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Abstract

These notes constitute a primer on Auction Theory. They contain
a brief description of some types of auctions, their main features and
the strategies that the bidders can use in each case. These notes are
heavily inspired (so to go very close to a plagiarism) by Krishna (2002).
They also contain an Appendix where we present three non traditional
auction types for the allocation of either a chore (an item with a
negative value for both the auctioneer and the bidders) or a cost.

1 Introduction

These notes constitute a primer on Auction Theory and are heavily based
on Krishna (2002). As such they are written in a rather informal style without
any heavy use of mathematics but in the cases where this has been necessary.
This primer structured as follows.

It opens with a short section where we firstly explain why we do use auctions
then we present the main types of auctions, their equivalences and discuss
some of their properties.

We go on with a certain number of sections that follow the structure of the
book of Vijay Krishna (Krishna (2002)). Such sections are centered on single
object auctions essentially in the symmetric model case (so in the case where
the distribution and density functions are the same for all bidders) and close
with a few notes on the linkage principle.



Auctions can be described as games of incomplete information (Gibbons
(1992), Myerson (1991) and Osborne and Rubinstein (1994)) that involve a
certain number of actors:

- an auctioneer A,

- a set of bidders B with n = |B| members i, i =1,...,n.

A game of incomplete information belongs to the family of the so called
Bayesian games that are characterized by the concept of Bayesian Nash equi-
librium. In such a game each player knows his own information (such as the
payoff) but is uncertain about the same information of the other players. We
have both static Bayesian games, where the moves are made simultaneously
by all the players (as in a sealed bid auction), and dynamic Bayesian games,
where the moves are made in succession by all the players (as in a open cry
ascending auction). For further details we refer to Gibbons (1992).

2 Why do we use auctions

Auctions are used in all the cases where the auctioneer A is unsure about
the values that the bidders ¢ € B assign to the object that A wants to allocate
or sell.

The main features of the auctions are that:

- they elicit information as bids denoting the willingness to pay for an
object of the bidders;

- the outcome depends only on the submitted bids (that represent the
received information)

- they are universal so that they may be used to sell any good;

- they are anonymous so that the outcome of an auction does not de-
pend in any way on the identities of the bidders.

The auctions can be classified depending on the number of the auctioned
objects and on the valuations of the bidders (for this issue see section 4).
This means that we can have:

- auctions involving one single indivisible object with either private
values (symmetrically and independently distributed) or interdepen-
dent values (and the use of signals);

- auctions involving multiple objects.

In this paper we are going to deal with auctions of the former type.



3 The main auction types

In this section we describe four classical or standard auction types:
1) the open ascending price or English auction;

(
(2) the open descending price or Dutch auction;
(3) the first price sealed bid (F'PSB) auction;
(4) the second price sealed bid (SPSB) auction.

The English auction has many variants depending on the ways through
which the bidders signal their will to attend, go on with attending or abandon
the auction.

In one variant the auctioneer starts calling out a low price and raises it in
small increments as long as there are at least two interested bidders and the
auction stops when only one bidder is left.

During the periods in which the price raises the bidders indicate clearly (for
instance by raising up one hand) their interest in purchasing the auctioned
good. When the price is too high a bidder may signal that he is no more
interested by simply lowering his hand.

In this way the auction ends only when a single bidder remains signaling his
interest.

The winning bidder:

- gets the auctioned good/object,

- pays a price equal to the price at which the second last bidder dropped
out.

In a Dutch auction the auctioneer starts with a high price and then con-
tinuously lowers it until one o the bidders cries stop and blocks the auction.
This bider gets the object and pays the sum at which he cried stop.

We note that in the former type we have a huge exchange of information
among the bidders that may influence each other by either dropping out or
going on bidding whereas this exchange of information is absent in the latter
case where a bidder reveals his valuation only when he stops the auction
itself.

In a FPSB auction the bidders independently and simultaneously' submit
sealed bids and the object is assigned to the bidder who submitted the high-
est bid that pays such a sum (whence the name first price).

!This means that every submission is made by each bidder without knowing the sub-
missions of the others and do not imply a prefect simultaneity.



In a SPSB auction the bidders independently and simultaneously submit
sealed bids and the object is assigned to the bidder who submitted the high-
est bid that pays a sum equal to the second highest bid (whence the name
second price).

