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Abstract

The paper presents some models involving a pair of actors that
aim at bartering the goods from two privately owned pools of hetero-
geneous goods. In the models we discuss in the paper the barter can
occur only once and can involve either a single good or a basket of
goods from each actor/player. In the paper we examine both the basic
symmetric model (one-to-one barter) as well as some other versions
(one-to-many, many-to-one and many-to-many barters) none of which
reproduces a symmetric situation. The paper presents the models,
their structure and describe some possible strategies. It also presents
a set of performance criteria and shows how the proposed models sat-
isfy them.
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mechanism design, performance criteria
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1 Introduction

The paper presents a family of models that involve a pair of actors/players
that aim at bartering the goods from two privately owned pools of heteroge-
neous goods.

∗I wish to thank Professor Franco Vito Fragnelli and Prof. Giorgio Gallo for their many
useful comments to preliminary versions of the paper.
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In the models we discuss in the paper the barter is supposed to occur only
once as an one shot process and can involve either a single good or a bas-
ket of goods from each actor/player. We examine both the basic symmetric
model (one-to-one barter) and its extensions (one-to-many, many-to-one and
many-to-many barters), none of which reproduces a symmetric situation.
The paper is structured as follows. It opens with the basic motivations of the
proposed models and some definitions then it introduces some classical solu-
tions of related problems. The next long section presents the various barter
models, their structures and, for one of them, some possible strategies. The
paper goes on with a description of the basic performance criteria for the
evaluation of the proposed models and applies them to one of such models.
The closing sections include a section devoted to some possible extensions, a
section devoted to the conclusions and the plans for future work and research
and an Appendix where we provide formal argumentations for some of the
relations we have introduced and used in the paper.

2 The basic motivation

The basic motivation of the models we propose is the need to describe
how an exchange of goods can happen without the intervention of any trans-
ferable utility such that represented by money or by any other numerary
good. In this way the involved actors do not need to share anything, such as
preferences or utilities as shared information, but the will to propose pool of
goods that they present each other so to perform a barter.
All the barters are in kind and are essentially based on the following very
simple basic scheme (see section 6.1): we have two actors that show each
other the goods, each of them chooses one of the goods of the other and, if
they both assent, they have a barter otherwise some rearrangement is needed
and the process is repeated until either a barter occurs or both agree to give
up.
The presence of more than two actors and the use of more complex schemes
do not really modify greatly the above scheme since in any case the basic
module is the one involving a pair of actors at a time. We note, indeed, how
within this framework there is no numerary good so no auction like scheme
is possible. Possible extensions will be examined briefly in section 9.
Lastly we underline the fact that, though we make some comments on the
possible strategies (see for instance section 6.3) our approach will be more
descriptive than normative since we are more interested in describing a
framework that allows us to describe the actors’ possible behaviors in various
abstract settings than in giving (more or less detailed) recipes through which
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players can attain their optimal outcomes.
Within this perspective it should be obvious why we do not explicitly de-
scribe fully detailed optimal strategies that the players can follow. Though
it may seem strange we think that, given the purposes of the models, a purely
normative approach would prove as too restrictive.

3 Goods as services

The key point of the proposed models is that each of the two players owns
a set of items that enters it the barter process, I for A and J for B.
In the paper we suppose both I and J contain goods or elements that have
a positive value for both players. From this point of view a good may also
be a service that one player is willing to perform on behalf of the other.
In this case, for instance, player A asks to player B for one of the available
B’s services in exchange for one of the available A’s services that player B
asks to player A. Of course this occurs in the one-to-one barter case.
Another perspective that we disregard in the paper but that can easily be
inferred from it sees the two sets I and J as containing chores or bads or
items that have a negative value for both players.
In this latter case the two players try to allocate each other their chores so
that a chore allocated from A to B can be seen as a service performed by B
on behalf of A to solve a problem of A. In this way we can unify the two
perspectives and consider the goods case as a general case.

4 Some definitions

With the term barter we mean, in this paper, an exchange of goods for
other goods without any involvement of money or any other numerary good.
It usually involves two players that act as peers in a peer-to-peer relation-
ship. There may be variants such as more than two actors or not peer-to-peer
relations and in section 9 we examine briefly only those of the former type.
In the case of not peer-to-peer relations we think we are not in presence of a
real barter mainly if one of the actors cannot refuse to accept the proposed
barter.
As to the barter we note that we can have either a one shot barter or a
repeated or multi shot barter.
In the one shot case the two actors execute the barter only once by using a
potentially multi stage process that aims at a single exchange of goods and
can involve a reduction of the sets of goods to be bartered.
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In the multi shot case they repeatedly execute the barter process, every
time either with a new set of goods or with a possibly partially renewed set
of goods but usually excluding previously bartered goods.
In this paper we are going to examine only the one shot barter between the
two actors so that there is no possibility of retaliation owing to repetitions
of the barter.
In order to avoid interpersonal comparisons and the use of a common scale
we let the two players show each other their goods and ask separately to each
of them if he thinks the goods of the other are worth bartering. If both an-
swer affirmatively we are sure that such interval exists otherwise we cannot
be sure of its existence. Anyway the bartering process can go on, though
with a lower possibility of a successful termination.
In this way we describe the absence of both a common market (as a place
where goods have a common and exogenously fixed evaluation in monetary
terms) or between the two players as well as the absence of any outer evalu-
ator that can impose or even only suggest common evaluations according to
a common numerary quantity to both players.
We introduce the following simplifications:

(1) the values of the goods the two actors want to barter cover, in the
opinion of each player, two overlapping intervals so that a one shot
barter is always possible (at least in theory);

(2) such goods and the associated values are chosen privately by each actor
without any information on the goods and associated values of the other
actor1;

(3) such values are fixed once for all (at least during each barter) and
cannot be changed as a function of the request from the other actor;

(4) such values must be truthfully revealed upon request from an indepen-
dent third party after both requests have been made.

The last two assumptions have been made only to simplify the analysis and
will be relaxed in future developments.

5 A brief analysis of some classical solutions

Before describing some classical solutions to at least partially related
problems it is necessary to map our models of barter on an equivalent model

1Obviously each actor can make guesses about the nature and the values of the goods
of the other actor and such guesses influence the composition of each set of goods to be
bartered.
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where the barter phase does not occur and is replaced by a selection proce-
dure that can be compared, at least to some degree, with the other solutions
we present in this section.
The mapping is obtained by using the following algorithm of merge, choice
and separation.
The two players A and B have respectively n and m flags of two colors since
|I| = n and |J | = m. The first thing they do is to create a merged list of
n + m items from the lists of the contents of the two sets I and J .
At this point each of the players has his own copy of the list so that he can
put the flags on the items he wishes to obtain from the separation phase.
When the choice phase is over the two flagged lists are compared so to im-
plement the separation phase.
We can have the following cases:

- no item has two flags on it so all the items have only one flag on them;

- some items have one flag on them, some items have two flags on them
and some have no flags and them.

