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Abstract

The present Technical Report contains two papers that have been ac-
cepted at the S.I.N.G. Conference, Wroclaw, Poland 26-28 June 2008.
Both papers have been also presented in seminars at the Computer Sci-
ence Department, the former on June 3 2008 and the latter on January
23 2008.
In the first paper we present an application of the auction mechanisms to
the allocation of a chore to one of the bidders belonging to a given set B.
We also discuss an extension of such an application to the allocation of a
set of chores among an initial set of bidders B.
The paper aims at showing how the classic auction mechanism can be
modified and adapted for the allocation of bads (chores) instead of the
allocation of goods.
The paper opens with some theoretical discussions of the characteristics
and properties of some types of auctions then we present the basic moti-
vations of the types of auction we propose. The following sections present
the algorithm, the rules for the compensations, the strategies, the pre-
ferred compensation schemes and the possible extensions.
In the second paper we present a family of models that involve a pair of
actors that aim at bartering the goods from two privately owned pools
of heterogeneous goods. The barter can occur only once or can be a re-
peated process with possibilities of retaliation and can involve either a
single good or a basket of goods from each actor. We are indeed going
to examine both the basic symmetric model (one-to-one barter) and its
extensions (one-to-many, many-to-one and many-to-many barters), none
of which reproduces a symmetric situation.
The paper is structured as follows. We start with some basic criteria and
a brief description of some classical solutions, then we give the basic mo-
tivation of the models followed by some definitions and then switch to the
descriptions of the models in an increasing complexity order. The paper
closes with a section devoted to some applications, some sections devoted
to two more “hybrid” models and a section devoted to conclusions and
future plans.
Reports of errors and inaccuracies are gratefully appreciated.
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1 Using auctions to allocate chores

In this paper we present an application of the auction mechanisms to the
allocation of a chore to one of the bidders belonging to a given set B. We also
discuss an extension of such an application to the allocation of a set of chores
among an initial set of bidders B.
The paper aims at showing how the classic auction mechanism can be modified
and adapted for the allocation of bads (chores) instead of the allocation of
goods.
The paper opens with some theoretical discussions of the characteristics and
properties of some types of auctions then we present the basic motivations of the
types of auction we propose. The following sections present the algorithm, the
rules for the compensations, the strategies, the preferred compensation schemes
and the possible extensions.
The paper closes with a section devoted to conclusions and future plans.

1.1 The theoretical background

In this section we present some theoretical considerations about a set of clas-
sical auction mechanisms as well as some basic considerations about the notion
of chore and its main properties.
As to the auctions (Klemperer (1999), Wooldridge (2002), Milgrom (2004), Frag-
nelli (2005a) and Patrone (2006)) we note how they are usually used for the
allocation of goods so we are going to start with this case. A perspective that
we fully disregard in this paper is how auctions can be used to get a fair division
of goods (Brams and Taylor (1996)).
A good has a (not only monetary) value for both a seller and a buyer and
this value may turn into the sum of money the seller gets from the buyer if the
sale occurs. The seller is characterized by the minimum amount of money he is
willing to accept for the good (ms) and the buyer by the maximum amount of
money he is willing to pay for the same good (mb). It is easy to establish that
the sale occurs only if ms ≤ mb so that mb − ms is the so called negotiation
space.
We introduce at this point the main characteristics of the auctions so to define
a not fully exhaustive set of classical auctions types for the exchange of goods.
Auctions (Klemperer (1999) and Wooldridge (2002), chapter 7) are character-
ized by a set of factors that can influence both the protocol and the strategy

the agents use. Agents are the auctioneer and the bidders: the auctioneer
tries to allocate a good to one of the bidders using an auction as an allocation
mechanism.
Among the aforesaid factors we cite the value of the auctioned good that can
be either private of each bidder, common to all the bidders or correlated

if for each bidders it depends on the use the bidder is going to make with the
good after having obtained it.
The other factors are how the winner is determined, whether the bids of the
bidders are common knowledge among them or not and the number of rounds
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the bidders have for bidding.
The winner is the bidder who gets the auctioned good. In general the winner
is the bidder who bids the most and that can pay such sum (first-price auction)
or a sum equal to the second highest bid (second-price auction). If the bids are
common knowledge among the bidders we speak of open cry auctions other-
wise we speak of sealed-bid auctions. As to the number of rounds if there is
only one round for bidding we speak of one shot auction whereas if the auction
is based on a succession of rounds (or it is multi shot) it can be ascending if
the price starts low (possibly with a lower bound or reservation price) and rises
up or descending if the price starts high and then descends up to a minimum
value.
In the following subsections we are going to examine very briefly the following
types of auctions: English auctions, Dutch auctions, First price auctions, Sec-
ond price or Vickrey auctions. Of each type we describe the main features and
state if bidders have an optimal strategy or not. We also devote a subsection to
the definition of the concept of chore.
As to the auctioneer his goal is to maximize the revenue. It is possible to show1

that (Fragnelli (2005a)):

1. in case of private evaluations we have Englishauction ∼ Dutchauction ∼
First price auction ∼ Second price auction

2. in case of common evaluations we have English auction ≻
Second price auction ≻ Dutch auction ∼ First price auction

As to the bidders an optimal strategy (Fragnelli (2005a)) is a strategy that
guarantees a bidder the highest expected outcome. We comment on this for
each type of auction we deal with2.

1.1.1 English auctions

In this case we have first-price, open cry ascending auctions where bidders
make their public bids and the one who makes the current highest bid gets the
auctioned good. The auctioneer starts from a low price (or reservation price that
may be equal to 0) and the bidders begin offering higher and higher bids. The
last offering bidder is the winner of the auction and the price he pays is the bid
he made. We disregard many details and do not make any consideration about
the so called winner’s course or the over evaluation of the good from the winner,
further details on Wooldridge (2002), Fragnelli (2005a) and Patrone (2006). We
only note that a dominant strategy is to bid a little more than the current bid
and stop when the price reaches one bidder’s evaluation of the auctioned good.

1We use ≻ to denote a greater expected revenue and ∼ to denote the same expected
revenue.

2We note that the naming convention we use is not universally accepted since, for instance,
in Klemperer (2002) page 181 what we call a sealed-bid auction is termed Dutch auction.
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1.1.2 Dutch auctions

Dutch auctions are open cry descending auctions where the price starts high
and then descends up to a lower bound. At any moment any of the bidders
can call stop and get the good for that current price. Winner’s course can be
present also in this case but in this case we have no optimal strategy.

1.1.3 First price auctions

In this case we have a sealed bid, one shot auction where the bidders submit
a bid for the auctioned good. The bidder who makes the highest bid wins that
good and pays his own bid. As a tentative dominant strategy we have that each
bidder must bid a little less than his own evaluation of the good, how much less
depends on the bids of the other bidders. There is no general rule and so there
is in general no optimal strategy. The sure thing is that there is no worth in
bidding more than one’s own evaluation of the auctioned good.

1.1.4 Second price or Vickrey auctions

In this case we have a one-shot, sealed bid auction where the bidder who
makes the highest bid wins the good but, for getting it, pays only the second
highest bid. In this kind of auction every bidder’s dominant strategy is bidding
his true evaluation of the good. By bidding more, a bidder has higher probabil-
ities to get the good but runs the risk of paying for it a price greater that his
evaluation of the good. Bidding less a bidder has lower probabilities of winning
the good and, if he wins, he must pay the same sum as if he had made a bid
equal to his true evaluation.
This kind of auction makes it possible the so called antisocial behaviour since
a bidder can act spitefully and bid more than his true evaluation but less that
the highest bid so to force the winner to pay a higher price. Of course this is a
risky attitude and needs a strong knowledge of the other bidders’ bids.

1.1.5 Other types of auctions

Other types of auctions include all the variations of first/second type auc-
tions, so we can imagine n-th price auctions with n > 2, and all pay auctions, a
variation of first price auction where the bidder who bids more gets the goods
but all the bidders pay the bid they made, and so on.
The treatment of all these other types of auction is outside the scope of the
present paper. For further details see Klemperer (2002). A very brief treatment
of some of the formal properties of auctions (such as the possibilities of lies and
collusions among the bidders) will be made in section 1.2. For further details
see Wooldridge (2002), chapter 7, and Klemperer (2002).
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1.1.6 The concept of chore

The other concept we introduce is the concept of chore. With this term
we denote “a difficult or disagreeable task” (from the Merriam-Webster Online
Dictionary). In this case the seller of a chore (we denote him as the auctioneer)
is willing to pay somebody else (a bidder or a server) to carry out the chore.
We note that the possible servers must have the possibility to refuse such a
chore even if such possibility may have some cost. From its definition we see
how the chore has a negative value for both the auctioneer and each bidder so
that we can say that a chore is something that nobody wants.
We can say that each server is characterized by an evaluation of a chore under
the form of:

1. either a sum that he is willing to pay for not performing it,

2. or a sum that he is willing to get for performing it.

The former parameter is at the core of the mechanism we propose from section
1.4 to section 1.8 whereas the latter is used in the mechanism we propose in
section 1.11.

1.1.7 Modified auctions

We extend the auction mechanism so to have an auctioneer that proposes a
chore to a set of bidders.
As to the bidders side we can devise one of the following three mutually exclusive
mechanisms, the first two of multi shots type and the latter of one shot type:

1. the auctioneer proposes a chore together with an increasing amount of
money to the bidders until one of them accepts the chore;

2. the auctioneer proposes a chore together with a starting amount of money
to the bidders that start bidding lower and lower amounts of money until
one of them stops the descent and gets the chore;

3. the auctioneer proposes a chore, each of the bidders makes a bid and the
one who bids less gets the chore.

Within this framework we can imagine the point by point corresponding situ-
ations involving an auctioneer who wants to assign a chore to a bidder from a
set B.

1. The auctioneer offers the chore and a sum of money m and raises the offer
(up to an upper bound M) until when one of the bidders accepts it and
gets both the chore and the money. The auction ends if either one of
the bidders calls “stop” or if the auctioneer reaches M without none of
the bidders calling “stop”. In the latter case we have a void auction sale,
though this is not in the best interest of the auctioneer. The auctioneer
can avoid this by properly selecting the bidders that attend the auction.
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2. The auctioneer offers the chore and fixes a sum of money L. The bidders
start making lower and lower bids. The bidder who bid less gets the chore
and the money. Of course the auctioneer has no lower bound. Under the
hypothesis that the bidders are not willing to pay for getting the chore we
can suppose a lower bound l = 0. If this hypothesis is removed we can, at
least theoretically, have l = −∞. It is possible to have a void auction sale
if no bidders accepts the initial value L. The auctioneer can avoid this by
fixing a high enough value L.