We note how, in these cases, there is no exchange of information among the
bidders that have very few possibilities to influence each other though this
does not prevent the bidders from having valuations of the auctioned goods
that are interdependent in some way (simply because the nature of the good
is known in advance and may influence in similar ways the valuations of the
bidders).

Other forms of auctions include:

hybrid Dutch-English auctions;

- third price auctions;

all pay auctions;

deadline auctions (with a predetermined stopping time);

candle auctions (with a random stopping time);

but many more may be conceived. Some of these will be examined in subse-
quent sections.
As a closing comment we note that:

- (1) and (2) are open auctions so that the bids are common knowledge
during the execution of an auction of these types;

- (3) and (4) are sealed bid auctions so that the bids are not known
during the execution of an auction of these types and are revealed (as
the winning bid only) at the end of each auction.

4 Bidders valuations

The bidders may have different types of valuations of an object:
- private values,
- interdependent values,

- [pure] common values.



We speak of private values if each bidder knows the value of the object to
himself at the time of bidding and this value is independent from the values
that other bidders may attribute to that object and would remain unchanged
even if such values would be known in some way. In this case the value of
the auctioned object is given from his consumption or use.

We speak of interdependent values at the time of the bidding if the ex-
act value of the object is unknown to the bidders but each of them knows
privately a signal that is correlated in some way to the true value. If such
signals were known by a bidder would cause him to change his estimation of
the object. In his case the valuation of each bidder is influenced by the valu-
ations of the other bidders as well as from the information at their disposal.
Last but not least we speak of [pure] common values (as a particular
case of the interdependent values case) if the value of the auctioned object is
unknown to the bidders (though each of them may have a private estimate
of such a value based on private information or signals) at the time of the
bidding but is the same for all the bidders when the auction is over.

5 Equivalences among the basic types

Beyond formal differences among the various types of auctions we can
state some equivalences between the basic auction forms. We indeed can
prove hat:

(a) Dutch auctions are strategically equivalent to F'PSB auctions;

(b) under certain hypotheses English auctions are strategically equivalent
to SPSB auctions.

With the term strategical equivalence of two games we mean that for every
strategy in one game a player has a strategy in the other game that gives
the same outcome. In other words two games are strategically equivalent if
they have the same normal form but for duplicate strategies with the same
outcome.

To prove (a) we can proceed as follows.

In a FFPSB auction the strategies available to the bidders are mappings form
their valuations to their bids. On the other hand, in a Dutch auction the
bidders may only know that one of them has agreed to buy at a certain
price so to end the auction. In both cases the bidders have little information
about the auction and the other bidders bids so that if a bidder bids a certain
amount he can win or lose (in a FFPSB auction) and the same is true in a
Dutch action if the bidder is willing to pay the same price and the good is



still available. In this way we have argued that at any strategy in FPSB
auction there corresponds an equivalent strategy in a Dutch auction so that
the two types are equivalent.

To prove (b) we start by observing that when values are private (so that the
valuations of the object from the bidders are independent from each other
and do not vary) the English auction is strategically equivalent to a SPSB
auction.

Though in the English auction the bids are common knowledge among the
bidders this knowledge is useless in case of private values. In this case there-
fore the strategy available to each bidder is to attend the auction until the
current price reaches one’s own valuation and, at that time, drop out in order
to avoid a negative payoff (as a difference between the valuation of the good
and the sum each bidder has to pay upon winning) but also not to drop out
before (in order to avoid losing the auction and so a possible positive payoff).
The same holds in a SPSB action where the best strategy for each bidder is
to bid a sum equal to one’s own valuation of the good (see further on).

In both types of auction, in the case of private values, the bidders have the
same strategy: either to stay up until each own’s value or to bid that value
so that the two types are strategically equivalent.

We have therefore proved the following equivalences (among the strategies
available to the bidders and not among the rules of the auctions) :

- Dutch auctions and F'PSB auctions,

- (under the constraint of private informations) English auctions and
SPSB auctions.

The second equivalence is valid only under the specified constraint since the
English auction allows an exchange of information that may influence the
behavior of the bidders and this exchange cannot take place in a SPSB
auction so that the two types are equivalent only when this exchange has no
effect and so in the case of private values.

6 Some parameters

The auction formats are evaluated according to the following parameters:

- the revenue for the seller or the expected selling price for the auc-
tioned object;



- the efficiency for the society as a whole so that an object is assigned
to the bidder who, ex post?, evaluates it at the most;

- the simplicity or the transparency of the rules of an auction and the
easiness of implementing such rules;

- the existence of collusion possibilities among [subsets of] the bidders
and [some of| the bidders with the auctioneer.