In the former case the separation phase is easy since the global list is parti-
tioned in two colored sublists. In this case if the two original sets I and J
are unchanged there has been a void barter.
In the latter case we have both selected items (one flag), contested items (two
flags, Brams and Taylor (1999)) and rejected items (no flag). The selected
items are assigned to each player depending on the color of the flag. The
others enter as input data in a settlement phase that can end either with an
agreement (so that the barter effectively occurs) or without any agreement
and so without any barter.
The structure of the settlement phase is based on the displacement of one
flag at a time from one item to another that each player performs in turn.
The structure is easier in the simplest case of the exchange of one item for
one item and is more complex if multiple items exchanges are involved but
anyway the settlement phase is guaranteed to end in a finite time with either
a failure or a success.
The proposed equivalent algorithm is therefore characterized by a common
pool of goods that the players select (in both the selection and settlement
phases) by using private and possibly qualitative values that do not need to
share any common quantitative scale. In order to perform a useful compari-
son, our starting point is Brams and Taylor (1996). In this book, the authors
propose a lot of tools and algorithms for the allocation of goods for both di-
visible and indivisible cases. They start from n = 2 players and then extend
their results to the general cases with n > 2. A common characteristic of
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such models is that players aim at more or less fair sharing of a common pool
of goods on which they state preferences that can be compared in some way,
even on common cardinals scales.
Another good reference is Brams and Taylor (1999), where authors present
various methods for the allocation of the goods from a single pool, start-
ing with (strict and balanced) alternation methods to switch to divide-and-
choose and to end with adjusted winner method.
Also all these methods are devised to allow more or less fair divisions between
two players of the goods belonging to a common pool (though extensions to
more than two players are provided for all the methods).
The adjusted winner method (Brams and Taylor (1999)) is a two-person
point allocation procedure through which the two players can share out be-
tween themselves the goods of a common pool of by assigning to each good a
certain number of points out of a fixed total (that is usually fixed at T = 100).
Each good is assigned to the player who assigns to it the higher number of
points. Some redistribution of the goods and the splitting of at least one
divisible good may be needed to obtain a distribution that is as near to a
fifty/fifty distribution as possible.
We remark how the adjusted winner method requires the use of a common
cardinal scale among the players since it requires that each of them assigns to
each good some points on T = 100 and that such points are compared (either
directly or as ratios) so to determine to which player every good is assigned.
The features of the method show how it is unsuitable in our context.
A short analysis of classical solutions for the division of goods can be found
also in Fragnelli (2008a) again with regard to either one or more divisible
goods or a pool of indivisible goods. Again the presence of a for the common
evaluation of the goods from the players makes such tools inappropriate as
solutions to our problem.
From the comments made in Fragnelli (2008a) about auctions, moreover, it is
also evident how such tools are not suitable to solve our problem. In the case
of auctions the bidders are supposed to compete for a common good whose
evaluations are carried out on a common cardinal scale and the competition
occurs with a single auctioneer who chooses the proper auction mechanism
among the many that are available. Also in this case we have both a com-
mon good and a common scale of evaluations since the various bids must be
compared among themselves to establish which is the winning bid according
to the structure of the chosen auction mechanism.
Other solutions to division problems that can be found in the literature in-
volve market games (Fragnelli (2008b) and Shubik (1959)), assignment
games (Fragnelli (2008b)) and cost games (Fragnelli (2008b)).
In the market games each player has an initial endowment and a preference
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relation on it. Each player has an utility function defined from such relation.
Players aim at a redistribution of their initial endowments so to attain effi-
cient redistributions. A redistribution is termed efficient if no player prefers
any other distribution to this one. The main point here is the merging that
assumes the use of common scales for the evaluation of the endowments.
In the assignment games players are subdivided in two groups: buyers and
sellers. Every seller owns only one good (of which he knows the evaluation)
and each buyer can buy one good (of which she knows the evaluation). Prices
of the objects depend on these evaluations and on the ability to bargaining
of the players. In these games players aim at obtaining their maximum gain
with regard to each one’s evaluation. Our models owe much to these games
but for the fact that every player is both a buyer and a seller so that the gain
each player obtains strictly depends on two simultaneous exchanges. More-
over we have no numerary good so there is no real possibility to sell or buy.
Last but not least, in the cost games we must define the division of the
costs of a project among the many involved users so to take care of their
roles and interests. From our perspective we could use this kind of games as
a touchstone with the case of the barter of either bads or chores but for the
presence of duality property. According to this duality property the dual of
a cost game is a profit game. From this we derive that the players of the
coalitions share the same worth function and this in contrast with what we
want to describe: a pair of players each with his own evaluations of his and
the other’s good. It is, therefore, easy to see how also this family of games
has nothing to do with the problem we aim at solving.

6 Barter models

We suppose the actor A with his pool I = {i1, . . . , in} of n heterogeneous
goods and the actor B with her pool J = {j1, . . . , jm} of m heterogeneous
goods.
The sets I and J represent all the goods that both players are willing to
barter on that occasion so that there is no “hidden good” that can be added
at later stages. This is a design choice that qualifies the proposed models
as models of explicit barter. If we imagine that the players have “hidden
goods” that can be revealed and added to the sets at later stages we deal
with what we may define an implicit barter. In the present paper we deal
only with barters of the former type.
In this case A assigns a private (i.e. known only by him) vector vA of n
values to his goods of the set I, one value v(i) for each good i ∈ I.
Also B assigns a private vector vB of m values to her goods of the set J . These
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vectors are fixed before the barter begins and cannot be modified during the
barter. From these hypotheses, for any subset K ⊆ I, player A once for all
can evaluate, by using a property of additivity, the quantity:

vA(K) =
∑

ik∈K

vX(ik) (1)

A similar quantity may be independently evaluated by player B.
In a similar way we can define a private vector sA of m values of the appraisals
of the goods of B from A and a vector sB of n values of the appraisals of the
goods of A from B. In this case A can evaluate:

sA(H) =
∑

jh∈H

sX(jh) (2)

for any subset H ⊆ J . A similar quantity may be independently evaluated
by player B.
These assignments reflect the basic hypotheses that A can see the goods of
B but does not know vB (the values that B assigns to her goods) and the
same holds for B with respect to A.
In this way we can define four types of barter:

1. one-to-one or one good for one good;

2. one-to-many or one good for a basket of goods;

3. many-to-one or a basket of goods for one good;

4. many-to-many or a basket of goods for a basket of goods.

The second and the third case are really two symmetric cases so they will be
examined together in a single section. We are going to examine such types
one after the other, starting with the one-to-one type.

