this point we have to decide how to use X, possibly as a way to evaluate
how to compensate b1 for his loss x1. Before doing that we give the basic
version of the algorithm with a single losing bidder.

6 The algorithm

The basic version of the algorithm is made of the following steps:

1. a presents the chore to the6 bi ∈ B̂;

2. each bi makes his bid xi,

5We note how this is common practice in auctions where the bidders usually have
money as a common numerary good.

6We suppose that the set B̂ contains at least two bidders. If it is empty the auctioneer
can repeat the auction by defining a new set to be filtered with a fee payment mechanism.
If it contains only one bidder no auction really occurs and the auctioneer compensates
him with the revenue from the exclusion fees paid by the other bidders.
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3. a collects the bids and reveals them once they have all been collected;

4. the bidder who bid less gets the chore;

5. the other bidders compensate him for this (see section 7) and the auc-
tioneer gives him the total fee he received from the bidders of the set
B \ B̂ (those who gave up the auction).

The algorithm is simple and linear, at least in this case, and is supposed to
end with only one losing bidder. Obviously there are many points to clarify,
first of all the issue of compensations.
We note how this algorithm differs from what we have seen in section 2 since:

1. the auctioneer has no revenue and no loss but only gets the chore allo-
cated (a benefit, from his point of view, whose value does not influence
in any way the auction since it is not known by the bidders);

2. the bidders are in competition among themselves in order to no get the
chore;

3. one of the bidders loses the auction and gets the chore but

4. is compensated by the all the other participants for his loss.

7 Compensations

As to the compensations they can involve:

1. indirectly the auctioneer,

2. directly the winning bidders.

As to the auctioneer, he may manage the sum m×f to compensate the losing
bidder on behalf of those who preferred to pay.
The auctioneer may have an incentive to be deceitful as to the amount of
fees he received from the bidders who gave up and paid. To avoid this such
sum should be “physically” handled by an authoritative independent third
party that should collect the fees from the bidders and give them back if the
auction is void.
As to the winning bidders we can devise the following two compensation
schemes.
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1. Every winning bidder pays to b1 an amount proportional to his own
bid:

pj =
xj

X
x1 (3)

for all j ∈ N−1.

2. If there is a set of winning bidders H ⊆ N−1 who bid the highest bid
xn (so that xn > xj∀j 6∈ H) every member of H pays to b1 the whole
sum x1.

When the auction is over the auctioneer can make use of a random device to
choose which compensation scheme will be adopted for the current auction
so that such scheme cannot be known for sure by the bidder bj that only
knows his expected payment or loss:

0.5
xj

X
x1 + 0.5πjx1 < x1 (4)

since:
0.5(

xj

X
+ πj) < 0.5(1 + 1) = 1 (5)

where πj ∈ [0, 1] is the probability with which j ∈ H.

8 Strategies

Before examining the strategies of the each bidder bi we define his private
data.
The private data of each of the bidders bi are:

1. a value mi or the sum he is willing to pay for not getting the chore and
the the sum he wants for getting it,

2. a value xi he actually bids and that determines what he gets as a
compensation (if he loses the auction) and that is actually common
knowledge only when all the bids have been collected and revealed.

so that xi −mi can be defined as the bidder’s utility.
The following considerations hold under any compensation rule: if bi wins
the auction he has to pay x1 or less whereas if he loses (so he is b1) he gets
x1 or more. In both cases we can consider x1 as the worst case.
We wish to prove that for every bidder bi we have xi = mi as the best strat-
egy.
The intuition is the following. Making a bid xi lower that mi is not conve-
nient to bi since if he loses the auction and gets the chore he may get a low
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compensation, lower than his evaluation of the chore. On the other hand if
he makes a bid higher than mi he is more secure he will not lose the auction
but he can run a winner’s course like risk: he can be compelled to compen-
sate the loser with a sum of money higher than his evaluation of the chore
mi (so it would have been better for him to get the chore). From this we
conclude that each bidder should choose to bid a sum xi = mi. Now we step
to a more formal proof of our claim.
If bi bids xi < mi he can:

1. lose the auction and get the chore so to obtain a compensation that is
in the worst case lower than his evaluation of the chore;

2. win the auction so that, in the worst case, he has to pay to the loser b1
a compensation x1 lower than xi.