3. The auctioneer offers the chore and the bidders bid money for not getting
it under the proviso that the one who bids less will get the chore whereas
the bids of the others will be used (in a way to be specified) to form a
monetary compensation for the loser. Also in this case it is possible to
have a void auction sale, see section 1.4 for further details, though this is
not in the best interest of the auctioneer.

In the first case the auctioneer has a maximum value M he is willing to pay for
having somebody else carry out the chore otherwise he can either give up with
the chore, choose a higher value of M or repeat the auction with a different (new
or wider) set of bidders. This type of auction is a sort of Dutch auction with
negative prices paid by the bidders to get the chore. We are going to examine
it in some detail in section 1.11.
In the second case the bidders are influenced by the value of L that can act as
a threshold since if it is too low none of them will be willing to bid. This case is
as if the bidders start bidding from −L and raise their bids up to −l so that the
one who bids the most gets the chore and pays that negative sum of money. In
this case we have a sort of English auction with negative bids that we are not
going to deal with in this paper.
The last case will be fully dealt with in the present paper, starting from section
1.4.

1.2 Performance and design criteria

In this section we introduce a small set of performance criteria and de-

sign criteria that can be applied to mechanism design (Rapoprt (1989), My-
erson (1991), Wooldridge (2002), Klemperer (2002) and Patrone (2006)).
As to the performance criteria we use:

1. guaranteed success,

2. Pareto efficiency,

3. individual rationality,

4. stability,

5. simplicity.
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We say that a mechanism guarantees success if its goal is guaranteed to be
reached in a finite amount of time whereas one of its outcomes is Pareto ef-

ficient if there is no other outcome where one of the participants is better off
while all the others are no worse off. Success requires termination (or the fact
that any process based on a mechanism ends in a finite time) but in many cases
we can have mechanisms that terminate without any guarantee of success.
Individual rationality means that following the rules of a mechanism is in the
best interests of the participants. This is a key parameter since if it is absent
potential participants have no incentive in participating. Stability means that
a mechanism has incentives for participants to behave in a certain way whereas
simplicity means that such a way is obvious to the participants themselves.
Our aim is to check if the auction mechanisms we propose satisfy or not those
performance criteria and, if it is the case, why some of them are violated.
As to the design criteria (Klemperer (2002)) we cannot use the possibility of

collusions or the entry deterrence or the predation or similar parameters
that refer to the bidders with regard to the auctioneer since in the mechanism we
propose (from section 1.4 on) bidders play against each other and any collusion
(for instance) turns in a redistribution of money among the bidders themselves
without any involvement (as to possible losses) of the auctioneer.
The only design criterion we can introduce involves the strategies that the auc-
tioneer can adopt in fixing the fee (see section 1.4.2). Similar considerations
hold for what concerns the profitability of the bidders to bid untruthfully (see
section 1.7). For further and more targeted comments see section 1.8.
We end this section with some comments about social welfare. As to this
point we note how we may define it either from an utilitarian point of view (as
the sum of the welfare of the individuals) or from an egalitarian point of view
(as the welfare of the worse off individual). In both cases what we want is to
maximize such social welfare.

1.3 The framing situation

The mechanism we propose in this paper (from section 1.4 to section 1.8) is
inspired by the following situation.
We have an authority (commissioning authority) that wants to find a place
where to implement a controversial plant such as an incinerator, a dumping
ground, a heavy impact industrial plant or something like that. The essential
feature is that the planned infrastructure is something that nobody wants but
whose services, if the infrastructure is effectively implemented, may be used
by a wide group of other authorities. From this perspective it could also be a
commercial port or a marina or an airport. The discriminating criterion is that
the object of the agreement causes problems mainly to the accepting authority
but has a use value for possibly that authority also and for a wider group of
authorities that may include also the commissioning authority. We therefore
explicitly disregard situations where an agreement among a set of authorities is
needed for building the infrastructure as it happens in cases such has railway
lines, highways, shipways and the like.
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We have therefore an authority that makes a request and another authority
(to be selected in some way) that accepts to satisfy the request by essentially
providing a portion of “its” territory.
The commissioning authority therefore can identify such an authority through
an auction like mechanism that involves the selection of a certain number of
potential contractors (on the base of technical and economical considerations)
over which it has no binding authority but with which it tries to achieve an
agreement.
Such an agreement may be achieved either directly through a negotiation (such
as Contract Net, Wooldridge (2002) or the mechanism we propose in section
1.11) or indirectly through a “negative” approach: according to this approach
the selected authorities must take part to an auction and bid so to avoid the
auctioned chore.

1.4 Basic features

1.4.1 Introductory remarks

We have an auctioneer that wants to allocate a chore to one of the bidders

of a set B. The n members of B are indexed by a set N = {1, . . . , n}.
The first point is to define according to which criteria the members of B are
identified then we have to define the criteria according to which the chore itself
is identified.
The bidders of B are identified by the auctioneer who is also free to identify
the chore at will. For such selections the auctioneer can:

1. identify the heaviest or highest priority chore (among those that are
present in a waiting list) for him to carry out;

2. identify a set of bidders whom he expects are willing to compete for not
getting the chore and

3. fix an exclusion fee (see further on). The exclusion fee should be fixed by
the auctioneer at a value that prevents all bidders to pay it and do not
take part to the auction.

In this way the auctioneer selects the potential members of B and defines both
the exclusion fee and the chore to be auctioned. Such potential members may
accept to pay the exclusion fee as a fee for being excluded from B.

1.4.2 The role and meaning of the fee

Before stepping any further it is necessary to explain the role and meaning
of the fee so to avoid any misunderstanding.
The auctioneer fixes a fee to allow the members of B (that have been selected
against their will) to escape from the auction but, at the same time, his main
goal is the allocation of a chore to one of the bidders.
It is therefore easy to understand how the condition B = ∅ (where the auction
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is void) is not a good one for the auctioneer.
The auctioneer’s strategy is to choose the n potential bidders and to fix a fee f

so that some (say m) of the potential bidders can prefer to pay the fee but all
the others (say k = n − m > 1) prefer to attend the auction and bid.
If this is the case the auctioneer has:

1. a sum m×f and can use it as a further compensation for the losing bidder;

2. a set of k bidders that attend the auction and form the set B̂.

The amount of the sum paid by the bidders who left the auction (and so the
exact number of those bidders) is a private information of the auctioneer and,
therefore, cannot be used by the remaining bidders to guide their strategic
behaviour.
If, anyway, all the potential bidders prefer to pay the fee so that B̂ = ∅ the
auction is void and the auctioneer must refund the sums he received since he
cannot keep them for himself and there is no losing bidder to be compensated.
If the auctioneer chooses a null fee then the potential bidders can leave the
auction for free and therefore it is not in the auctioneer’s best interest to choose
a null fee.
In is way we try to model the principle of individual rationality (Wooldridge
(2002) and Myerson (1991)) within an auction mechanism where the attendance
is not on a voluntary basis.

1.4.3 The basic structure

The basic structure of the game is the following:

1. a presents the chore to the bidders bi ∈ B̂,

2. each of the bidders bi bids a sum xi for not having the chore,

3. who bids less gets the chore.

In what follows, without any loss of generality, we suppose to have only one
losing bidder and that such a sole bidder3 is bidder b1 whereas all the other bid-
ders can be called winning bidders and are indexed by the set N−1 = N \ {1}.
Such basic structure must be enriched to take into consideration both the pos-
sibility of having monetary compensations for the losing bidder and some par-
ticular distributions of the various bids.
Moreover we have to specify the role of the bids xi within the model.
In the present paper, see section 1.1, we are interested mainly4 in auctions that
are:

1. one shot,

2. sealed bid,

3See section 1.9 for the case of more than one losing bidder.
4We present a different model in section 1.11.

10



3. with private values expressed on a common scale5,

though in some cases it may be necessary to use further rounds of auction (see
section 1.9). We note how this type of auction is a sort of inverse first price
auction where the chore replaces the good, who bids less gets it and receives
a compensation for this. We also note how we cannot have a common value
auction since every bidder values the chore differently from the others. We
moreover note (see section 1.1) how all sealed bid auctions are one shot auctions
and that we disregard open cry auctions since the mechanism we want to design
is based on the fact that no bidders must be influenced by the bids made by the
others (Wooldridge (2002) and Klemperer (2002)).
Since b1 is the lone loser who gets the chore we surely have:

x1 = min{xi | i ∈ N} (1)

where x1 is b1’s willingness to pay for not having the chore and represents how
much the chore is worth for him. We say that x1 is the loss of b1.
We can define, at this point, the following quantity:

X =
∑

j∈N
−1

xj (2)

as the gain of the set of winning bidders where the single xj are the sums that
each bj saved or, in a certain sense, gained. We note, indeed, that xj is the sum
that each bidders is willing to pay for not getting the chore but it is what each
bidder gets for sure if he loses the auction and gets the chore.
At this point we have to decide how to use X , possibly as a way to evaluate how
to compensate b1 for his loss x1. Before doing that we give the basic version of
the algorithm with a single losing bidder.

1.5 The algorithm

The basic version of the algorithm is made of the following steps:

1. a presents the chore to the6 bi ∈ B̂;

2. each bi makes his bid xi,

3. a collects the bids and reveals them once they have all been collected;

4. the bidder who bid less gets the chore;

5. the other bidders compensate him for this (see section 1.6) and the auc-

tioneer gives him the total fee he received from the bidders of the set B\B̂

(those who gave up the auction).

5We note how this is common practice in auctions where the bidders usually have money
as a common numerary good.

6We suppose that the set B̂ contains at least two bidders. If it is empty the auctioneer
can repeat the auction by defining a new set to be filtered with a fee payment mechanism. If
it contains only one bidder no auction really occurs and the auctioneer compensates him with
the revenue from the exclusion fees paid by the other bidders.
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The algorithm is simple and linear, at least in this case, and is supposed to end
with only one losing bidder. Obviously there are many points to clarify, first of
all the issue of compensations.
We note how this algorithm differs from what we have seen in section 1.1 since:

1. the auctioneer has no revenue and no loss but only gets the chore allocated
(a benefit, from his point of view, whose value does not influence in any
way the auction since it is not known by the bidders);

2. the bidders are in competition among themselves in order to no get the
chore;

3. one of the bidders loses the auction and gets the chore but

4. he is compensated by the all the other participants for his loss.