6.1 One-to-one barter

Even in this simple type of barter there must be a pre-play agreement
between the two actors that freely and independently agree that each other’s
goods are suitable for a one-to-one barter. The barter can occur either with
simultaneous (or “blind”) requests or with sequential requests.
In the case of simultaneous requests, at the moment of having a barter we
can imagine that the two actors privately write the identifier of the desired
good on a piece of paper and reveal such information at a fixed time after
both choices have been made. In this case we have that A requires j ∈ J
and B requires i ∈ I so that:
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1. A has a gain sA(j) but suffers a loss vA(i);

2. B has a gain sB(i) but suffers a loss vB(j).

The two actors can, therefore, evaluate privately the two changes of value of
their goods (that we may slightly improperly call utilities):

uA(i, j) = sA(j) − vA(i) (3)

uB(i, j) = sB(i) − vB(j) (4)

since all the necessary information is available to both actors after the two
requests have been devised and revealed. In equation (3) and (4) we use
differences and not ratios (see section 7) essentially because in this way we
think to better describe the evaluation strategy of the players when they
decide to accept or refuse a barter whereas, after the barter has occurred,
the actors tend to use ratios to evaluate its fairness. Anyway it is easy to see
how, for instance, from equation (3) and the test condition of rule (7) it is
possible to derive equation (11) and vice versa. We also note how equations
(3) and (4) can be replaced by more general expressions such as:

uA(i, j) = f(sA(j), vA(i)) (5)

and:
uB(i, j) = g(sB(j), vB(i)) (6)

on condition that the resulting values can be used in rules such as (7). We
note that in equations (5) and (6) f and g are generic functions that are
used by the players to evaluate their utilities as a function of each player’s
evaluations of the bartered goods. We only require that both functions satisfy
the following conditions:

(c1) are increasing functions of either sA or sB,

(c2) are decreasing functions of either vB or vA.

Equations such (3) and (4) or (5) and (6) are privately evaluated by each
player that only declares acceptance or refusal of the barter, declaration
that can be verified to be true by an independent third party upon request.
We note that a possible strategy for both players is to maximize the value
they get from the barter (and so sA(j) and sB(i)). Owing to the simultaneity
of the requests this is not a guarantee for each player of maximizing his own
utility since in equations (3) and (4) or (5) and (6) we have a loss due to
what the other player asks for himself (and so vA(i) and vB(j)) (see section
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6.3).
The basic rule for A is the following2:

if(uA ≥ 0) then acceptA else refuseA (7)

and a similar rule holds also for B.
We have therefore the following four cases:

1. both players accept, acceptA and acceptB ,

2. player A refuses and B accepts, refuseA and acceptB,

3. player A accepts and B refuses, acceptA and refuseB,

4. both players refuse, refuseA and refuseB.

that we are going to describe in detail in section 6.2.
In the case of sequential requests we can imagine that there is a chance
move (such as the toss of a fair coin) to choose who moves first and makes a
public request. In this way both A and B have a probability of 0.5 to move
first.
If A moves first (the other case is symmetric) and requires j ∈ J , B (since
she knows her possible request i ∈ I) may evaluate her utility in advance
using equation (4) or (6) whereas the same does not hold for A that, when
he makes the request, does not know the choice i ∈ I of B and so cannot
evaluate vA(i). At this level B can either explicitly refuse (if uB < 0) or
implicitly accept (if uB ≥ 0).
In the refuse case B can only take the good j off her set so that the process
restarts with a new deliberation of the possibility of the barter and a new
chance move.
In the accept case the implicit acceptance is revealed by the fact that also
B makes a request. In this case B may be tempted to chose i ∈ I so to
evaluate:

max uB(i, j) = max (sB(i) − vB(j)) = max sB(i) (8)

where the quantity vB(j) is fixed (since it depends on the already expressed
choice of A) and cannot be modified by B.
Acting in this way, B may harm A by causing uA < 0 and this would prevent
the barter from occurring at this pass. Roughly speaking we can say that
since B choses after A she can act accommodatingly or in an exploiting way:
in the first case the probability that the barter occurs are higher than in the

2In the general case we have uA ≥ ε with ε > 0 if there is a guaranteed minimum gain
or with ε < 0 if there is an acceptable minimum loss.
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second case. Anyway B makes a request of i ∈ I so that also A can evaluate
his utility through equation (3) or (6).
Now, using rules such as (7), we may have the cases we have already seen
but except for the case of double refusal since the case where who choses as
the second refuses is handled at a different stage of the algorithm (see section
6.2).
All this goes on until both accepts so the barter occurs or one of them empties
his set of goods or both decide to give up since no barter is possible, how it
will be clear from the description that we are going to make in section 6.2.

6.2 Formalization of the models

In this section we present a concise but fairly detailed listing of the two
models of the one-to-one barter, starting from the case of simultaneous or
“blind” requests.
In this case the algorithm is based on the following steps:

(1) both A and B show each other their goods;

(2) both players decide if the barter is [still] possible or not;

(a) if it is not possible then go to step (6);

(b) if it is possible then continue;

(3) both simultaneously perform their choice (so A chooses j ∈ J and B
chooses i ∈ I);

(4) when the choices have been made and revealed both A and B can make
an evaluation (using equations (3) and (4) or equations (5) and (6)) and
say if each accepts or refuses (using rules such as (7));

(5) we can have one of the following cases:

(a) if (acceptA and acceptB) then go to step (6);

(b) if (refuseA and acceptB) then \\at A’s full discretion

i. either A executes I = I \ {i} and if (I 6= ∅) then go to step
(2) else go to step (6);

ii. or A only executes a new choice and then go to step (4);

(c) if (acceptA and refuseB) then \\at B’s full discretion

i. either B executes J = J \ {j} and if (J 6= ∅) then go to step
(2) else go to step (6);
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ii. or B only executes a new choice and then go to step (4);

(d) if (refuseA and refuseB) then

i. A executes either I = I \ {i} or a new choice; \\at A’s full
discretion

ii. B executes either J = J \ {j} or a new choice; \\at B’s full
discretion

iii. if (both A and B make a new choice) then go to (4);

iv. if (only one of A and B makes a new choice and the reduced
set of the other is not empty) then

- if (the barter is still possible) then go to (4);

- if (the barter is not possible) then go to (6);

v. if (only one of A and B makes a new choice and the reduced
set of the other is empty) then go to step (6);

vi. if (both reduce each one’s set and I 6= ∅ and J 6= ∅) then go
to step (2) else go to step (6);

(6) end of the barter.