7 Single object private values auctions

7.1 Introduction

In this section we focus on auctions where a single object is auctioned
and the values of the bidders are:

- private,

- independent,

- identically distributed.
Under these hypotheses we have the following equivalences:

- between Dutch auctions and F'PSB auctions,

- between English auctions and SPSB auctions,

so that we can restrict our attention only to the sealed bid auctions both at
the first and at the second price. In this way we have two auction formats and
each of them defines a game of incomplete information among the bidders
with Bayesian-Nash equilibria. In tall the cases where we have more than one
equilibrium we may perform a selection on the basis of either the dominance
or the perfection or the symmetry under the constraint to use the same
criterion for all the formats so to be able to perform a comparison of the
equilibrium outcomes in one format with the outcomes in another format.

7.2 The model

In the framework we have defined we have a single auctioned object, an
auctioneer and N potential buyers (the bidders). Each bider ¢ assigns a
value X; to the object with X; € [0,w] for a suitable® w > 0. Such values are

2We are going to use the term ex ante to denote the time before the execution of the
auction and ex post to denote a time after the execution of he auction when all the bids
are known and the object is allocated according to the rules of the chosen auction form.
3With a little abuse in notation we may allow w = +00.
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independently and identically distributed according to a common distribution
function F' that is supposed to be differentiable (and therefore continuous or
atomless) with density f = F’ and full support (so that it is defined on
[0,w]). Moreover we suppose that for every bidder we have F[X;] < +o0.
Under these hypotheses we have that each bidder ¢ knows x; or the current
value of the random variable X; and knows that the other random variables
X; (for every j # 1) are identically and independently distributed according
to F'.

Moreover we are under the following hypotheses.

- the bidders are risk neutral and so each of them maximizes his ex-
pected payoff as the difference between two products evaluation and
probability of winning and payment and probability of winning,

- the number of the bidders is common knowledge among the bidders,

- the cumulative distribution function F' is common knowledge among
the bidders,

- the distribution values are the same for all bidders that are therefore
termed as symmetric bidders,

- the bidders have no budget constraints so they can pay up to their
value whichever this may be.

In what follows we are going to deal with:

- FPSB auctions where the highest bidder gets the object and pays his
bid;

- SPSB auctions where the highest bidder gets the object and pays the
second highest bid.

In both cases the strategy for a bidder is a function:
6i : [Oaw] - R—i— (1)

that maps a bidder’s value on his bid. The absence of budget constraints is
mirrored by the structure of the range of the function (R ).

Under the hypothesis we have made of symmetric bidders we are going to
look for a symmetric equilibrium or an equilibrium where all the bidders
follow the same strategy.



7.3 SPSB auctions

As we have already seen in the private values case SPSB auctions are
strategically equivalent to English auctions.
In a SPSB auction if the bidder ¢ has a valuation x; and submits a bid b,
he obtains the following payoft:

L — T; — max#ibj Zf b; > max#ibj (2)
! 0 Zf bz < ma:zc#ibj

In case of a tie (or if b; = max;x;b;) the object is allocated to one of the bid-
ders with equal probability. We note how, however, that from the hypothesis
of atomless distribution we have that a tie occurs with null probability.

In this context we have the following result.

Proposition 7.1 In a SPSB auction the truthful strategy:
Fa) = (3)

15 a weakly dominant strategy.
Proof

Since we are interested in a symmetric equilibrium we can focus on one of
the bidder, say bidder 1. Now suppose that:

p1 = ma:v#lbj (4)

is the highest competing bid. If 1 bids xy (his valuation) he may either win
if ©; > b; or lose if x; < b; or be indifferent if x; = b;. To analyze the
convenience of a strategic bidding we examine the two possible cases:

- overbidding if 1 bids z, > x1;
- underbidding if 1 bids z; < .
If 1 underbids (so zy < x1) we have the following cases:

- x1 > 21 > p1 so 1 wins with a profit x1 — py that is the same that he
gets bidding xy;

- x1 > p1 > z1 S0 he loses an auction (with profit 0) that he could win by
simply bidding x1 (with a profit x1 — p1);

- p1 > x1 > 21 he loses with a null profit.