1.6 Compensations

As to the compensations they can involve:

1. indirectly the auctioneer,

2. directly the winning bidders.

As to the auctioneer, he may manage the sum m × f to compensate the losing
bidder on behalf of those who preferred to pay.
The auctioneer may have an incentive to be deceitful as to the amount of fees he
received from the bidders who gave up and paid. To avoid this such sum should
be “physically” handled by an authoritative independent third party that should
collect the fees from the bidders and give them back if the auction is void.
As to the winning bidders we can devise the following two compensation
schemes.

1. Every winning bidder pays to b1 an amount proportional to his own bid:

pj =
xj

X
x1 (3)

for all j ∈ N−1.

2. If there is a set of winning bidders H ⊆ N−1 who bid the highest bid xn

(so that xn > xj∀j 6∈ H) every member of H pays to b1 the whole sum
x1.

When the auction is over the auctioneer can make use of a random device to
choose which compensation scheme will be adopted for the current auction so
that such scheme cannot be known for sure by each bidder bj that only knows
his expected payment or loss:

E[j] = 0.5
xj

X
x1 + 0.5πjx1 < x1 (4)
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since (in the worst case when bj ∈ H):

0.5(
xj

X
+ πj) < 0.5(1 + 1) = 1 (5)

where πj ∈ [0, 1] is a characteristic function that states when j ∈ H so that we
can define:

πj =

{

1 if bj ∈ H
0 otherwise

(6)

We note (see section 1.7) how the xj are independent random variables uniformly
distributed on the interval [0, M ] for a proper value M > 0.

1.7 Strategies

Before examining the strategies of each bidder bi we define his private data.
The private data of each of the bidders bi are:

1. a value mi or the sum he is willing to pay for not getting the chore and
the the sum he wants for getting it,

2. a value xi he actually bids and that determines what he gets as a com-
pensation (if he loses the auction) and that is actually common knowledge
only when all the bids have been collected and revealed.

so that xi − mi can be defined as the bidder’s utility.
The following considerations hold under the compensation rules we have seen
in section 1.6: if bi wins the auction he has to pay x1 or less whereas if he loses
(so he is b1) he gets x1 or more. In both cases we can consider x1 as the worst
case.
We wish to prove that for every bidder bi we have xi = mi as the best strategy.
The intuition is the following. Making a bid xi lower that mi is not convenient to
bi since if he loses the auction and gets the chore he may get a low compensation,
lower than his evaluation of the chore. On the other hand if he makes a bid
higher than mi he is more secure he will not lose the auction but he can run a
winner’s course like risk: he can be compelled to compensate the loser with a
sum of money higher than his evaluation of the chore mi (so it would have been
better for him to get the chore). From this we conclude that each bidder should
choose to bid a sum xi = mi. Now we step to a more formal proof of our claim.
If bi bids xi < mi he can:

1. lose the auction and get the chore so to obtain a compensation that is in
the worst case lower than his evaluation of the chore;

2. win the auction so that, in the worst case, he has to pay to the loser b1 a
compensation x1 lower than xi.

If the bidder loses the auction he loses, in the worst case, xi − mi (with an
unknown probability p) whereas if he wins the auction he gains xi − x1 (if the
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losing bidder is b1) with probability (1 − p) so that the expected revenue for
bidder bi is:

p(xi − mi) + (1 − p)(xi − x1) (7)

Given p it is easy to see how the best situation for bi occurs when xi = mi.
If bi bids xi > mi he can, in the worst case:

1. lose the auction and get the chore so to obtain a compensation that is
higher than his evaluation of the chore;

2. win the auction so that, in the worst case, he has to pay a compensation
x1 to the loser b1, compensation lower than xi but possibly greater than
mi.

We can evaluate the utility of bidder bi as:

ui(x, m) =

{

xi − mi if i = argminj∈N xj

y if i 6= argminj∈N xj
(8)

where m is the vector of the evaluations of the chore for the bidders and x is
the vector of the current bids of the bidders whereas mi and xi (with xi > mi)
are those values for bidder bi.
If the former event occurs with an unknown probability p the latter (since the
two events are a partition of the sure event) occurs with a probability 1 − p so
that we can evaluate the expected revenue of bi as:

p(xi − mi) + (1 − p)y (9)

In equation (9) mi if fixed for a given bi and (Myerson (1991)) we can imagine the
bids xi as independent random variables uniformly distributed on the interval
[0, M ] for a proper value of M > 0.
In equation (9) y represents the sum that bi may gain or lose if he is one of the
winning bidders so that, in the worst case, he has to pay x1 to the lone loser b1.
We have the following two cases:

1. if x1 ≤ mi then bi gains mi − x1,

2. if x1 > mi then bi loses mi − x1.

and both cases concur (with the proper probability) in the evaluation of y.
From the aforesaid considerations we have that:

1. if xi → M the probability p that bi has to lose the auction tends to 0,

2. with an increasing probability bi risks to get y (since (1 − p) −→ 1),

3. y is made of a positive component upperly bounded by mi and a negative
component with a lower bound of mi − M ,

4. the former component is associated to a probability mi/M and the latter
to (xi − mi)/M ,
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5. since all the bidders tend to behave in a similar way and so tend to bid
high values of xj also x1 tends to grow so that it is more and more probable
for bi to pay a high fee x1 with a high probability.

We can conclude that using high bids is wrong and that the best strategy is to
bid mi. In this way bi sets to 0 his probability to win and pay a fee higher than
his evaluation of the chore.

1.8 Performance and design criteria satisfaction

In this section we examine if the proposed mechanism satisfies the criteria
we introduced in section 1.2. We start with the performance criteria.

1. The mechanism guarantees termination, since it is a one shot auction, but
does not guarantee success since, if the auctioneer badly fixes the fee, the
auction can go void. Under the proviso the the fee is properly fixed the
mechanism guarantees success since a losing bidder is surely identified and
the chore is allocated.

2. As to Pareto efficiency we have that if the chore is allocated to one bidder
that bid his own evaluation of the chore itself all the bidders are satisfied
and there is no other solution in which one is better off and none is worse
off so we have found a Pareto efficient solution.

3. As to individual rationality we tried to guarantee it through the mecha-
nism of the fee as a compensation for the fact that the involvement in the
auction does not occur on voluntary basis.

4. Stability and simplicity are both guaranteed by the fact the the best strat-
egy for every bidder is to bid a sum equal to each bidder’s evaluation of the
chore, a very simple strategy that can be easily implemented by bidders
with also a very bounded rationality.

As to the design criteria we have that the only parameter the auctioneer
can control is the amount of fee f he asks to the bidders to let them leave the
auction. We note that the amount of f is common knowledge among the bidders
whereas the single values mi are private information of each bidder. Other data
of common knowledge among the bidders are:

1. if the auction is void the paid fees are refunded;

2. the paid fees are used to compensate the losing bidder.

Which is the proper value is a guess of the auctioneer even if fixing it high may
seem to be of no harm for him. A high fee is an incentive to each bidder for not
paying it in the hope to be the only one that acts in this way and gets the total
amount of the fees as a compensation. Since all the bidders have this incentive
high values of the fee turn in none of the bidders paying them. This however
does not represent a bad situation for the auctioneer that can find more easily
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a bidder who loses the auction and gets the chore. On the other hand, too low
values of the fee may harm him since all the bidders can pay them so the auction
runs the risk of being void.
Social welfare is worth some final comments. We must consider the situation
before the auction and that after the auction. Firstly we note that if the auction
is not void the welfare of the auctioneer can only increase since he succeeds in
allocating a chore (at no cost) and so gets a benefit from the auction and suffers
no loss of any kind. If, on the other hand, the auction is void the auctioneer
fails in allocating the chore and may suffer the expenses needed to set up the
auction mechanism. In this case he is worse off and so he has incentives to
choose properly the bidders and in fixing properly the exclusion fee.
As to the bidders we can analyse the situation from two perspectives:

1. from that of the single bidder,

2. from that of the whole set of bidders.

We can suppose that, before the auction starts, the single bidder bi has a welfare
measured as wi and that every bidder is supposed to bid his true evaluation mi

of the chore. If we consider the single bidder we have7:

1. each of the m bidders who pay the fee f (lower than each bidder’s mi

otherwise each of them would had attended the auction) sees his welfare
becoming wi − f > wi − mi;

2. each of the n−1 winning bidders is expected to pay (see equation (4) with
xj = mj):

E[j] = 0.5
mj

X
m1 + 0.5πjm1 < 0.5(

mj

X
+ 1)m1 ≤ m1 < mj (10)

(since mj ≤ X and m1 < mj by definition) so that their welfare becomes
wj − E[j] > wj − m1;

3. the losing bidder has an expected utility given by:

E[1] = mf +
k

∑

i=2

E[i] − m1 (11)

From equations (10) and (11) we may derive the following two cases.

1. If m = 0 we have E[1] =
∑n

i=2
E[i]−m1. If we use equation (10) we have:

E[1] = 0.5m1

n
∑

i=2

(
mi

X
+ πi) − m1 = 0.5m1(

n
∑

i=2

mi

X
+

n
∑

i=2

πi) − m1 (12)

7We recall that there are k potential bidders, m of them are supposed to pay the fee f

whereas the remaining n = k − m are supposed to bid.
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or (in the worst case when |H | = 1):

E[1] = 0.5m1(1 + 1) − m1 = 0 (13)

so that b1 is no worse off.

2. If m ≥ 1 we have E[1] = mf +
∑n

i=2
E[i]−m1 > 0 (since m1 < f otherwise

b1 would have paid that fee) so b1 is better off.

If we consider the complete set of bidders, from the equations (10) and (11), we
have:

1. those who pay the fee suffer a collective loss of mf ,

2. those who bid suffer a collective loss of
∑k

i=2
E[i],

3. the losing bidder has an expected utility given by (11),

so that the complete set of bidders is worse off by m1 that, anyway, is the less
they can lose since m1 < mi for every i ∈ [2, k].

1.9 Extensions

Up to now we have supposed to have only one losing bidder and only one
chore to be auctioned. In this section we extend our approach to include:

1. the possibility of having more than one losing bidder,

2. the need to allocate a set of chores C to a set B of bidders, who actually
attend the auction (did not pay the exclusion fee).