If the bidder loses the auction he loses, in the worst case, xi −mi (with an
unknown probability p) whereas if he wins the auction he gains xi − x1 (if
the losing bidder is b1) with probability (1− p) so that the expected revenue
for bidder bi is:

p(xi −mi) + (1− p)(xi − x1) (6)

Given p it is easy to see how the best situation for bi occurs when xi = mi.
If bi bids xi > mi he can, in the worst case:

1. lose the auction and get the chore so to obtain a compensation that is
higher than his evaluation of the chore;

2. win the auction so he has to pay a compensation x1 to the loser b1,
compensation lower than xi but possibly greater than mi.

We can evaluate the utility of bidder bi as:

ui(x,m) =

{
xi −mi if i = argminj∈N xj

y if i 6= argminj∈N xj
(7)

where m is the vector of the evaluations of the chore for the bidders and
x is the vector of the current bids of the bidders whereas mi and xi (with
xi > mi) are those values for bidder bi.
If the former event occurs with an unknown probability p the latter (since
the two events are a partition of the sure event) occurs with a probability
1− p so that we can evaluate the expected revenue of bi as:

p(xi −mi) + (1− p)y (8)
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In equation (8) mi if fixed for a given bi and (Myerson (1991)) we can imagine
the bids xi as independent random variables uniformly distributed on the
interval [0,M ] for a proper value of M > 0.
In equation (8) y represents the sum that bi may gain or lose if he is one of
the winning bidders so that, in the worst case, he has to pay x1 to the lone
loser b1.
We have the following two cases:

1. if x1 ≤ mi bi gains mi − x1,

2. if x1 > mi bi loses mi − x1.

and both cases concur (with the proper probability) in the evaluation of y.
From the aforesaid considerations we have that:

1. if xi →M the probability p that bi has to lose the auction tends to 0,

2. with an increasing probability bi risks to get y (since (1− p) −→ 1),

3. y is made of a positive component upperly bounded by mi and a neg-
ative component with a lower bound of mi −M ,

4. the former component is associated to a probability mi/M and the
latter to (xi −mi)/M ,

5. since all the bidders tend to behave in a similar way and so tend to
bid high values of xj also x1 tends to grow so that it is more and more
probable for bi to pay a high fee x1 with a high probability.

We can conclude that using high bids is wrong and that the best strategy is
to bid mi. In this way bi sets to 0 his probability to win and pay a fee higher
than his evaluation of the chore.

9 Performance and design criteria satisfac-

tion

In this section we examine if the proposed mechanism satisfies the criteria
we introduced in section 3. We start with the performance criteria.

1. The mechanism guarantees termination, since it is a one shot auction,
but does not guarantee success since, if the auctioneer badly fixes the
fee, the auction can go void. Under the proviso the the fee is properly
fixed the mechanism guarantees success since a losing bidder is surely
identified and the chore is allocated.
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2. As to Pareto efficiency we have that if the chore is allocated to one
bidder that bid his own evaluation of the chore itself all the bidders are
satisfied and there is no other solution in which one is better off and
none is worse off so we have found a Pareto efficient solution.

3. As to individual rationality we tried to guarantee it through the mech-
anism of the fee as a compensation for the fact that the involvement in
the auction does not occur on voluntary basis.

4. Stability and simplicity are both guaranteed by the fact the the best
strategy for every bidder is to bid a sum equal to each bidder’s evalua-
tion of the chore, a very simple strategy that can be easily implemented
by bidders with also a very bounded rationality.

As to the design criteria we have that the only parameter the auctioneer
can control is the amount of fee f he asks to the bidders to let them leave
the auction. We note that the amount of f is common knowledge among the
bidders whereas the single values mi are private information of each bidder.
Other data of common knowledge among the bidders are:

1. if the auction is void the paid fees are refunded;

2. the paid fees are used to compensate the losing bidder.

Which is the proper value is a guess of the auctioneer even if fixing it high
may seem to be of no harm for him. A high fee is an incentive to each bidder
for not paying it in the hope to be the only one that acts in this way and gets
the total amount of the fees as a compensation. Since all the bidders have
this incentive high values of the fee turn in none of the bidders paying them.
This however does not represent a bad situation for the auctioneer that can
find more easily a bidder who loses the auction and gets the chore. On the
other hand, too low values of the fee may harm him since all the bidders can
pay them so the auction runs the risk of being void.
Social welfare is worth some final comments. We must consider the situation
before the auction and that after the auction. Firstly we note that if the
auction is not void the welfare of the auctioneer can only increase since he
succeeds in allocating a chore (at no cost) and so gets a benefit from the
auction and suffers no loss of any kind. If, on the other hand, the auction is
void the auctioneer fails in allocating the chore and may suffer the expenses
needed to set up the auction mechanism. In this case he is worse off and so
he has incentives to choose properly the bidders and in fixing properly the
exclusion fee.
As to the bidders we can analyse the situation from two perspectives:
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1. from that of the single bidder,

2. from that of the whole set of bidders.