So underbidding never increases 1’s profit and in some case may even de-
crease it.
If 1 overbids (so z; > x1) we have the following cases:
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- 21 > x1 > pp and 1 wins with the same profits x1 — p1 that he would get
bidding x;

- 21 > p1 > x1 and 1 wins but gets a negative payoff x1 — p1 so he would
have been better off by bidding x1;

- p1 > z1 > 21 and 1 loses in the same way as with the bid of x;

We have verified how overbidding is never positive and may be negative. From
this analysis (and under the only assumption of private values) we see how
truthful bidding is a weakly dominant strategy.

We now wish to evaluate what each bidder is expected to pay in equilibrium.
We again use the symmetry condition and focus our attention on bidder 1

so to define:
v =y (5)

as the random variable that defines the highest value among the N — 1
remaining bis X5, X3,... Xy. If we denote with G the distribution function
of Y] we get, for all x:

G(z) = P(Y1 < 2) = F(z)" (6)
where the last equality on the right depends on the hypotheses of:
- independence,
- identical distribution (according to the distribution F'),

of the N — 1 random variables X; that have been represented through the
corresponding ordered statistics Y;.

In this way we can define the expected payment for a bidder with a value x
that bids a sum equal to x (according to a truthful bidding strategy) as:

m?(x) = Plwin|E[2nd highest bid | x is the highest bid]

(7)
= Plwin|E[2nd highest value | z is the highest value]

m%szmwwmq<ﬂ=Ame@ (8)

where ¢() is the density function corresponding to G().
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7.4 FPSB auctions

In this case each bidder ¢ submits a bid b; having a valuation x; that is a
random signal over the interval [0, w] so that the possible payoffs are:

o T; — bz Zf bl > ma:z:#ibj

Possible ties are resolved as we have seen in the case of SPSB auctions.
In this case we can observe that:

- no bidder would bid more than his valuation otherwise by winning he
would have a negative payoff;

- no bidder would bid an amount equal to his valuation so to have a null
payoff;

- an increase of the bid would raise the probability of winning but, at
the same time, would decrease the amount of the payoff.

As to the last point we note that the two effects of simultaneous increase and
decrease balance off and to understand how this occurs we must evaluate the
possible strategies of the bidders in the case of a symmetric equilibrium.

In order to obtain this we imagine that all the bidders 7 # 1 follow the
strategy () we are defining and that we suppose to be:

symmetric;

increasing;

differentiable;

defined as B(x) = b;
- such that 5(0) = 0 (see further on).

We therefore suppose that the bidder 1 does not follow the strategy 3 so that
he receives a signal X; = z and bids b. Our aim is to derive the optimal bid
b as the bid that is the best reply to the other bidders strategy.

For this aim we use a direct approach:

(1) to determine the strategy;
(2) to prove it is optimal.

To solve point (1) we note that:

11



(a) it has no sense for bidder 1 to bid b > (w) since he would get the same
outcome with a lower bid so we impose b < f(w);

(b) if bidder 1 has a value z = 0 he cannot submit a positive bid since in
case of victory of the auction (which can occur with a positive proba-
bility) he would have a loss equal to 0 — b (with b = 3(0)) so we must
have 3(0) = 0.

It is easy to understand that bidder 1 wins if he submits the highest bid and
therefore if:

Since [ is increasing we get:
B(maz;z1X;) <b (11)
or, at last:
B(Y1) <b (12)

where Y] is, also in this case, the random variable that represents the highest
of the N — 1 bids of the other bidders. In this way we have that bidder 1
wins the auction if relation (12) is satisfied or if (by using the fact that [ is
invertible since it is increasing):

Vi< 57H(b) (13)
with an expected payoff given by:
P(win) x payoff = P(Y1 < B7'(0))(x — b) = G(67'(b))(x —b)  (14)

where G is the distribution of Y;. If we denote with g the density function
of G (that we suppose differentiable) and impose on the relation (14) a first
order condition we get, by using the rule of the derivative of an inverse
function: ()

glp- -1

S @ —b) =GB ) =0 (15)

A1)
At the symmetric equilibrium we impose it is b = () or or 7! = z so we
can rewrite relation (15) as:

Gla)d (@) + 9(w)3(w) = wg(a) (16)
or as: d
L G()B(x)] = wg() (1)



Integrating both members and using the initial condition 5(0) = 0 we get:

8a) = g7 [ oty = BRI < (13)

We have therefore defined a candidate function for the role of an equilibrium
strategy.