If we have a set of losing bidders L with 1 < |L| ≤ n we have the following
possibilities:

1. we use a random mechanism to select one of them so to be back to the
lone loser case where all the other bidders are therefore winning bidders;

2. we can set up an auction among the members of L so to choose one of
them.

In the latter case there is no guarantee that a single supplementary auction is
sufficient to have a single losing bidder so it may be necessary to resort to a
series of supplementary auctions. Every supplementary auction involves only
the bidders indexed by the current set L and this process goes on until when
the auctioneer gets |L| = 1 or decides to resort to a random device to make the
choice.
At any step it is indeed possible to use a random device to make a choice and
to find the necessary lone losing bidder.
If the auctioneer wants to allocate a set of chores C he can order the chores of the
set C according to his own evaluations and then proceed (in either ascending,
descending or casual order) to allocate such chores in a series of rounds, each
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round for the allocation of exactly one chore to one bidder.
If |C | = c ≤ n (with n = |N |) it is possible to use c rounds to allocate at the
most one chore to each bidder so that a bidder who gets a chore at step k exits
the allocation process but not the compensation phase.
If |C | = c > n there are necessarily bidders who get more than one chore. To
avoid that all chores are assigned to a small subset of bidders the auctioneer
can use the following algorithm:

1. he evaluates q and r such that c = qn + r;

2. he performs q times the algorithm, each time with n initial bidders as
before;

3. the remaining r chores are allocated with one more execution reserved to
the r bidders who got the r lower total sums of chore values8.

We note that things may differ if the bidders know the whole set of the chores
C before the first round of the auction process or if they know the chores only
when each of them is revealed by the auctioneer.
In the former case they can act strategically and, by ordering the chores accord-
ing to private criteria of each bidder, try to get the most preferred chore among
those who are available at step k.
In the latter case they can act only tactically and perform a choice only on
the current auctioned chore with a regret on the past auctioned chores but not
knowing the possible future chores, neither their type nor their number.

1.10 Possible uses of the model

The model we have discussed up to now (allocation of one chore to one
bidder) can be used in all case where the auctioneer cannot carry out the task
by himself and must find somebody who is able to handle it (see section 1.3 for
some examples). In the case of a set of chores what we have said is valid for each
chore in the set: we are indeed in an additivity case so that the chores can be
assigned one by one or if there are two or more chores that are interconnected
in some indissoluble way they are seen as a single chore.
We note that the bidder who gets a chore can, in his turn, use an auction of this
kind to allocate it to one of the bidders of another set, he can act as a middle
man. In this sense the algorithm may be said to be recursive with a correlated
value.

1.11 Reverse auction: paying more and more to allocate

a chore

In this section we examine the first of the cases we listed in section 1.1.7 or
the case where the auctioneer offers the chore and a sum of money and raises

8A chore value for a bidder is the sum of all the losing bids he made in the auctions for
the allocations of the q chores. If those bidders are more than r it is possible to use a random
device to choose exactly r of them.
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the offer (up to an upper bound M) until when one of the bidders accepts it
and gets both the chore and the money.
The value M represents the maximum amount of money that the auctioneer is
willing to pay to get the chore performed by one of the bidders. We note that
the value M is a private information of the auctioneer and is not known by the
bidders. This fact prevents the formation of consortia and the collusion among
bidders (Klemperer (2002)) since M may be not high enough to be gainful for
more than one bidder.
If x is the current offer of the auctioneer a we can define his utility as M − x.
As to the bidders bi, each of them has the minimum sum he is willing to accept
mi as his own private data so that x − mi may be seen as a measure of the
utility of bidder bi.
We note that, if we define the set:

F = {i | mi ≤ M} (14)

as the feasible set, the problem may have a solution only if F 6= ∅.
In this case the algorithm is the following:

1. a starts the game with a starting offer x = x0 < M ;

2. bidders bi may either accept (by calling “stop”) or refuse;

3. if one bi accepts9 the auction is over, go to 5;

4. if none accepts and x < M then a rises the offer as x = x + δ with
0 < δ < M − x, go to 2 otherwise go to 5;

5. end.

At this point we have to define the strategies of both a and the bi. The auction
we are describing is a sort of reversed Dutch auction where we have an increasing
offer instead of a decreasing price and a chore instead of a good.
The best strategy for a is to use a very low value of x0 (or x0 ≃ 0 so to be sure
to stay lower that the lowest mi) and, at each step, to rise it of a small fraction
δ with the rate of increment of δ decreasing the more x approaches M .
The bidder bi’s best strategy is to refuse any offer that is lower than mi and to
accept when x = mi since if he refuses that price he risks to lose the auction in
favour of another bidder who accepts that offer.
We have moreover to consider what incentives a bidder may have to be insincere
when defining the value mi. Of course there is no reason for bi to define a value
of mi lower than the real one (since he has no interest in accepting lower prices).
He could be tempted to define a higher value m′

i > mi so losing the auction in
favour of all the bidders who are willing to accept any offer within the range
m′

i − mi. This means that bi may use a higher value of mi only if he is sure
that the private values of all the other bidders are higher. Since no bidder can
be sure of this, each of them has a strong incentive to behave truthfully.

9Possible ties may be resolved with a random device.
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In this case, if F 6= ∅, the sum a expects to pay is equal to mj where j ∈ F is
such that mj < mi for all i 6= j, i ∈ F .
The algorithm in the present version can be used in all cases where the auctioneer
wants to “sell a chore” to the “worst offering” or to have a chore carried out by
somebody else by paying him the least sum of money.

1.12 Concluding remarks and future plans

In this paper we presented the use of classical tools such as auction mecha-
nisms within an unconventional framework, the allocation of chores to a set of
bidders.
We defined two types of auction, examined their properties and gave some hints
about the contexts where each of them can be used.
Future plans include both a deeper theoretical examination of such properties
(with a particular regard to the bidders’ strategies and algorithm’s extensions)
and an examination of some practical applications in areas such as the localiza-
tion of energy production plants, incinerators, garbage dumps and so on.
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2 Barter models

This paper10 presents a family of models that involve a pair of actors11 that
aim at bartering the goods from two privately owned pools of heterogeneous
goods. The barter can occur only once or can be a repeated process with possi-
bilities of retaliation12 and can involve either a single good or a basket of goods
from each actor. We are indeed going to examine both the basic symmetric
model (one-to-one barter) and its extensions (one-to-many, many-to-one and
many-to-many barters), none of which reproduces a symmetric situation.
The paper is structured as follows. We start with some basic criteria and a brief
description of some classical solutions, then we give the basic motivation of the
models followed by some definitions and then switch to the descriptions of the
models in an increasing complexity order. The paper closes with a section de-
voted to some applications, some sections devoted to two more “hybrid” models
and a section devoted to conclusions and future plans.

2.1 The basic criteria

In this section we introduce some basic criteria (from Brams and Taylor
(1996), Brams and Taylor (1999) and Young (1994)) that allow us to frame the
models we propose in a general context. Our aim is twofold: to define “objec-
tive” criteria and to use them to evaluate the goodness of the proposed models
of barter.
The starting point is to have fair barters. As a measure of fairness we refer to
Brams and Taylor (1999) where a procedure is defined as fair if it satisfies the
criteria of envy-freeness, equitability and efficiency13 so that each party’s
level of satisfaction is fully independent from the levels of satisfaction of the
other parties.
In our context we have two players14 each possessing a pool of private heteroge-
neous goods and each aiming at a barter that satisfies all the aforesaid criteria
so to be fair.
Generally speaking, we say an agreement turns into an allocation of the goods
between the players that is envy-free if (Brams and Taylor (1996), Brams and
Taylor (1999) and Young (1994)) none of the actors involved in an agreement
would prefer somebody’s else portion, how it derives to him from the agreement,
to his own. If an agreement involves the sharing of benefits it is considered envy-
free if none of the participants believes his share to be lower than somebody’s

10I wish to thank Professor Franco Vito Fragnelli and Prof. Giorgio Gallo for their many
useful comments to preliminary versions of the paper.

11We use the terms actors and players as synonyms in this paper.
12With this term we denote spiteful and vindictive attitudes of one player with respect to

the other.
13In the present paper we consider only Pareto efficiency.
14We use the term player or actor with a meaning analogous but not identical to that it has

in Game Theory so that every player has the possibility to perform some choices (or moves)
not always being guided by some strategies and not always trying to obtain the best possible
outcome (something very similar to optimizing an expected utility).
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else share, whereas if it involves the share of burdens or chores it is considered
envy-free if none of the participants believes his share to be greater that some-
body’s else share.
If an allocation is envy-free then (Brams and Taylor (1999)) it is proportional
(so that each of the n players thinks to have received at least 1/n of the total
value) but the converse is true only if n = 2.
As to equitability we say (according to Brams and Taylor (1999)) that an
allocation is equitable if each player thinks to have received the same fraction
of the total value of the goods to be allocated.
Last but not least, as to efficiency, we say (according to Brams and Taylor
(1999)) that an allocation is efficient if there is no other allocation where one of
the players is better off and none of them is worse off.
Such criteria, to be used in our context15, must be adapted, if it is possible,
or must be redefined someway so to be in agreement both with their classical
definitions and with intuition.
We start with envy-freeness. If we denote16 with aA and lA the values for A
himself, respectively, of what A gets and loses from the barter17 we say that
the allocation deriving from a barter (or a barter tout court) is envy-free if we
have for A:

aA

lA
≥ 1 (15)

and for B:
aB

lB
≥ 1 (16)

As will be shown from section 2.5 on, if a barter actually occurs it is guaranteed
to be envy-free.
Since, in the case of two players, we want to maintain the equivalence between
proportionality and envy-freeness we must derive from this definition a definition
that mirrors the classical definition of proportionality.
For player A we may define a barter as proportional if it satisfies the following
condition:

aA

aA + lA
≥

lA
aA + lA

(17)

so that the percentage value of what A gets from the barter is at least equal to
that of what he loses from it. A similar condition holds also for B:

aB

aB + lB
≥

lB
aB + lB

(18)

It is easy to see how from equation (17) it is possible to derive equation (15)
and vice versa. The same holds also for equations (18) and (16).
As to equitability we must adapt its definition to our framework in this way.
We need firstly some definitions. We define I and I ′, respectively, as the ex-ante

15We recall that we have an in kind barter involving two players (A and B) and two pools
of privately possessed heterogeneous indivisible goods.