We can suppose that, before the auction starts, the single bidder bi has a
welfare measured as wi and that every bidder is supposed to bid his true
evaluation mi of the chore. If we consider the single bidder we have7:

1. each of the m bidders who pay the fee f (lower than each bidder’s mi

otherwise each of them would had attended the auction) sees his welfare
becoming wi − f > wi −mi;

2. each of the n− 1 winning bidders is expected to pay (see equation (4)
with xj = mj):

E[j] = 0.5
mj

X
m1 + 0.5πjm1 < 0.5(

mj

X
+ 1)m1 ≤ m1 < mj (9)

(since mj ≤ X and m1 < mj by definition) so that their welfare be-
comes wj − E[j] > wj −m1;

3. the losing bidder has an expected utility given by:

E[1] = mf +
n∑

i=2

E[i]−m1 (10)

From equations (9) and (10) we may derive the following two cases.

1. If m = 0 we have E[1] =
∑k

i=2E[i] − m1. If we use equation (9) we
have:

E[1] = 0.5m1

k∑
i=2

(
mi

X
+ πi)−m1 = 0.5m1(

k∑
i=2

mi

X
+

k∑
i=2

πi)−m1 (11)

or:
E[1] = 0.5m1(1 + 1)−m1 = 0 (12)

so that b1 is no worse off.

2. If m ≥ 1 we have E[1] = mf +
∑n

i=2E[i] − m1 > 0 (since m1 < f
otherwise b1 would have paid that fee) so b1 is better off.

If we consider the complete set of bidders, from the equations (9) and (10),
we have:

7We recall that there are k potential bidders, m of them are supposed to pay the fee f
whereas the remaining n = k −m are supposed to bid.
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1. those who pay the fee suffer a collective loss of mf ,

2. those who bid suffer a collective loss of
∑n

i=2E[i],

3. the losing bidder has an expected utility given by (10),

so that the complete set of bidders is worse off by m1 that, anyway, is the
less they can lose since m1 < mi for every i ∈ [2, k].

10 Extensions

Up to now we have supposed to have only one losing bidder and only one
chore to be auctioned. In this section we extend our approach to include:

1. the possibility of having more than one losing bidder,

2. the need to allocate a set of chores C to a set B of bidders, who actually
attend the auction (did not pay the exclusion fee).

If we have a set of losing bidders L with 1 < |L| ≤ n we have the following
possibilities:

1. we use a random mechanism to select one of them so to be back to
the lone loser case where all the other bidders are therefore winning
bidders;

2. we can set up an auction among the members of L so to choose one of
them.

In the latter case there is no guarantee that a single supplementary auction
is sufficient to have a single losing bidder so it may be necessary to resort
to a series of supplementary auctions. Every supplementary auction involves
only the bidders indexed by the current set L and this process goes on until
when the auctioneer gets |L| = 1 or decides to resort to a random device to
make the choice.
At any step it is indeed possible to use a random device to make a choice
and to find the necessary lone losing bidder.
If the auctioneer wants to allocate a set of chores C he can order the chores
of the set C according to his own evaluations and then proceed (in either
ascending, descending or casual order) to allocate such chores in a series of
rounds, each round for the allocation of exactly one chore to one bidder.
If |C | = c ≤ n (with n = |N |) it is possible to use c rounds to allocate at
the most one chore to each bidder so that a bidder who gets a chore at step
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k exits the allocation process but not the compensation phase.
If |C | = c > n there are necessarily bidders who get more than one chore. To
avoid that all chores are assigned to a small subset of bidders the auctioneer
can use the following algorithm:

1. he evaluates q and r such that c = qn+ r;

2. he performs q times the algorithm, each time with n initial bidders as
before;

3. the remaining r chores are allocated with one more execution reserved
to the r bidders who got the r lower total sums of chore values8.