To prove that this strategy is really a strategy of equilibrium (and so to prove
point (2)) we must prove that if the NV — 1 bidders follow the strategy [ it is
optimal for bidder 1 (that with a value x bids b = (z)) to follow the same
strategy.

To prove this fact we can start by proving the following proposition.

Proposition 7.2 The symmetric equilibrium strategies in a FPSB auction
are given by the following rule:

B(x) = EYi|v1 < 4] (19)

where Y7 is the highest of N —1 independent and identically distributed values
(the bids of the other bidders).

Proof

We suppose that all the bidders but bidder 1 follows the strateqy ' = 3
defined by relation (19) and prove that is optimal for the bidder 1 to follow
the same strategy. To prove this we prove that by following any other strategy
bidder 1 gets a lower payoff.

We note that from the fact that § is increasing and continuous we have that
the bidder with the highest value submits the highest bid (below (5(w)) and
wins the auction. We therefore have that bidder 1 with value x bids b < B(w)
and want to derive his expected payoff.

If we denote with = = 37(b) the value that corresponds to the equilibrium
bid b with the strategy ( so that b = [B(z) we have that the bidder 1 ezpected
payoff if his value is x is:

I(5(2), z) = G(2)(x — B(2)) = G(z)x — G(2)5(2) (20)
If we use the last equality of the relation (18) we get:

H(B(2),2) = G(2)z — G(2) EMi|Y; < 2] = G(2) - / Tpldy (1)

If we integrate by parts we get:

l(3(2).2) = G)o ~ Gl2)z + | Gy =Gl =2+ [ Gy (@2
0 0
In this way we have the two following expressions of the expected payoff:
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(1) TI(B(z),x) = Gz — z) + [ G(y)dy if bidder 1 bids 3(z),
(2) II(B(x),x) = foz G(y)dy if bidder 1 bids the equilibrium strategy (3(x).

By using such relations we can write the difference of the two payoffs as:
1(3(a),2)~TH(B(2),2) = G) () | Glody = G o)~ [ Gludy
(23)
that we want to prove to be > 0 regardless of whether we have z > x or z < x
so to prove that bidding B(x) is better than bidding (3(z). In this way we
prove that if the other N — 1 bidders follow the strategy (3 the bidder 1 with a
value x cannot be better off than by bidding () so that § is a symmetric
equilibrium strategy.
If we consider:

G(2)(z — ) — / " Gly)dy (24)

(with G increasing) we have that the integral defines an area under a curve
that is to be compared with the area of a “rectangle”. We consider the two
cases z > x or z < .

In the case z > x by using the mean value theorem we know that we can find
a suitable w € [x, z| such that:

Glu)(z—2) = [ Gy )

so to get:

G2)(z—2)—Gw)(z—z)>0 (26)

by the fact that G is increasing and that w < z.
In the case z < x we that the relation (24) can be rewritten as:

Go)(z—a)+ | " Gly)dy > 0 (27)

Again by using the mean value theorem we can find a suitable w € [z, x| such
that:

Glu)o—2) = [ Gludy (28)
and, n this way, to get:
G(z)(z —z)+ Gw)(zr —2) >0 (29)

or:

—G(2)(zr—2)+Gw)(zr—2) >0 (30)

that is true since G is increasing and w > z.
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In this way we have derived an equilibrium strategy that can be rewritten
(by using the first equality of relation (18) and integrating by parts) as:

Ba) = [ G 1)

so that the equilibrium bid of a bidder is lower than is valuation of the
auctioned object.

In relation (31) the integral defines the reduction of the bid. From the fact
that G is increasing and that y < = we have that:

<1 (32)

and, moreover, we can write (again using independence and identical distri-
bution):

Gly) _  F) v

that tends to 0 as N — oo so that the bid tends more and more to the valu-
ation (truthful bidding) the higher is the number of the competing bidders.

Example 7.1 If we suppose that the values are uniformly distributed in the
interval [0, 1] we get:

gl(x):x—/ox ggiidy:x—/oxiN_ldy:N]\_f 1x (34)

with F(z) =z, G(z) = F(x)V ! =2V and G(y) = yV L.
In this case we have that the equilibrium strategy is a constant fraction of the
bidder’s value. In the case of two bidders we have:

B (z) = (35)

x
2
so that none of the two bidders bid more than half of his valuation of the

object.
The presence of an upper bound derives from the following inequality:

B(z) = EY1|Y; < 2] < E[Y)] (36)

In case of two bidders we have Y| = X. If we add moreover the uniform

distribution hypothesis over [0,1] we get E[X]| = §

15



7.5 Comparison of the revenues

Up to this point we have defined the symmetric equilibrium strategies
for both a FPSB auction and a SPSB auction. We can now evaluate the
revenue for the two auctions as the selling prices of the auctioned object.