The solution we have adopted at point (5)(d) is the most flexible since it mixes
the two cases (5)(b) and (5)(c) and gives the two players the full spectrum
of possibilities at the same time remaining simple enough to be understood
and implemented by the players.
We remark how at the very beginning of the process we suppose that the
barter is possible though this is not necessarily true at successive interactions.
We now give the description of the model with sequential requests. We
denote the player who moves first as 1 (it can be either A or B) and the
player who moves second as 2 (it can be either B or A) and for both we use
male forms. With a similar convention we denote as I1 the set of goods and
i1 a single good of player 1 whereas for player 2 we have respectively I2 and
i2:

(1) both players show each other their goods;

(2) both players decide if the barter is [still] possible or not;

(a) if it is not possible then go to step (10);

(b) if it is possible then continue;

(3) there is a chance move to decide who moves first and makes a choice;

(4) 1 reveals his choice i2 ∈ I2;
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(5) 2 can now perform an evaluation of all his possibilities;

(6) if 2 refuses he takes i2 off his barter set then go to (2);

(7) if 2 accepts he can reveal his choice i1 ∈ I1;

(8) both 1 and 2 can make an evaluation (using equations such as (3) and
(4) or equations (5) and (6)) and say if each accepts or refuses (using
rules such as (7));

(9) we can have one of the following cases:

(a) if (accept1 and accept2) then go to step (10);

(b) if (refuse1 and accept2) then \\at 1’s full discretion

i. either 1 performs I1 = I1 \{i1} and if (I1 6= ∅) then go to step
(2) else go to step (10);

ii. or 1 only performs and reveals a new choice and then go to
step (8);

(c) if (accept1 and refuse2) then \\at 2’s full discretion

i. either 2 performs J1 = J1 \ {j1} and if (J1 6= ∅) then go to
step (2) else go to step (10);

ii. or 2 only performs and reveals a new choice and then go to
step (8);

(10) end of the barter.

We note that the case (9.c) (accept1 and refuse2) can occur as a consequence
of the case (9.b).

6.3 Possible strategies in the one-to-one barters

We now make some comments on the possible strategies that the players
can adopt in the case of the algorithms we have shown in section 6.2.
In the case of simultaneous requests both players perform their choice
without knowing the choice of the other. If they evaluate their utilities
according to equations such as (3) and (4) their best strategy would seem to
choose the good of the other that each value at the most.
In this case we have that:

A requires ĵ = argmaxj∈JsA(j) and causes B a loss that A may only
roughly estimate;
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B requires î = argmaxi∈IsB(i) and causes A a loss that B may only
roughly estimate.

Acting in this way each of them may have the other player to refuse the
barter. As we have seen a refusal may turn into the withdrawal of a good
from one of the sets I or J . This fact is surely unfavorable for each player.
Both players therefore have strong incentives to devise better strategies.
In what follows we introduce one possible strategy under the hypothesis the
both players use a more slack rule than rule (7) so that acceptance or refusal
are rather discretionary than linked to a condition satisfaction criterion.
We devise a strategy for player A whereas for player B we have two possi-
bilities:

(1) B follows a generic non systematic strategy,

(2) B follows a similar strategy.

The strategy for A is the following.
A orders the set J of B in increasing order (from the lowest to the highest)
according to the values he gives to its elements.
In the case (1) B uses a generic strategy of selection whereas in the case (2)
she uses an analogous strategy over the set I of A.
The process of choice and request involves a certain number of pass until
an agreement is reached either in a positive or in a negative sense. At the
generic l-th pass (with l = 1, . . . ) A requires the current item of lower value
jl ∈ J whereas B chooses i ∈ I.
After the l−th choice from both A and B at pass l we may have:

(a1) A accepts so that everything depends on the decision taken by B,

(a2) A refuses so that both goes at pass l + 1-th.

In this way A (but a similar argument holds also for B) scans the vector
J from lower to higher values goods looking for the right opportunity to
perform a barter and having as the last choice the remaining good of highest
value. We recall indeed that at any pass both players may decide to prune
their own sets of goods.
In the case of sequential requests we have that the two players make the
choice one after the other according to an order that, at each step, depends
on a random device. In this case, therefore, the players can adopt strategies
similar to those we have seen for the simultaneous requests case but can try
to exploit the advantage of being second mover.
Let us suppose we are at a generic step where A moves as first and B as
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second. We consider B’s point of view but similar considerations hold also
for A’s point of view. B has ordered the goods of I in increasing order of
value. In this case we have:

- A chooses j ∈ J so that B is able to evaluate vB(j)

- B can choose i ∈ I so to get a high value of his utility uB(i, j) =
g(sB(i), vB(j)) but

- without hurting A since in that case A could refuse the barter.

We recall that a refusal may turn into the pruning of a set and so in a un-
favorable outcome for the requesting player that had requested the pruned
good. From these considerations we derive that the step-by-step strategy
that we have seen in the simultaneous requests case can be profitably used
also in this case.
Similar strategies can be conceived, with the proper modifications and adap-
tations, for the other three models of barter that we are going to describe in
the next two sections.

6.4 One-to-many and many-to-one barters

In these two symmetric cases one of the two actors has the possibility to
require one good whereas the other has the possibility to require a basket of
goods (that can even contain a single good) and so any subset of the goods
offered by the former. This kind of barter must be agreed on by both ac-
tors and can occur only if one of the two actor agrees to be offering a pool
of “light” goods whereas the other agrees to be offering a pool of “heavy”
goods.
The meaning of the terms “light” and “heavy” may depend on the application
and must be agreed on during a pre-barter phase by the actors themselves.
We remark how the adopted perspective (lack of any quantitative common
scale) turns into qualitative evaluations of the goods so that they are termed
light if they are assigned qualitatively low values whereas they are termed
heavy if they are assigned qualitatively high values.
The aim of this preliminary phase is to give one of the two actors the possi-
bility of asking for any set of goods whereas this same possibility is denied to
the other. If there is no agreement during this phase, three possibilities are
left: they may decide either to give up (so the bather process neither starts)
or to switch to a one-to-one barter (see section 6.1) or to a many-to-many
barter (see section 6.5).
If there is a pre-barter agreement we may have two symmetrical cases. In
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this section we are going to examine only the “one-to-many” case. In this
case we have:

1. A owns “light” goods and may require only a single good j ∈ J ,

2. B owns “heavy” goods and may require (at her free choice) a subset
Î0 ⊆ I of goods with |Î0| ≤ n,

and the two requests may be either simultaneous or sequential.
In the case of simultaneous requests both actors can evaluate their respec-
tive utilities, soon after the requests have been revealed, by using equivalent
relations to (5) and (6) (or also to (3) and (4)):

1. uA(Î0, j) = f(sA(j), vA(Î0))

2. uB(Î0, j) = g(sB(Î0), vB(j))

where both players use equations like (1) and (2) and the additivity hypoth-
esis.
Also in this case we can have the four cases we have seen in section 6.1. We
note, however, how in this case if, for instance, A refuses, using a rule such
as (7), he can either repeat his request (with B keeping fixed her request )
or can act as we are going to show in section 6.5. In the latter case indeed
A can partitions his goods in subsets that he is willing to barter, possibly
updating these subsets at every refusal. Except for this fact the barter goes
on as in the one − to − one case with simultaneous requests.
In the case of sequential requests the procedure does not use a chance
move to assign one of the two actors the right to move first but gives this
right to the actor that owns the pool of “light” goods. After this first move
the barter goes on as in the one − to − many case with sequential requests
but without any chance move and with the modification we have introduced
for the case of the refusal (see section 6.5).