16Such notations will be specialized in the single models.
17Similar quantities aB and lB can be defined also for player B and with the same caveat.
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and ex-post sets of goods18 of A and J and J ′, respectively, as the ex-ante and
ex-post sets of goods of B. If (i, j) denotes the bartered goods19 in a one-to-one
barter, we have20:

I ′ = I \ {i} ∪ {j} (19)

J ′ = J \ {j} ∪ {i} (20)

On these sets we define, for player A, the quantities that represent the values,
after the bater, of his goods and B’s goods for A himself, respectively, as vA(I ′)
and sA(J ′). We therefore define a barter as equitable for A himself if the
fractional value of what he gets is at least equal to the fractional value he gives
to what B gets from the barter or21:

vA(j)

vA(I ′)
≥

sA(i)

sA(J ′)
(21)

On the other hand the barter is equitable for B if22:

vB(i)

vB(J ′)
≥

sB(j)

sB(I ′)
(22)

whereas if both relations hold we say that the barter is equitable.
As to efficiency we say that a barter of the two subsets23 I0 and J0 is efficient
if there is not another pair of subsets that gives to each player a better result.
Formally, the barter (I0, J0) (to which there correspond lA and aA) is efficient
for A if 6 ∃ (I ′0, J

′

0) (to which there correspond l′A and a′

A) such that:

aA

lA
<

a′

A

l′A
(23)

whereas for B the condition is that 6 ∃ (I ′0, J
′

0) such that:

aB

lB
≤

a′

B

l′B
(24)

In this way if the barter is such that both players attain24:

aAmax

lAmin

(25)

18The terms ex-ante and ex-post refer to the occurrence of the barter itself.
19i from A to B and j from B to A.
20In the case of other kind of barters we must appropriately replace single goods with

subsets.
21As it will be explained in the following sections we are under an additivity hypothesis

where the value of a set is given by the sum of the values of its elements.
22In equation (22) we find the corresponding quantities we find in equation (21) but referred

to player B.
23All the subsets we deal with in this definition are referred to the two “main” sets I and

J and that I0 = {i} whereas J0 = {j}.
24In (25) with aAmax

we denote the maximum value A can get form the barter and with
lAmin

we denote the minimum value A can lose form the barter. In (26) we have the same
quantities for player B.
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aBmax

lBmin

(26)

we have an efficient barter whereas if both attain25:

aAmin

lAmax

(27)

aBmin

lBmax

(28)

the barter is surely inefficient. We note, from the above equations, how effi-

ciency of a barter cannot be always guaranteed and must be verified case by
case.

2.2 A brief tracking shot of some classical solutions

Our starting point is Brams and Taylor (1996). In this book, the authors
propose a lot of tools and algorithms for the allocation of goods for both di-
visible and indivisible cases: They start from n = 2 players and then extend
their results to the general cases with n > 2. A common characteristic of such
models is that players aim at more or less fair sharing of a common pool of
goods on which they state preferences that can be compared in some way, even
on common cardinals scales.
Another good reference is Brams and Taylor (1999), where authors present var-
ious methods for the allocation of the goods from a single pool, starting with
(strict and balanced) alternation methods to switch to divide-and-choose and
to end with adjusted winner method.
Also all these methods are devised to allow more or less fair divisions between
two players of the goods belonging to a common pool (though extensions to
more than two players are provided for all the methods).
We note, moreover, how adjusted winner method requires the use of a common
cardinal scale among the players since it requires that each of them assigns to
each good some points on 100 and that such points are compared (either directly
or as ratios) so to determine to which player every good is assigned.
A short analysis of classical solutions for the division of goods can be found also
in Fragnelli (2005a) again with regard to either one or more divisible goods or a
pool of indivisible goods. Again the presence of a common pool of goods among
the players makes such tools inappropriate as solutions to our problem.
From the comments made in Fragnelli (2005a) about auctions, moreover, it is
also evident how such tools are not suitable to solve our problem.
Other solutions to division problems that can be found in the literature involve
market games (Fragnelli (2005b) and Shubik (1959)), assignment games

(Fragnelli (2005b)) and cost games (Fragnelli (2005b)).
In market games each player has an initial endowment and a preference relation

25In (27) with aAmin
we denote the minimum value A can get form the barter and with

lAmax
we denote the maximum value A can lose form the barter. In (28) we have the same

quantities for player B.
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on it. Each player has an utility function defined from such relation. Players
aim at a redistribution of their initial endowments so to attain efficient redis-
tributions. A redistribution is termed efficient if no player prefers any other
distribution to this one. The main point here is the merging that assumes the
use of common scales for the evaluation of the endowments.
In assignment games players are subdivided in two groups: buyers and sell-
ers. Every seller owns only one good (of which he knows the evaluation) and
each buyer can buy one good (of which she knows the evaluation). Prices of
the objects depend on these evaluations and on the ability to bargaining of the
players. In these games players aim at obtaining their maximum gain with re-
gard to each one’s evaluation. Our models owe much to these games but for the
fact that every player is both a buyer and a seller so that the gain each player
obtains strictly depends on two simultaneous exchanges. Moreover we have no
numerary good so there is no real possibility to sell or buy.
In cost games we must define a division of the costs of a project among the
many involved users so to take care of their roles and interests. It is easy to see
how this family of games has nothing to do with the problem we aim at solving.

2.3 The basic motivation

The basic motivation of the models we propose is the need to describe how
an exchange of goods can happen without the intervention of any transferable
utility such that represented by money or by any other numerary good. In this
way all actors involved do not need to share anything26 but the will to propose
pool of goods that they present each other so to perform some barters.
All barters are in kind and are essentially based on a very simple basic scheme,
in case we have only two actors in the simplest setting (see section 2.5.1): the
two actors show each other the goods, each of them chooses one of the goods
of the other and, if they both consent, they have a barter otherwise some rear-
rangement is needed and the process is repeated until either a barter occurs or
both agree to give up.
The presence of more that two actors and the use of more complex schemes do
not really greatly modify the above scheme since in any case the basic module
is the one involving a pair of actors at a time. We note, indeed, how within
this framework there is no numerary good so no auction like scheme is possible.
Possible extensions will be examined briefly in section 2.9.
Lastly we underline the fact that our approach will be more descriptive than
normative since we are more interested in giving a framework that allows the
description of actors’ possible behaviours in various abstract settings than in
giving (more or less detailed) recipes through which players can attain their
best outcomes.
Within this perspective it should be obvious why we do not explicitly describe
detailed optimal strategies that the players can follow. Though it may seem
strange we think that, given the purposes of the models, a normative approach

26Such as preferences or utilities as shared information.
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would prove as too restrictive. Anyway some comments about possible strategies
will be made when we introduce the single models.

2.4 Some definitions

With the term barter we mean an exchange of goods for other goods with-
out any involvement of money or any other numerary good. It usually involves
two players27 that act as peers in a peer-to-peer relationship. There may be
variants such as more than two actors or not peer-to-peer28 relations and in
section 2.9 we examine briefly only those of the former type.
As to the barter we note that we can have either a one shot barter or a re-
peated or multi shot barter.
In the former case the two actors execute the barter only once by using a po-
tentially multi stage process that aims at a single exchange of goods and can
involve a reduction of the sets of goods to be bartered.
In the latter case they repeatedly execute the preceding process, every time ei-
ther with a new set of goods or with the same set partially renewed but usually
excluding previously bartered goods.
In this paper we are going to examine only one shot barter between two actors
so that there is no possibility of retaliation owing to repetitions of the barter.
We introduce the following simplifications:

1. the values of the goods the two actors want to barter cover two over-
lapping intervals29 so that a one shot barter is always possible (at least
theoretically);

2. such goods and the associated values are chosen privately by each actor
without any information on the goods and associated values of the other
actor30;

3. such values are fixed and cannot be changed as a function of the request
from the other actor;

4. such values must be truthfully revealed upon request from an independent
third party after both requests have been made.

27If more than two players are present we do not admit auction like interactions since we do
not admit any common numerary good so things can be very complicated because we must
consider not only all the possible barters among all the possible pairs but also the fact that
one actor can perform a barter only to let his goods get a higher value in detriment of the
goods of another player.

28In the case of not peer-to-peer relations we think we are not in presence of a real barter
mainly if one of the actors cannot refuse to accept the proposed barter.

29To avoid interpersonal comparisons and the use of a common scale we can proceed as
follows: we let the two players show each other their goods and ask separately to each of
them if he thinks the goods of the other are worth bartering. If both answer affirmatively we
are sure that such interval exists otherwise we cannot be sure of its existence. Anyway the
bartering process can go on, though with a lower possibility of successful termination.

30Obviously each actor can make guesses on the goods and the associated values of the
other actor and such guesses can determine in some way the composition of each set of goods
to be bartered.
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The last two assumptions have been made only to simplify the analysis and will
be relaxed in future developments.

2.5 Barter models

We suppose two actors31:

1. an actor A with a pool I = {i1, . . . , in} of n heterogeneous goods,

2. an actor B with a pool J = {j1, . . . , jm} of m heterogeneous goods.

A assigns a private32 vector vA of n values to his goods in I and this vector is
fixed and cannot be modified. Also B assigns a private vector vB of m values
to her goods in J and this vector is fixed and cannot be modified. From these
hypotheses, for any subset K either of I or of J we can evaluate, once for all33:

vX(K) =
∑

k∈K

vX(k) (29)

with X = A or X = B.
In a similar way34 we can define two more private vectors:

1. sA of m values of the appraisals of the goods of B from A,

2. sB of n values of the appraisals of the goods of A from B,

so that it is possible to evaluate:

sX(H) =
∑

k∈K

sX(k) (30)

(again with X = A or X = B) for any subset H of J or I respectively. The
basic hypothesis is that A can see the goods of B but does not know vB and
the same holds for B with respect to A.
We have four types of barter:

1. one-to-one or one good for one good;

2. one-to-many or one good for a basket of goods;

3. many-to-one or a basket of goods for one good;

4. many-to-many or a basket of goods for a basket of goods.

The second and the third case are really two symmetric cases. We are going
to examine such types one after the other, starting with the simplest or the
one-to-one type.