In a FPSB auction we have the following equilibrium strategy:

Bl(x) = E[11|1 < 2] (37)
so that the expected payment for the bidder with value z is:
m'(z) = Plwin] x amount bid = P(Y, < z)3'(z) = G(2)E[Y1|Y1 < 2] (38)

This quantity coincides with the expected payment in the case of a SPSB
auction so that we can write:

m?(z) = Plwin]xamountbid = P(Y; < )% (z) = G(x)E[Y1|Y1 < z] = / yg(y)dy
(39)

where A stands for 1 in the case of a FFPSB auction and 2 in the case of

a SPSB. This means that the expected revenues in the two auctions are

the same and do not depend on the form of the auction. We now prove this

assertion.

In order to do so we now can evaluate the ex-ante* expected payment of a

bidder in one of the two auctions as:

/ m* (z) f(z)dx = / / yg(y)dyf(x (40)

If we interchange the order of integration we get:
Bt = [ ([ f@domgtay = [l - Folswds @)
0 Y 0

The expected revenue for the auctioneer is N times the ex-ante expected
payment of each bidder so that we can write:

E[R* = NE[m =N / [1— F(y)]g(y)dy (42)

where g(y) = fN"(y). If YQ(N) is the second highest value of N values we
have:

Y =N - Fy)) ') (43)

4In this case with this term we denote the time before the bidders get assigned their
values by the move of a special player, the so called nature, as it occurs in the case of
games with incomplete information.
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and therefore we can write:
BIRY = [ty = BV (44)
0

so that the expected revenue is the expected value of the second highest value
of N values independently from the form of the auction. From this we have
that the expected revenue of the seller in a F'PSB auction and in a SPSB
auction is the same. We therefore can state the following proposition.

Proposition 7.3 Under the hypotheses of:

- independent,

- adentically distributed,

private values the expected revenue for the seller both in a SPSB auction
and in a FPSB auction is the same.

Observation 7.1 We note how this is true if we consider the expected val-
ues. In the case of uniform distributions and two bidders we have that in a
FPSB auction the equilibrium strategy is:

x

Bl (z) = 5 (45)
whereas in a SPSB auction the equilibrium strategy is:

F(r) == (46)

If bidder 1 has a value 1 and 2 has a value x4 we have that if xt1 > 1/2x1 > x9
bidder 1 wins and pays 1/2x1 in a FPSB auction but wins and pays only xs
i a SPSB auction so that the former is more profitable than the latter.
On the other hand if we have:

1 1
§$2 < 51’1 < Ty < Iq (47)

in a SPSB auction (where bidders bid truthfully) wins 1 and pays xs whereas
in a FPSB auction (where both bidders follow 3*) wins 2 that pays 1/2x; so
that a SPSB auction is more profitable than a FPSB auction.

Observation 7.2 We moreover note how the revenues in a SPSB auction
are more variable than those in a FPSB auction. Indeed in the former case
the prices may vary in the interval [0,w| (owing to truthful bidding) whereas
in the latter they can vary in the interval [0, E[Y1]].

We moreover can state that for the seller a SPSB auction is riskier than a
FPSB auction so a risk averse seller, in presence of risk neutral bidders (the
hypothesis we have thought to valid up to now), prefers a FPSB auction to
a SPSB auction.
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7.6 Reserve price

Up to now we have examined two types of auction where the seller is
going to to give away the auctioned item at every price he is able to collect
from the bidders.

In this section we analyze the situation where a seller may fix a reserve price
r > 0 so to not sell the good/item if the selling price is lower than r.

We wish to examine the effect of such a reserve price on the revenue for the
seller so we consider both a FFPSB auction and a SPSB auction where a
reserve price is present and define a reserve price as the price that the winner
has to pay in any case in order to get the auctioned object.