6.5 Many-to-many barter

In this case A may chose and require any subset Ĵ0 ⊆ J with 1 ≤ |Ĵ0| ≤ m
of the goods of B whereas B may chose and require any subset Î0 ⊆ I
with 1 ≤ |Î0| ≤ n of the goods of A and the two requests may be either
simultaneous or sequential.
Also this kind of barter must be agreed on by both actors in a pre-barter
phase during which they both agree that in the course of the barter each of
them can ask for a subset of the goods of the other player.
Since also in this case we can have either simultaneous or sequential requests

16



the algorithms are basically the same that in cases of one-to-one barter. The
main differences are about:

(1) the use of the subsets,

(2) the way in which every case of refusal is managed.

As to the point (1) we note that in the algorithms we must replace single
elements with subsets of the pool of goods so that the evaluations must be
performed on such subsets by using equations (1) and (2) and so the addi-
tivity hypothesis.
As to the point (2) in the algorithms for the one-to-one barter the solution
we adopted was the possible pruning of the set of the goods from the refusing
actor (see the points 5 or 9 (b), (c) and (d) of the algorithms of section 6.2).
This solution cannot be applied in the present case since this policy could
empty one of the two initial pools or both in a few steps. To get a solution
in this case we can devise an independent partitioning strategy of the two
sets of goods from both actors A and B.
In this case at the very start of the barter the two players show each other
their sets of goods so to hide their preferences that are partially revealed
only after each refusal. After every (possibly double) refusal the player who
refuses (be it A) uses the procedure partitioningA(I) to split I in labeled
disjoint subsets so to make clear to B which are the subsets of goods that he
is inclined to barter at that stage. The case of B is fully symmetric. We note
that under the additivity hypothesis the sets I and J can be partitioned at
will by their respective owner.
This solution is implemented by replacing all the occurrences of the assign-
ment instructions I = I \ {i} and J = J \ {j} respectively with the following
assignments:

I = partitioningA(I) = {Ii | ∪i Ii = I Ii ∩ Ij = ∅ ∀ i 6= j} (9)

J = partitioningB(J) = {Ji | ∪i Ji = J Ji ∩ Jj = ∅ ∀ i 6= j} (10)

so to replace a flat set with a set of disjoint labeled subsets.
In this case, referring to A, we have that if A refuses the barter proposed by
B he can either repeat his request with B keeping fixed her request or he
can partition his set in subsets as collective goods that he is willing to barter
with subsets of the goods of B. The case of B is fully symmetrical.
We recall how the barter in this case may evolve as follows. At the very start
the two players propose each other their sets of goods. Then we can have
the following cases.
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1. Both players make a request and both accept. In this easy case the
barter is successful and ends.

2. Both players make a request but one accepts whereas the other refuses.
The refusing player has the possibility to rearrange his set of goods.
This rearrangement is a partitioning of the player’s set of goods ac-
cording to the rules (9) or (10) so that the other player, at the next
step, knows which are the subsets that can enter successfully into a
barter.

3. Both players make a request and both refuses. The rearrangement is
performed by both players at the same time.

For further details we refer to section 6.2.

7 The basic criteria

In this section we introduce some basic criteria (from Brams and Taylor
(1996), Brams and Taylor (1999) and Young (1994)) that allow us to frame
the models we propose in a general context. Our aim is twofold: define
“objective” criteria and use them to evaluate the goodness of the proposed
models of barter.
Our main aim is to characterize fair barters. As a measure of fairness we refer
to Brams and Taylor (1999) where a procedure is defined as fair if it satis-
fies the criteria of envy-freeness, equitability and [Pareto] efficiency so
that each player can achieve a certain level of satisfaction by using a proper
strategy. Since this goal is private of each player we say that the level of
satisfaction of each player is fully independent from the level of satisfaction
of the every other party/player.
In our context we have two players each possessing a pool of private het-
erogeneous goods and each aiming at a barter that possibly satisfies all the
aforesaid criteria so to be fair.
Generally speaking, we say that an agreement turns into an allocation of the
goods between the players that is envy-free if (Brams and Taylor (1996),
Brams and Taylor (1999) and Young (1994)) none of the actors involved in
that agreement would prefer somebody’s else portion, how it derives to him
from the agreement, to his own. If an agreement involves the sharing of ben-
efits it is considered envy-free if none of the participants believes his share
to be lower than somebody’s else share, whereas if it involves the share of
burdens or chores it is considered envy-free if none of the participants be-
lieves his share to be greater that somebody’s else share. In other words a
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procedure is envy-free if every player thinks to have received a portion that
is at least tied for the biggest (goods or benefits) or for the lowest (burdens
or chores).
If an allocation is envy-free then (Brams and Taylor (1999)) it is propor-
tional (so that each of the n players thinks to have received at least 1/n of
the total value) but the converse is true only if n = 2 (as in our case).
As to equitability in the case of two players (and therefore in our case) we
say (according to Brams and Taylor (1999)) that an allocation is equitable if
each player thinks he has received a portion that is worth the same in one’s
evaluation as the other’s portion in the other’s evaluation. It is easy to see
how equitability is generally hard to ascertain (Brams and Taylor (1996) and
Brams and Taylor (1999)) since it involves inter personal comparisons of util-
ities. In our context we tried to side step the problem by using a definition
that considers both utilities with respect to the same player.
Last but not least, as to efficiency, we say (according to Brams and Taylor
(1999)) that an allocation is efficient if there is no other allocation where
one of the players is better off and none of them is worse off. In general
terms efficiency may be incompatible with envy-freeness but in the case of
two players where we have compatibility.
Such criteria, in order to be used in our context of two players without either
any common scale or any numerary good, must be adapted or must be rede-
fined someway so to be in agreement either with the essence of their classical
definitions or with intuition or with both. In what follows we are going to
make use of a general notation that must be specialized in the single models
we have already presented in the proper past sections.
We start with envy-freeness. If we denote with3,4 aA(·) and lA(·) the val-
ues in A’s opinion and evaluation, respectively, of what A obtains and loses
from the barter (and with aB(·) and lB(·) the same quantities for player B)
we say that the allocation deriving from a barter (or a barter tout court) is

3With · we denote a generic set of bartered goods. This set may contain also a single
element.