31We use for the former actor male syntactic forms and female for the latter.
32With the term private we denote information known only to one player and not to both.
33In this way we introduce a property of additivity. The same holds in all the other similar

cases where we have an equality. If we had a ≥ sign we would be in a super additivity case
whereas if we had ≤ we would be in a sub additivity case.

34We note that in this case aA is specialized as sA(j) and lA as vA(i). Similar considerations
hold also for B and, mutatis mutandis, in all the models we are going to present in subsequent
sections of the paper.
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2.5.1 One-to-one barter

Even in this simple type of barter there must be a pre-play agreement be-
tween the two actors that freely and independently agree that each other’s goods
are suitable for a one-to-one barter. We have two sub-types:

1. with simultaneous (or “blind”) requests,

2. with sequential requests.

In the case of simultaneous requests, at the moment of having a barter we
can imagine that the two actors privately write the identifier of the desired good
on a piece of paper and reveal such information at a fixed time after both choices
have been made. In this case we have that A requires j ∈ J and B requires
i ∈ I so that:

1. A has a gain sA(j) but suffers a loss vA(i);

2. B has a gain sB(i) but suffers a loss vB(j).

The two actors can, therefore, evaluate the two changes of value of their goods35:

uA(i, j) = sA(j) − vA(i) (31)

uB(i, j) = sB(i) − vB(j) (32)

since all the information is available to both actors after the two requests have
been made and revealed. Equations (31) and (32) are privately evaluated by
each player that only declares acceptance or refusal of the barter, declaration
that can be verified to be true by an independent third party upon request.
We note that a possible strategy for both players is to maximize the value they
get form the barter (and so sA(j) and sB(i)). This however is not a guarantee
for each player of maximizing his own utility since in equations (31) and (32)
we have a loss due to what the other player asks for himself (and so vA(i) and
vB(j)).
The basic rule for A is the following36:

if(uA ≥ 0) then acceptA else refuseA (33)

and a similar rule holds also for B.
We have therefore the following four cases:

1. acceptA and acceptB,

35With a little misuse of terminology we are going to denote such changes as utilities. In
equation (31) and (32) we use differences and not ratios (see section 2.1) essentially because
in this way we think to describe better the evaluation strategy of the players when they decide
to accept or refuse a barter whereas, after the barter has occurred, they tend to use ratios to
evaluate its fairness. Anyway it is easy to see how, for instance, from equation (31) and rule
(33), it is possible to derive equation (15) and vice versa.

36In the general case we have uA ≥ ε with ε > 0 if there is a guaranteed minimum gain or
with ε < 0 if there is an acceptable minimum loss.
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2. refuseA and acceptB,

3. acceptA and refuseB,

4. refuseA and refuseB.

The first case is really trivial. In this case the barter occurs since none of the
two actors is worse off and at least one may be better off.
In the fourth case both A and B refuse so both may modify their set of goods
by excluding some of the goods and precisely those who gave rise to the refusals.
In this way we have:

1. I = I \ {i}

2. J = J \ {j}

and the barter process starts again on the two new reduced sets37. This occurs
because in this case they both suffer a loss so both will be in a better condition
if they exclude such goods from future rounds.
The second and the third case are symmetric so we analyse only the former of
the two.
In this case A refuses whereas B accepts. There are two mutually exclusive
possibilities38:

1. A takes i off his bartering set,

2. the request of B is kept fixed but A repeats his request, changes his choice
and affects B’s utility so that B can now either accept or refuse.

In the first case we have I = I \ {i} and the process starts again with a new
simultaneous request. In the second case:

1. if B accepts, the barter occurs since both are satisfied with the outcome,

2. if B refuses, then there is a reversing of the situation and a new phase
with B playing the role formerly played by A.

All this can go on until:

1. a situation of common acceptance occurs (positive outcome),

2. there is no possibility of a common acceptance so that both actors agree
to give up and no barter occurs.

37This is surely true under the hypothesis that both players tend to choose the good of
the other that each value the most. In all the other cases the plausibility of these reduction
operations must be verified case by case.

38We can imagine other possibilities that we disregard so to keep the structure of the barter
simple though flexible and expressive. For instance we can imagine A keeps fixed his choice
and B changes her, possibly within a subset of goods that A suggests. Also in this simple
extension we have to deal with many complications such as: the structure of this subset, the
possibility for B to choose outside of it and how to manage a refusal from B to use that set
as a basis for her next choice.
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In the case of sequential requests we can imagine that there is a chance move
to choose who moves first and makes a public request. In this way both A and
B have a probability of 0.5 to move first.
If A moves first (the other case is symmetric) and requires j ∈ J , B (since she
knows her possible request i ∈ I) may evaluate her utility in advance as:

uB(i, j) = sB(i) − vB(j) (34)

whereas the same does not hold for A that, when he makes the request, does not
know vA(i). At this level B can either explicitly refuse (if ub < 0) or implicitly
accept (if ub ≥ 0).
In the former case B can only take the good j off her set and the process restart
with B moving first. Though the truthfulness of B’s refusal may be checked
by A upon request in this way both actors risk the exclusion of each one’s best
goods from the barter since the same attitude can be adopted also by A. There
are however cases in which no better solution is available.
In the latter case the implicit acceptance is revealed by the fact that B makes
a request. In this case he may be tempted to evaluate max uB(i, j) but, acting
this way, may harm A by causing uA < 0 and this would prevent the barter
from occurring at this pass. Anyway B makes a request of i ∈ I so that also A
can evaluate:

uA(i, j) = sA(j) − vA(i) (35)

Now, using rules such as (33), we may have only the following cases39:

1. acceptA and acceptB,

2. refuseA and acceptB.

In the first case the barter occurs. In the second case A suffers a loss and has
two possibilities:

1. can take i off his barter set and the barter goes on with B making another
choice,

2. can make another choice with B keeping fixed her.

In this second case we have a new evaluation of both uA and uB so that at this
step we can have:

1. acceptA and acceptB,

2. acceptA and refuseB.

So that the process either ends with a barter or goes on with B acting as A at
the previous step.
All this goes on until when both accepts so the barter occurs or one of them
empties his set of goods or both decide to give up since no barter is possible.

39In the symmetric case where B moves first at the very start we can have only:

1. acceptA and acceptB,

2. acceptA and refuseB.
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2.5.2 Formalization of the models

In this section we present a point-to-point concise listing of the two models of
the one-to-one barter, starting from the case of simultaneous or “blind” requests.
In this case the algorithm is based on the following steps:

1. both A and B show each other their goods;

2. both players negotiate if the barter is [still] possible or not40;

(a) if it is not possible (double refusal) then go to step 6;

(b) if it is possible then continue;

3. both simultaneously perform their choice;

4. when the choices have been made and revealed both A and B can make
an evaluation (using equations (31) and (32)) and say if each accepts or
refuses (using rules such as (33));

5. we can have one of the following cases:

(a) if (acceptA and acceptB) then go to step 6;

(b) if (refuseA and acceptB) then

i. either A performs I = I \ {i} and if (I 6= ∅) then go to step 2
else go to step 6;

ii. or A only performs a new choice and then go to step 4;

(c) if (acceptA and refuseB)

i. either B performs J = J \ {j} and if (J 6= ∅) then go to step 2
else go to step 6;

ii. or B only performs a new choice and then go to step 4;

(d) if (refuseA and refuseB) then

i. I = I \ {i};

ii. J = J \ {j};

iii. if (I 6= ∅ and J 6= ∅) then go to step 2 else go to step 6;

6. end of the barter.

We now give the same concise description of the model with sequential requests.
In this case the algorithm is based on the following steps41:

1. both players show each other their goods;

40At the very beginning of the process we suppose the barter is possible though this does
not necessarily hold at successive interactions.

41In this case we denote the player who moves first as 1 (it can be either A or B) and the
player who moves second as 2 (it can be either B or A). With a similar convention we denote
as I1 the set of goods and i1 a single good of 1 whereas for 2 we have I2 and i2. We use male
syntactic forms for both players
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2. both players negotiate if the barter is [still] possible or not;

(a) if it is not possible (double refusal) then go to step 10;

(b) if it is possible then continue;

3. there is a chance move (such as the toss of a fair coin) to decide who moves
first and makes a choice;

4. 1 reveals his choice i2 ∈ I2;

5. 2 can now perform an evaluation of all his possibilities;

6. if 2 refuses he takes i2 off his barter set then go to 2;

7. if 2 accepts he can reveal his choice i1 ∈ I1;

8. both 1 and 2 can make an evaluation (using equations such as (31) and
(32)) and say if each accepts or refuses (using rules such as (33));

9. we can have one of the following cases:

(a) if (accept1 and accept2) then go to step 10;

(b) if (refuse1 and accept2) then

i. either 1 performs I1 = I1 \ {i1} and if (I1 6= ∅) then go to step 2
else go to step 10;

ii. or 1 only performs and reveals a new choice and then go to step
8;

(c) if (accept1 and refuse2) then

i. either 2 performs J1 = J1 \ {j1} and if (J1 6= ∅) then go to step
2 else go to step 10;

ii. or 2 only performs and reveals a new choice and then go to step
8;

10. end of the barter.

2.5.3 One-to-many and many-to-one barters

In these cases one of the two actors requires one good whereas the other
requires a basket of goods (that can even contain a single good) and so any
proper subset42 of the goods offered by the former. This kind of barter must be
agreed on by both actors and can occur only if one of the two actor thinks he
is offering a large pool of “light” goods whereas the other thinks she is offering
a small pool of “heavy” goods.
The meaning of the terms “light” and “heavy” may depend on the application
and must be agreed on during a pre-barter phase by the actors themselves. The

42A proper subset of a generic set A is a set that is neither empty nor coincident with A

itself.
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aim of this preliminary phase is to give one of the two actors the possibility of
asking for any set of goods whereas this same possibility is denied to the other.
If there is no agreement during this phase, three possibilities are left: they may
decide either to give up (so the bather process neither starts) or to switch to a
one-to-one barter or to a many-to-many barter.
If there is a pre-barter agreement we can have the two symmetrical cases we
mentioned in the section’s title so we are going to examine only the former or
“one-to-many” barter. In this case we have:

1. A owns “light” goods and requires a single good j ∈ J ,

2. B owns “heavy” goods and requires a proper subset Î0 ⊂ I of goods with
|Î0| < n,

and the two requests may be either simultaneous or sequential.
If we have simultaneous requests both actors can evaluate their respective
utilities, soon after the requests have been revealed, as43:

1. uA(Î0, j) = sA(j) − vA(Î0)

2. uB(Î0, j) = sB(Î0) − vB(j)

For possible strategies we refer to what we have noticed in section 2.5.1. Again,
using rules such as (33), we have four possible cases:

1. acceptA and acceptB,

2. refuseA and acceptB,

3. acceptA and refuseB,

4. refuseA and refuseB.