We note that things may differ if the bidders know the whole set of the chores
C before the first round of the auction process or if they know the chores
only when each of them is revealed by the auctioneer.
In the former case they can act strategically and, by ordering the chores
according to private criteria of each bidder, try to get the most preferred
chore among those who are available at step k.
In the latter case they can act only tactically and perform a choice only on
the current auctioned chore with a regret on the past auctioned chores but
not knowing the possible future chores, neither their type nor their number.

11 Possible uses of the model

The model we have discussed up to now (allocation of one chore to one
bidder) can be used in all case where the auctioneer cannot carry out the
task by himself and must find somebody who is able to handle it (see section
4 for some examples). In the case of a set of chores what we have said is
valid for each chore in the set: we are indeed in an additivity case so that
the chores can be assigned one by one or if there are two or more chores that
are interconnected in some indissoluble way they are seen as a single chore.
We note that the bidder who gets a chore can, in his turn, use an auction of
this kind to allocate it to one of the bidders of another set, he can act as a
middle man. In this sense the algorithm may be said to be recursive with a
correlated value.

8A chore value for a bidder is the sum of all the losing bids he made in the auctions
for the allocations of the q chores. If those bidders are more than r it is possible to use a
random device to choose exactly r of them.
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12 Reverse auction: paying more and more

to allocate a chore

In this section we examine the first of the cases we listed in section 2.0.7
or the case where the auctioneer offers the chore and a sum of money and
raises the offer (up to an upper bound M) until when one of the bidders
accepts it and gets both the chore and the money.
The value M represents the maximum amount of money that the auctioneer
is willing to pay to get the chore performed by one of the bidders. We
note that the value M is a private information of the auctioneer and is not
known by the bidders. This fact prevents the formation of consortia and
the collusion among bidders (Klemperer (2002)) since M may be not high
enough to be gainful for more than one bidder.
If x is the current offer of the auctioneer a we can define his utility as M −x.
As to the bidders bi, each of them has the minimum sum he is willing to
accept mi as his own private data so that x−mi may be seen as a measure
of the utility of bidder bi.
We note that, if we define the set:

F = {i |mi ≤M} (13)

as the feasible set, the problem may have a solution only if F 6= ∅.
In this case the algorithm is the following:

1. a starts the game with a starting offer x = x0 < M ;

2. bidders bi may either accept (by calling “stop”) or refuse;

3. if one bi accepts9 the auction is over, go to 5;

4. if none accepts and x < M then a rises the offer as x = x + δ with
0 < δ < M − x, go to 2 otherwise go to 5;

5. end.

At this point we have to define the strategies of both a and the bi. The
auction we are describing is a sort of reversed Dutch auction where we have
an increasing offer instead of a decreasing price and a chore instead of a good.
The best strategy for a is to use a very low value of x0 (or x0 ' 0 so to be
sure to stay lower that the lowest mi) and, at each step, to rise it of a small
fraction δ with the rate of increment of δ decreasing the more x approaches

9Possible ties may be resolved with a random device.
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M .
The bidder bi’s best strategy is to refuse any offer that is lower than mi and
to accept when x = mi since if he refuses that price he risks to lose the
auction in favour of another bidder who accepts that offer.
We have moreover to consider what incentives a bidder may have to be
insincere when defining the value mi. Of course there is no reason for bi
to define a value of mi lower than the real one (since he has no interest
in accepting lower prices). He could be tempted to define a higher value
m′i > mi so losing the auction in favour of all the bidders who are willing to
accept any offer within the range m′i − mi. This means that bi may use a
higher value of mi only if he is sure that the private values of all the other
bidders are higher. Since no bidder can be sure of this, each of them has a
strong incentive to behave truthfully.
In this case, if F 6= ∅, the sum a expects to pay is equal to mj where j ∈ F
is such that mj < mi for all i 6= j, i ∈ F .
The algorithm in the present version can be used in all cases where the
auctioneer wants to “sell a chore” to the “worst offering” or to have a chore
carried out by somebody else by paying him the least sum of money.

13 Concluding remarks and future plans

In this paper we presented the use of classical tools such as auction mech-
anisms within an unconventional framework, the allocation of chores to a set
of bidders.
We defined two types of auction, examined their properties and gave some
hints about the contexts where each of them can be used.
Future plans include both a deeper theoretical examination of such prop-
erties (with a particular regard to the bidders’ strategies and algorithm’s
extensions) and an examination of some practical applications in areas such
as the localization of energy production plants, incinerators, garbage dumps
and so on.
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