4In the one-to-one barter model, for instance, we have that:

1. aA(·) = sA(j)

2. lA(·) = vA(i)

3. aA(·) = sB(i)

4. lB(·) = vB(j)

whereas in the other cases the single elements must be replaced by the properly defined
subsets.
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envy-free if we have for A:
aA(·)

lA(·)
≥ 1 (11)

and for B:
aB(·)

lB(·)
≥ 1 (12)

As we have already seen from section 6 on, if a barter actually occurs it
is guaranteed to be envy-free. Relation (11) means that the value that A
assigns to what he gets from the barter is at least equal to the value that
A assigns to what he loses from the barter. We assign a similar meaning to
relation (12) with regard to B.
Since, in our case of two players, we want to maintain the equivalence between
proportionality and envy-freeness we must give a definition that mirrors the
classical definition of proportionality and reflects this equivalence.
For player A we may define a barter as proportional if it satisfies the following
condition:

aA(·)

aA(·) + lA(·)
≥

lA(·)

aA(·) + lA(·)
(13)

so that the fractional value of what A gets from the barter is at least equal
to that of what he loses from it. We remark that aA(·) + lA(·) represents the
value that A assigns to the bartered goods.
A similar condition holds also for B:

aB(·)

aB(·) + lB(·)
≥

lB(·)

aB(·) + lB(·)
(14)

We say that a barter is proportional if both (13) and (14) hold.
It is easy to see how from equation (13) it is possible to derive equation (11)
and vice versa. The same holds also for equations (14) and (12).
As to equitability we must adapt its definition to our framework in the
following way. We need firstly some definitions. We define (with respect to
the occurrence of the barter itself) I and I ′, respectively, as the ex-ante and
ex-post sets of goods of A and J and J ′, respectively, as the ex-ante and
ex-post sets of goods of B. If (i, j) denotes the bartered goods (i from A to
B and j from B to A) in a one-to-one barter, we have:

I ′ = I \ {i} ∪ {j} (15)

J ′ = J \ {j} ∪ {i} (16)

In the case of other kind of barters involving also subsets of goods we must
appropriately replace single goods with subsets.
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On the sets I ′ and J ′ we define, for the player A, the quantities that repre-
sent the values for A himself, after the bater, of his goods and B’s goods,
respectively, as aA(I ′) and lA(J ′). We therefore define a barter as equitable
for A if the fractional value of what he gets is at least equal to the fractional
value he gives to what he loses from the barter or (see the Appendix):

aA(j)

aA(I ′)
≥

lA(i)

aA(I)
(17)

On the other hand the barter is equitable for B if, using the corresponding
quantities we used in equation (17) but referred to player B, we have (also
in this case see the Appendix):

aB(i)

aB(J ′)
≥

lB(j)

aB(J)
(18)

If both relations hold we say that the barter is equitable. We remark that
we are under an additivity hypothesis where the value of a set is given by
the sum of the values of its elements so that the value that a player assigns
to a set, such as I ′ or J ′, is the sum of the values that the player assigns to
the elements of that set.
As to efficiency we say that a barter of the two goods (i, j) (or of the one-
to-one type) is efficient if there is not another pair of goods (i′, j′) that gives
at least to one player a better result without hurting the other.
For players A and B this means that there is no barter (i′, j′) that satisfies
the following inequalities:

aA(j)

lA(i)
≤

aA(j′)

lA(i′)
(19)

aB(i)

lB(j)
≤

aB(i′)

lB(j′)
(20)

with at least one of them satisfied with the < relation.
In such relations the pairs lA(i), aA(j) and and lA(i′), aA(j′) are related to A
and are associated respectively to (i, j) and to (i′, j′). Similar quantities are
defined also for player B.
We remark how we are under the hypothesis that at least one of the following
inequalities hold:

1. i′ 6= i

2. j′ 6= j
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Also in this case if the barter involves subsets of goods such relations must
be modified by replacing single goods with properly defined subsets of goods.
We note that if the barter is such that both players attain:

aAmax

lAmin

(21)

and
aBmax

lBmin

(22)

we are sure to have an efficient barter whereas if both attain:

aAmin

lAmax

(23)

and
aBmin

lBmax

(24)

we are sure that the barter is surely inefficient (see the Appendix). In (21)
and (23) with respectively aAmax

and aAmin
≤ aAmax

we denote the maximum
and minimum values that A assigns to the goods he can get from the barter
and with lAmax

≥ lAmin
and lAmin

we denote the maximum and minimum
values that A assigns to the goods he may lose from the barter. In (22) and
(24) we have the same quantities assigned to the corresponding goods by
player B.
We remark how conditions (21), (22), (23) and (24) are sufficient conditions
of efficiency and do not represent effective strategies for each player since
condition (21), for instance, has a quantity that depends on the choice of A
at the numerator but a quantity that depends on the choice of B as denom-
inator.
Last but not least, we note, from the equations (19) and (20), how efficiency
of a barter cannot be always guaranteed and must be verified case by case.

8 Fairness of the proposed solutions

In this section we aim at verifying if the solutions we have proposed in
the previous sections satisfy the criteria we stated in section 7 so that we can
say whether they produce fair barters or not.
We start with envy-freeness in the one-to-one barter. In this case a barter
occurs if and only if both A and B get a non negative utility form it or if
both players think each of them gets no less than one looses. This turns,
in the simplest case, in the following conditions (involving strictly positive
quantities):
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(b1) sA(j) − vA(i) ≥ 0 or sA(j)
vA(i)

≥ 1

(b2) sB(i) − vB(j) ≥ 0 or sB(i)
vB(j)

≥ 1

so that (b1) coincides with relation (11) and (b2) coincides with relation (12).
In this way we can derive that if a barter occurs then it is guaranteed to
be envy-free (and therefore proportional, since we have maintained the
equivalence between the two concepts in the current case of two players).
In more complex settings things can be more tricky to prove but, following
similar guidelines, it is possible to show that whenever a barter occurs it is
guaranteed to be envy-free.
We recall that in every case where a set of goods is involved we can evaluate
its worth by using the additivity hypothesis.
As to equitability (see relations (17) and (18)) we refer only to player A
since the case of B is completely analogous. In this case we remark that (see
also the Appendix):

(eq1) aA(j) < aA(I ′)

(eq2) lA(i) < aA(I)

From (eq1) and (eq2) we can easily derive aA(j)lA(i) < aA(I ′)aA(I) or:

aA(I ′)

aA(j)
>

lA(i)

aA(I)
(25)