In all these cases the barter goes on as in the one−to−one case with simultaneous
requests.
In the case of sequential requests the procedure does not use a chance move
to assign one of the two actors the right to move first but gives this right to the
actor that owns the pool of “light” goods. After this first move the barter goes
on as in the one − to − one case with sequential requests.

2.5.4 Many-to-many barter

In this case both actors require a proper subset of the goods offered by the
other or:

1. A requires a generic Ĵ0 ⊂ J

2. B requires a generic Î0 ⊂ I

43In this case aA is specialized as sA(j) and lA as vA(Î0). Similar considerations hold also

for aB and lB. We recall the additivity hypothesis so that, for instance, vA(Î0) =
∑

i∈Î0
vA(i).
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and the two requests may be either simultaneous or sequential.
Also this kind of barter must be agreed on by both actors during a pre-barter
phase.
Since also in this case we can have either simultaneous or sequential requests
the algorithms are basically the same that in cases of one-to-one barter. The
main differences are about:

1. the use of the subsets,

2. the way in which is managed the case of the double refusal.

As to the first issue we note that in the algorithms we must replace single
elements with subsets of the pool of goods so that the evaluations must be
performed on such subsets by using the additivity hypothesis.
As to the second issue, in the one-to-one barter (with simultaneous requests) the
solution we adopted was a symmetric pruning of the two sets by the two actors
but this solution cannot be applied in the present case since this policy would
empty one of the two initial pools or both in a few steps. To get a solution in
this case we can imagine an independent partitioning of the two sets of goods
from both actors A and B.
The solution is implemented as:

1. if(refuseA and refuseB) then

(a) I = partitioningA(I)

(b) J = partitioningB(J)

Such “code” must replace the analogous piece of “code” we saw in section 2.5.1.
In this case A (the case of B is symmetric) uses procedure partitioningA(I):

1. the very first time when a double refusal occurs, to split I in labelled lots
so to make clear to B which are the subsets of goods the he is disposed to
barter;

2. on successive double refusals, to rearrange his lots as a reply to un-
favourable (for him) partitioning from B of B’s pool of goods.

In this case one possible strategy for the players involve subsets and not single
goods. Except for this we again refer to what we have noticed in section 2.5.1.

2.6 The uses of the models or disclosing the metaphor

In this section we briefly list the basic assumptions that drove us to the
formulation of the models we introduced in the previous sections and present
some of their possible applications.
As to the first point we already noted how the basic idea is avoiding any use of
common scales for the evaluation of the goods. In this way we have that both
actors perform their evaluations one independently from the other and only
accept or refuse a barter and their acceptances and refusals define the effective
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possibility of having the barter done.
As to the applications we can devise a “positive”, a “negative” and a “mixed”
framework44.
Of course equations such as (31) and (32) must be adapted case by case, since
they have been devised to deal with the barter of goods, whereas rules such as
(33) remains almost unchanged and can be used to drive A’s and B’s behaviour.

1. In the “positive” framework we have that both A and B offer goods or
positive externalities. In this case both A and B propose what they are
almost sure the other will be willing to accept. We note here that what A
thinks is a good for B may be a good or have no value or even be a bad
for A himself and the same holds also for B.

2. In the “negative” framework we have that both A and B present bads or
chores. In this case we have that A asks B to accept some bads or to carry
out some chores in exchange for other bads or chores that B asks A to
accept or to carry out. We note here that what A thinks is a bad/chore
for B usually is a bad/chore for A himself and the same holds also for B.

3. In the “mixed” framework we have that goods and bads/chores can be
mixed in any proportion. To make things simpler and tractable we imagine
the following cases:

(a) A offers a prevalence45 goods but B offers a prevalence bads/chores,

(b) both A and B offer a balanced mixture of goods and bads/chores.

In these cases we have an exchange of items where each actors tend to
maximize the goods and minimize the bads/chores he/she obtains.
In practice there can be two solutions:

(a) both A and B splits their pools in two subsets, each containing only
goods or bads/chores and negotiate separately on them as in the
“pure” frameworks;

(b) A and B agree on a many-to-many barter so to be able to obtain
more or less balanced subsets of goods and bads/chores.

2.7 Fairness of the proposed solutions

We now try to verify if the solutions we have proposed in the previous
sections satisfy the criteria (envy-freeness, equitability and efficiency) we stated
in section 2.1 so that we can say whether they produce fair barters or not.
As we have seen in the sections so far, if a barter occurs this means that both
players think each of them gets more than one looses (as it results46, in case of

44It is obvious how asymmetric cases (such as A offers only goods to B and B only
bads/chores that A must take or execute) cannot give rise to any barter.

45We avoid any quantification since, from our descriptive perspective, we think that this
task of quantifying is up to the players in a pre barter phase.

46Similar considerations hold also for player B.
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A, from relations (31) and (33)) so the barter is envy-free. This holds in all
the models we have seen so far.
From our definitions, this is equivalent at saying that it is also proportional.
We note that in every case where a set of goods is involved we can evaluate its
worth by using the additivity hypothesis.
As to equitability (see relations (21) and (22)) and efficiency (see relations
(23) and (24)) each must e verified for each barter since there is no a-priori
guarantee that either of them holds for a particular case.
In conclusion, we can say that, in all the cases, fairness is a by-product of the
barter process and is not a-priori guaranteed by its structure.

2.8 Hidden goods: alternating requests

2.8.1 Introduction

All the models we have seen so far are based on the following common
structure:

1. both players show each other the goods they want to barter;

2. both agree on the type of barter they are going to have;

3. both start the process that can end either with or without an exchange of
goods.

In this section we very briefly present two more models.
In the first model we drop the hypothesis that the two actors show each other
their goods before the barter process starts. We call it the “pure model” where
none of the players shows anything to the other. So to compare this model with
those we have seen so far we note how it is a one shot, one-to-one barter model
with successive requests where two actors aim at bartering one good for one
good47.
In the second model (we call it the “mixed” model) we have a mixed situation
where:

1. only one of the two players, say A, shows his goods;

2. the other, B, proposes a barter that A can either accept or refuse;

3. if A accepts we have an agreement and the process ends whereas if A
refuses he can make a counterproposal48 so it is again B’s turn;

4. things go on until both reach an agreement and a barter occurs or they
decide to give up and no barter occurs.

47It is possible to devise barter processes where one or both players ask for one basket of
goods but, in the present paper, we do not deal with such cases.

48With this term we denote a proposal made as a response to a proposal that is being judged
as unsatisfactory. It is possible (and in many cases advisable so to avoid infinite bartering) to
design the rules so that a proposal cannot be used more than once during the whole process.
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2.8.2 Pure model: nobody shows, hidden items

The situation we are interested in can be described in the following terms.
One of the two players is interested in giving a good or a service (we may call
it a “bad”) to the other player so to get back a good or a bad (gods and bads
collectively may be called items).
Such an exchange may be carried out with a barter where the players in turn
propose a pair49 (i, j) that can be either accepted or refused. Things go on
until:

1. both agree on a proposal and the barter occurs,

2. one of the two refuses without a counterproposal so that the barter closes
with a failure.

During the process, the two players reveal each other the items they are willing
to barter and this revelation process (Myerson (1991)) allows the definition of
some sets that we denote as50 Ii for player A and Ji for players B. We call
such sets revelation sets. Such sets, indeed, reveal the barter sets of the two
players and are common knowledge between them.
At the very start of the barter process we have the two sets I0 = ∅ and J0 = ∅
since none of the players has revealed anything. After each move of the active
player51 his proposal is added to his current set so that it can be used by the
other player to frame his successive proposals.
In our case we think that A moves first and B follows52. We note that:

1. when A moves for the first time we have I0 = ∅ and J0 = ∅,

2. A proposes {(i0, j0)},

3. then we have I1 = {(i0, j0)} and J1 = ∅ so that B can use I1 to frame his
counterproposal.

To describe this kind of barter we can use a decision tree (see Figure 1). In such
a tree inner nodes are represented with white dots whereas black dots denote
leaves.
The labels near to each inner node denote both the player that has the right to
move at that node and the composition of the revelation sets at that node.
On the other hand, the labels on the outgoing arcs denote the acceptance (a)
or the refusal (r) of the proposal made at the previous step or the proposed

49Such a pair may be read in two ways depending on who is the player who proposes it. If
A is the proposer, A gives i to player B so to get j that is supposed to be in B’s availability.
If B is the proposer, B gives j to player A so to get i that is supposed to be in A’s availability.
The right meaning will be clarified form the context.

50In Ii and Ji the term i identifies the step of the process and also the depth of the decision
nodes in the decision tree, see Figure 1.

51With this term we denote the player who has to move at a given point in the barter
process.

52The situation where B moves first is symmetrical and will not be examined here.
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barters53 of that player to the other player. In our case we supposed A moved
first so that the root is labelled as A. From this it follows that the nodes where
A has to move have even depth54 whereas those where B has to move have odd
depth.

Figure 1: A part of the barter tree

After all these premises we can describe the portion of the barter portrayed in
Figure 1.

1. A proposes a barter of (i0, j0);

2. in this way A reveals to B his set I1 = {(i0, j0)};

3. B has the following possibilities:

(a) accepts,

(b) refuses,

53We note that such barters are not known in advance so the tree cannot be seen as a
representation of a game in extensive form since it is dynamically built up level by level so
that no fine grained strategy is possible. We note moreover how the process has no predefined
maximum duration. We only know that such duration is finite if the number of possible
proposals is finite.

54In a tree the depth of a node in the number of arcs between that node and the root of
the tree.
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(c) proposes a different item j1 instead of j0 so that she proposes (i0, j1),

(d) asks for an item other than i0 so that she proposes (i1, j0).