On the other hand from (eq1) it is possible to derive (see the Appendix):

aA(I ′)

aA(j)
>

aA(j)

aA(I ′)
(26)

If we compare relations (25) and (26) with relation (17) we can easily see
that there may be possibilities to have an equitable barter for A and, in a
similar way, an equitable barter for B so to get an equitable barter.
For A this occurs if we get:

aA(I ′)

aA(j)
>

aA(j)

aA(I ′)
>

lA(i)

aA(I)
(27)

since the lrightmost inequality is equivalent to relation (17).
In order for this to happen we must have:

aA(j)aA(I) > aA(I ′)lA(i) (28)
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or (see also the Appendix):

aA(j)aA(i) = aA(j)lA(i)α > aA(I ′)lA(i) (29)

so that we need to find the minimum value α > 1 such that:

αaA(j) > aA(I ′) (30)

holds. Instead than using (eq1) we could have used (eq2) so to derive the
corresponding necessary value for β (see the Appendix).
In this way, since we do not use at all the condition of envy-freeness, we
establish an independence between the two concepts but for the fact that if a
barter is not envy-free it does not occur so that it is not possible to evaluate
its degree of equitability.
Last but not least we deal with the verification of the efficiency of a barter
(i, j) in the case of a one-to-one barter. In this case we must verify that there
is not another barter (i′, j′) such that the relations (19) and (20) hold.
Even if A choses ĵ (see section 6.3) B could have chosen i′ such that lA(i′) <
lA(i) so that relation (19) (with j = ĵ) would be verified implying that the
current barter (i, ĵ) is not efficient.
Similar considerations hold also for B. From these considerations we derive
that efficiency for both players can be verified only a posteriori. If it is
violated we derive inefficiency from which both actors may derive a regret
that could be (at least partially) compensated through repeated barters (see
section 9).
Summing up, we can say that, in the case of one-to-one barter:

- envy-freeness is guaranteed every time a barter occurs,

- equitability may be guaranteed at every barter,

- efficiency must be verified a posteriori at every barter,

so that the fairness of a barter is a by-product of the barter process itself
and is not a-priori guaranteed by its structure.
Similar considerations hold also for the other three models.

9 Extensions

The planned extensions include the possibility of (1) repeated barter
involving (2) even more than two players and (3) the relaxing of addi-
tivity.
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If we allow the execution of repeated barters we must introduce and man-
age the possibility of the retaliations between the players from one barter
session to the following sessions and how the pool of goods are defined
and/or modified between consecutive barter sessions. In the proposed algo-
rithms (currently stateless) we can deal with the presence of the retaliation
through state variables that account for past attitudes of the players (Ax-
elrod (1985) and Axelrod (1997)).
If we allow the presence of more than two actors we must introduce the
mechanisms for the execution of parallel and concurrent negotiations.
If, for instance, we have three actors A, B and C we can have (in the case of
one-to-one barter with simultaneous requests) the following possibilities.

1. Circular one-to-one requests where, for instance, A makes a request to
B, B to C and C to A.

2. One-to-many requests so that A makes a request to B and C, B makes
a request to A and C and C makes a request to B and A.

In the former case there can be no conflict/concurrence whereas in the latter
it can occur that two actors ask the same item to the third causing a conflict
that must be resolved some way.
In both cases we have:

1. the barter occurs if and only if every actor accepts what is proposed
by the others;

2. if all actors refuse the others’ proposals a rearrangement (that depends
on the nature of the barter) of the respective pools occurs followed by
a repetition of the barter;

3. in all the other cases the procedure must allow the refusing actors (two
at the most) to repeat their request.

Obviously in all the other cases the interactions tend to be more and more
complex. Analysis of such extensions can be carried out using the tools sug-
gested in Myerson (1991), section 9.5 where graphical cooperation structures

are introduced and used.
As a last extension we mention the relaxing of additivity. Additivity is
undoubtedly a simplifying assumption and is based on the hypothesis of the
relative independence of the goods that the actors want to barter among
themselves. This hypothesis in many cases is not justified since functional
links, for instance, make the goods acquire a value when and only when they
are properly combined. In such cases the goods must be bartered as dynam-
ically chosen subsets and cannot enter properly in a one-to-one barter. The
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issue is very complex (so complex that Brams and Taylor (1996) and Brams
and Taylor (1999) deal with it only marginally) and here we only make some
basic comments and considerations and present a toy example.
We recall that player A choses among the goods of B and vice versa. What
A loses, owing to the choice performed by B, belongs to the set I and is
evaluated according to the values of vA and what he gets belongs to J and
is evaluated according to the values of sA. Similar considerations hold also
for player B.
Up to now we have supposed that A evaluates subsets of the goods involved
in the barter with additive rules and that the same holds also for B. From
this point on we are going to consider both subadditivity and superadditivity
for player A but similar considerations hold also for player B.
We note that as to sA subadditivity (or the case where the value of the set is
lower than the sum of the values of its composing elements) is meaningless
since in this case A would be better off by simply asking for a single good
from B. On the other hand subadditivity on vA is highly implausible since
there is no reason to believe that A would bring to the barter goods that
taken as sets are worth less than the single goods.
From these considerations we derive that:

(1) A sees J in a superadditive way by hypothesis,

(2) A sees I in a superadditive way as his worst case,

and similar considerations hold also for the player B.
As to (1) this means that ∀K ⊆ J :

sA(K) ≥
∑

jk∈K

sA(jk) (31)

A is of course more interested in subsets K ⊆ J such that:

sA(K) >
∑

jk∈K

sA(jk) (32)

We call the subsets for which relation (31) holds the superadditive subsets
of J and those for which relation (32) holds the strictly superadditive
subsets of J .
As to (2) we recall that I contains the goods that A loses in the barter so
that the condition:

vA(H) ≥
∑

ih∈H

vA(ih) (33)

(for H ⊆ I) represents a worst condition for A with regard to the additive
case in the evaluation of his utility in the one-to-many and many-to-many
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A vs. B additive superadditive
additive one-to-one one-to-many

superadditive many-to-one many-to-many

Table 1: Possible types for the ways in which each player evaluates their

requested goods

barter cases. At this point we have the cases of Table 1 where we show the
possible typologies of the players with regard to the values sA for A and sB

for B.
From this perspective, the fact that A is superadditive means that at least
relation (31) holds and the same is true for B if she is superadditive.
From that Table we se that if both players are superadditive they are more
willing to agree on a many-to-many barter, if they are both additive they
may prefer a one-to-one barter whereas if one is superadditive and the other
is additive they may agree on either a many-to-one or a one-to-many barter
depending on which is the superadditive player.
In the closing part of this section we are going to deal only with the many-
to-many barter case with simultaneous requests where A asks for the
goods of the set J0 ⊆ J and loses the goods of the set I0 ⊆ I whereas B asks
for the goods of the set I0 ⊆ I and loses the goods of the set J0 ⊆ J .
Also in this case the core of the algorithms (see sections 6.2 and 6.5) is
composed by the four cases that may occur at each pass:

(a) both A and B accepts the proposed barter so that the process ends
with a success;

(b) A accepts but B refuses;

(c) A refuses whereas B accepts;

(d) both A and B refuse.

In the symmetric cases (b) and (c) the accepting player keeps his request
fixed while the refusing player has two possible mutually exclusive strategies:

- can repeat his choice;

- can partition (on the first refusal) or rearrange a partitioning (on suc-
cessive refusals) his set of goods so that another round may occur.

In the case (d) each player has both the repeater and the modifier strategies
at his disposal.
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The fact that a player rearranges in some way his goods through the definition
of variable partitions interfere with the superadditive evaluations of the other
player and this may cause both players agree that there is no possibility
for the process to go on (see the step (2)(a) of the simultaneous requests
algorithm of section 6.2).
To make things more concrete we now make a toy example. We suppose to
have a player A with his set of goods I = {i1, i2, i3, i4, i5} and another player
B with her set of goods J = {j1, j2, j3, j4, j5, j6}.
We suppose that both A and B have [strictly] superadditive evaluations of
the involved goods (so that relation (31) and possibly relation (32) hold) and
both are interested in a many-to-many barter and agree to carry it on.
Such a barter may therefore involve not all the possible subsets of I and J
but only some of them so that:

- B can see I as made of the following set of [possibly strictly] superad-
ditive subsets without A knowing this:

I = {I1, I2, I3, I4} = {{i1, i2}, {i1, i3, i4}, {i4, i5}, {i2, i3, i5}} (34)

- A can see J as made of the following set of [possibly strictly] superad-
ditive subsets without B knowing this:

J = {J1, J2, J3, J4, J5} = (35)

{{j1, j2, j3}, {j1, j3, j4}, {j4, j5}, {j3, j5, j6}}, {j2, j3, j5, j6}}

At the very start A and B agree on a many-to-many barter with, for instance,
simultaneous requests. Both A and B make their requests and evaluate their
utilities so to decide if each accepts or refuses.
If both players accept the barter ends with a success.
If only one player refuses, only the refusing player can either reiterate the
request or partition his set of goods so to make clear to the other which
subsets he is willing to barter. The players have the same possibilities also
in the case of double refusal.
In this way the partitioning may conflict with the way in which each player
sees the goods of the other so that either they are able to fix this mismatch,
during the next phases, in order to attain the barter or both declare that no
barter is possible and so the barter ends with a failure. For the fine grain
structure of the algorithm we refer to the sections 6.2 and 6.5.
In our example we could have:

(1) A asks for J1 and B asks for I2 so the currently tentative barter is
(I2, J1);

28



(2) A refuses and B accepts;

(3) A may change his request as J3 so the currently tentative barter be-
comes (I2, J3);

(4) B refuses and partitions J as J = {J ′, J ′′} = {{j1, j2, j4}{j3, j5, j6}};

(5a) A asks for J ′ and both accepts so the barter occurs;

(5b) A refuses so that both refuse and decide that no barter is possible;

(5c) A may change his request as J5 so the currently tentative barter be-
comes (I2, J5);

(5d) B refuses and partitions J as J = {J ′, J ′′} = {{j1, j3, j4}{j2, j5, j6}}
and so on until either (5a) or (5b) occur.

We remark how at step (3) we have sA(J1) = sA(J3) but at step (4) we have
vB(J1) < vB(J3) so that A accepts but B refuses.

10 Concluding remarks and future plans

In this paper we have introduced a family of barter models between two
actors that execute a one shot barter through which they exchange, according
to one among various mechanisms, the goods of two separate and privately
owned pools. The various models have been introduced under the hypothesis
of additivity according to which the value of a set is given by the sum of the
values of its composing elements.
In the paper we presented the basic algorithms for the one-to-one barter, we
showed the possible uses of the proposed models, we verified if some criteria
of fairness are satisfied by the proposed models or not and we also introduced
some extensions.
The main extension we presented is the relaxing of the additivity hypothesis
with the adoption of superadditive sets where the value of a set is at least
equal to the sum of the values of its elements. In this way we model functional
relations among the goods that increase their joint values.
This is an introductory paper so a lot of formalization is still to be done for
what concerns both the presented models, their extensions and the possible
uses in concrete cases .
We need indeed to examine more formally the basic models of one shot
barter; to improve the proposed algorithms; to examine the properties of
such algorithms and their plausibility and, last but not least, to analyze and
formalize the extensions we essentially only listed in section 9.
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Appendix

In this section we provide formal argumentations of some of the relations
we have introduced and used in the previous sections.
As to the following relation:

aA(j)

aA(I ′)
≥

lA(i)

aA(I)
(36)

we underline that in the one-to-one barter case we have I ′ = I \ {i} ∪ {j} so
that the two sets have the same cardinality but different values for player A.
In this case we have, under the additivity hypothesis:

aA(I ′) = aA(I) − lA(i) + aA(j). (37)

or:
vA(I ′) = vA(I) − vA(i) + sA(j). (38)

From the structure of the sets I ′ and I we may also derive that:

(1app) aA(j) < aA(I ′) since j ∈ I ′ so that we can write aA(I ′) = αaA(j) with
α > 1;

(2app) lA(i) < aA(I) since i ∈ I so that we can write aA(I) = βlA(i) with
β > 1.

From the relation aA(j) < aA(I ′) we can easily derive a2
A(j) < a2

A(I ′) or:

aA(j)

aA(I ′)
≤

aA(I ′)

aA(j)
(39)

In relation (39) we have used ≤ since if x < y then x ≤ y but not vice versa.
Such relations have been used in the discussion of the equitability for player
A.
Similar considerations hold also for the analogous relation of player B:

aB(i)

aB(J ′)
≥

lB(j)

aB(J)
(40)

For what concerns relations (21), (23) for player A we note that (since all
the involved quantities assume only strictly positive values) we have:

- from aAmax
≥ aA(j) for each j ∈ J and lA(i) ≥ lAmin

for each i ∈ I by
multiplying side by side we get aAmax

lA(i) ≥ aA(j)lAmin
or:

aAmax

lAmin

≥
aA(j)

lA(i)
(41)
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- from aAmin
≤ aA(j) for each j ∈ J and lA(i) ≤ lAmax

for each i ∈ I by
multiplying side by side we get aAmin

lA(i) ≤ aA(j)lAmax
or:

aAmin

lAmax

≤
aA(j)

lA(i)
(42)

With similar arguments we can justify relations (22) and (24) for player B.

References
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