We have to specify what is i1 since J1 = ∅ and i1 6∈ I1. The basic idea is that
i1 = αi0 with α > 1 if the barter concerns a good and 0 < α < 1 if the barter
concerns a bad, the effective value being fixed by B.
If B accepts, the barter of (i0, j0) occurs. This is seldom the case, however,
because it is in A’s interest to ask for the most by giving the less. The acceptance
reveals that (i0, j0) ∈ J2 but this revelation has no further consequence since
the process ends.
If B refuses the process ends and no barter occurs. Both players suffer a loss
but there is no possibility either of compensation or of penalties. B’s refusal,
on the other hand, means that A had insufficient knowledge of B so that the
barter was badly planned and no agreement was possible. It again reveals that
(i0, j0) 6∈ J2 but this revelation has no further consequence since the process
ends.
Before stepping to the last two cases we must state on which basis players accept
or refuse the proposals of barter or make a counterproposal. To do so they use
the functions:

1. evalA(i, j)

2. evalB(i, j)

(where i and j denote the items to be bartered) that return a value ≥ 0 if a
player thinks he is getting a gain from the barter and a value < 0 otherwise.
Such functions can be used both in rules such as the following:

if(evalA(i, j) ≥ 0) then acceptA else refuseA (36)

and to establish a strict preference ordering ≻ on the proposals. We can indeed
say55:

(i, j) ≻A (i′, j′) ⇔ evalA(i, j) > evalA(i′, j′) (37)

and the same holds also for B.
If B neither accepts nor refuses she can make one of the two counterproposals
(i0, j1) and (i1, j0). We note that j1 is known to B since it belongs to the hidden
set of her items whereas i1 is a B’s guess, as we have already seen.
In the first case we have (i0, j1) ≻B (i0, j0), J2 = {(i0, j1)} and A has to move,
in the second case we have (i1, j0) ≻B (i0, j0), J2 = {(i1, j0)} and again A has
to move.
In both cases A has now six possibilities for the two nodes at level l = 2 (see
Figure 1):

1. accept,

2. refuse,

55It is obvious that with ≻A and ≻B we denote the strict preference relation of player A

and B respectively.
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3. propose (i0, j2),

4. propose (i2, j1),

5. propose (i2, j0),

6. propose (i1, j2),

that can be analysed as those of B at the previous step. At each step the56

A−side can be freely defined by player A and the B−side from player B whereas
the other side of each proposal can be a guess based on the current revealed set
of the other player.
We have therefore identified the following strategies (each of them defining a
thread):

1. A-conservative where i0 is kept whereas the B-side of the barter changes
at each step,

2. B-conservative where j0 is kept whereas the A-side of the barter changes
at each step,

3. mixed where at each step both components of a proposal can change
starting from depth = 2,

and such threads can, at least theoretically, last forever.
As a closing comment of this model, that deserves further and deeper investiga-
tions, we note how each (but not necessarily every) refusal move can be replaced
with a completely new barter process where one player implicitly refuses and
closes one barter but both players can open a new one by giving a new proposal
to the other player (see Figure 2 where triangles represent subtrees). In this way
the two players that cannot agree on a line of bartering can change line so to
try to reach an agreement starting with a completely different barter proposal.
This case cannot, however, be seen as a case of consecutive barters since, also
in this case, at the most we can have one successful barter.

2.8.3 Mixed model: shown goods, hidden goods

In the mixed model we have a barter process where A shows his goods and
B tries to get one or more of them by giving one of her goods to A.
This model can be seen as either a one-to-one or a one-to-many barter model
with successive requests with the first turn to move for B (the player with hidden
goods). In the present section we present only the one-to-one version, further
investigations in a forthcoming paper. The goods of A are common knowledge
between the two players and we have:

1. A assigns to each of the n goods of his set I = {i1, . . . , in} a value vA(i);

2. B assigns to each of the n goods of this set I a value sB(i);

56Given a barter proposal (i, j) we say i the A-side and j the B-side of the barter.
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Figure 2: Grafting new barters

3. B knows the value of all her (hidden to A) goods j ∈ J , vB(j);

4. A can evaluate (as sA(j)) the single goods of B only after she has made
one of her proposals.

At the very start of the algorithm we have that:

1. A knows his set of goods, I;

2. A has no idea of the set of goods of B, J = ∅;

3. B knows her set of goods, hidden to A, J ;

4. B knows the set of goods of A, I.

We note that A has no possibility of revelation since his goods are common
knowledge whereas B undergoes a process of revelation since every time she
makes a proposal may reveal to A something about her goods. From this we
have that I is fixed whereas as to B we start with the set J1 that is enriched
during the barter process.
The main steps of the algorithm are the followings:

1. A shows his goods I;
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2. B propose a barter (i0, j0) with i0 ∈ I and with j0 ∈ J1 where J1 is the
currently revealed set of B;

3. A has the following possibilities:

(a) accept so that the barter occurs,

(b) refuse,

(c) propose a barter (i1, j0),

(d) if J0 \ {j0} 6= ∅ propose (i0, j1) with j1 ∈ J0.

4. B can either accept one of A’s proposals, refuse or make a counterproposal
using one of the not yet proposed goods of A or revealing one more of her
hidden goods.

In this way (but for some details) the evolution of the model is very similar
to that of the pure model. Acceptance and refusal are decided by both actors
independently and using relations we have seen in section 2.8.2. The main
difference between the two models is in the use from A of the set of B’s revealed
proposals to A. We note indeed that, through the bartering with B, A can
create an history of proposals through which he can reply to a proposal of B
that is judged unacceptable. In this way B, making her proposals, allows A to
build up the set J0 so to carry out the barter as in the case where both show
each other their goods but for the fact that A is “many steps back” since can
update the set J0 only after B has made his proposal and adding one good at
a time.
Again a refusal may represent for both players an opportunity to start a new
barter process with a new proposal that can be built using past proposals of
both players.

2.9 Extensions

The basic extensions of the proposed models involve essentially:

1. the possibility of repeated barters between two actors;

2. the possibility that more than two actors are involved in the barter;

3. both possibilities;

4. the relaxing of the additivity hypothesis.

If we allow the execution of repeated barters we must introduce and manage
the possibility of retaliations between the players from one barter session to
the following and how are defined and/or modified the pool of goods between
consecutive bartering sessions.
If, on the other hand, we allow the presence of more than two actors we must
introduce mechanisms for the execution of parallel negotiations.
If, for instance, we have three actors A, B and C we can have (in the case of
one-to-one barter with simultaneous requests).
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1. Circular one-to-one requests where, for instance, A makes a request to B,
B to C and C to A.

2. One-to-many requests so that A makes a request to B and C, B makes a
request to A and C and C makes a request to B and A.

In the former case there can be no conflict whereas in the latter it can occur
that two actors ask the same good to the third causing a conflict that must be
resolved some way.
In both cases we have:

1. the barter occurs if and only if all the actors accept what is proposed by
the others;

2. if all actors refuse the others’ proposals a rearrangement of the respective
pools occurs followed by a repetition of the barter;

3. in all the other cases the procedure must allow the refusing actors (two at
the most) to repeat their request.

Obviously in all the other cases the interactions tend to be more and more com-
plex. Analysis of such extensions can be carried out using the tools suggested
in Myerson (1991), section 9.5 where graphical cooperation structures are intro-
duced and used.
As a last extension we mention the relaxing of additivity. Additivity is un-
doubtedly a simplifying assumption and is based on the hypothesis of relative
independence of the goods that the actors want to barter among themselves.
This hypothesis in many cases is not justified since functional links, for instance,
make goods acquire a value when and only when are properly combined. In such
cases such goods must be bartered as a whole and cannot enter properly in a
one-to-one barter. The issue is very complex (so complex that Brams and Tay-
lor (1996) and Brams and Taylor (1999) deal with it only marginally) and here
we only note how relaxing additivity can bring us to the adoption of either su-
peradditivity or subadditivity.
As to player A (the situation with B is fully symmetrical), under additivity (see
equations (29) and (30)) we saw that what A loses is:

vA(H) =
∑

h∈H

vA(ih) ∀H ⊆ I (38)

and what A gets is:

sA(K) =
∑

k∈K

sA(jk) ∀K ⊆ J (39)

We can relax additivity on either only one of equations (38) and (39) or on
both. In this section we concentrate only on equation (39) and so the attitude
of A towards the barter. In this case we think subadditivity is really not inter-
esting57 since A would be better off by asking one single good from B and so

57We note how subadditivity could be interesting for A if occurred on equation (38).
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by entering in either a one-to-one or a one-to-many barter. On the other hand
superadditivity makes A better off if he can pick subsets of the goods of B and
so can be involved in a many-to-one or a many-to-many barter.
If we allow this superadditivity this means that:

sA(K) ≥
∑

k∈K

sA(jk) ∀K ⊆ J (40)

A is of course more interested in subsets K of J such that:

sA(K) >
∑

k∈K

sA(jk) (41)

We call such subsets superadditive subsets of J and in this way we formalize
both the fact that for A not every subset of the goods of B has a value greater
than the sum of the values of its elements and the functional links among the
goods of B.
Under this premise, the many-to-many barter case is really interesting so we
make some more comments on it. It requires that also for B there is the same
sort of superadditivity on the corresponding equation so that both players can
see the goods of the other as composed of superadditive subsets that have noth-
ing to do with a partitioning.
If we have:

1. I = {i1, i2, i3, i4, i5}

2. J = {j1, j2, j3, j4, j5, j6}

then a many-to-many barter of this kind may involve not all the possible subsets
of I and J but only some of them so that:

1. B can see I as made of the following set of superadditive subsets
{{i1, i2}, {i1, i3, i4}, {i4, i5}, {i2, i3, i5}};

2. A can see J as made of the following set of superadditive subsets
{{j1, j2, j3}, {j1, j3, j4}, {j4, j5}, {j3, j5, j6}}, {j2, j3, j5, j6}}.

In this case the many to many barter is reduced to a one-to-one barter where
the goods to be bartered are the superadditive subsets of goods and not the
single goods.

2.10 Concluding remarks and future plans

Isubn this paper we have introduced some barter models between two actors
that executes a one shot barter through which they exchange, according to
various mechanisms, the goods of two separate and privately owned pools.
This is an introductory paper so a lot of formalization is still to be done for
what concerns both the basic versions of the model and its extensions.
More precisely we need:
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1. to examine more formally the basic model of one shot barter with all its
variants;

2. to improve the algorithms of the various proposed solutions;

3. to examine the properties of such solutions and their plausibility;

4. to develop more thoroughly the model we introduced in section 2.8,

5. to analyse and formalize the extensions we listed in section 2.9.
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