7.7 SPSB auctions with a reserve price

In this case the seller fixes a reserve price r > 0 so that the price at which
an object is sold can never be lower than r. This means that no bidder with
a value r < r can make a positive profit from attending the auction. We
recall that we have:

profit = valuation — payment = x —r < 0if x <r (48)

Notwithstanding the presence of the reserve price, however, the truthful bid-
ding is again a weakly dominant strategy so the expected payment of a bidder
with a valuation equal to r is G(r)r (where G(r) defines the probability of
winning) whereas if a bidder has a valuation x > r we get that the expected
payment assumes the following form:

() = r(G(r) + / " ygly)dy (49)

as a sum of a fixed expected payment up to r and an expected payment for
the excess over r. We recall that the winer has, indeed, to pay the price r
whenever the second highest bid is lower than r.

7.8 [FPSB auctions with a reserve price

In this case we fix r > 0 so that the price to be paid is at least r. This
implies that no bidder with a valuation z < r can make a positive profit by
bidding b as defined by the equilibrium strategy since he would have a profit
equal tox —r < 0if x < 7.

We now examine the other cases . If 8! is a symmetric equilibrium strategy
of a FPSB auction with a reserve price r > 0 we have indeed to consider
the two cases:
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(1) z=r
(2) x >r

In the case (1) we have that a bidder with a value r can win only if all the
other bidders have a value lower than r (from the fact that g is increasing)
so that he can bid r that is the the sum that he should pay in case of victory
(and thus having a null payoff).

In the case (2) it is possible to prove that the equilibrium strategy is:

BY(z) = E[maxz{Y1,r}|V1 < 7] (50)

where Y] is the highest of the other V — 1 bids (that bidder 1 sees as random
variables). We can rewrite relation (50) as:

B a) = % e / ey (51)

where the first term on the right expresses the part due to the reservation
price and the second term the excess over such reservation price.

In the case © > r the expected payment from a bidder with a value x may
therefore be expressed as:

m'(z) = Plwin)bid = G(x)"(x) = rG(r) + /x yg(y)dy (52)

or as the sum of a fixed payment and an excess payment for x > r. We
recall that G(y) is the distribution of Y; and so denotes the probability for a
generic bidder (by the symmetry hypothesis) of winning the auction. From
the expression (52) we see how it is valid also in the cases © = r and = < r.
From the relations (49) and (52) we therefore see how it is:

m'(z) = m*(x) (53)
so that the expected payment is the same in both auction formats and the

same holds also for the expected revenue.

7.9 The effect of the reserve price on the revenue

We now have to understand how the value of r affects the expected rev-
enue of the seller in both types of auctions.
We have that a bidder with a value r is expected to pay rG(r). In the general
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case the ex-ante (or before the bidders get their values revealed) expected
payment of a bidder can be expressed as:

E[mA(a:)] = /w mA(x,r)f(:zr)dx (54)

where with A we denote a F'PSB auction (and so it must be read as 1) or a
SPSB auction (and so it must be read as 2) depending on the case.

By using the expression of the expected payment (see for instance relation
(52)) we can rewrite relation (54) as:

Bl (@) = [ e + / gyl (2)de (55)

Bl (@) = [ " rG(r) fla)de + / ) / Cyedyf@)de  (56)

and so as:
ElmA ()] = rG(r)[1 — F(r)] + / ’ / Cyg)dyf@)de  (57)

If we consider the double integral and we interchange the order of the inte-
grations we get:

ElmA ()] = rG(r)[1 — F(r)] + / u / Cf@dnygly)dy  (58)
ad, at last:

Bl @) = rGO)L - FOL+ [yl = Folghdy ()

We now have to determine which is the optimal reserve price for the seller
or the reserve price that maximizes his revenue.

To do so we suppose that the seller gives a value zy € [0, w] to the auctioned
object as the value that he gets from the object if it is left unsold.

We obviously have r > xy (since if r < xy the seller would be better off by
not selling the object) so the expected payoff for the seller can be expressed
as:

Iy = expectedpayof f if sells + expected payof f if doesnot sell  (60)

or as:

Iy = NEm*(z,7)] + F(r)Nx (61)
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where F'(r)" is the probability that all the bidders bid less than r so that
the auctioned item is left unsold.
By replacing the expression for m“(x,r) from (59) we get:

o = NrG(r)[1 - F(r)] + / Y- F)lgw)dy) + F()Vee  (62)

If we write relation (62) as:

T

lly = NrGr)[1 - F()) ~ [ ylt = F@lgo)ds] + F)Yag  (63)

w

and evaluate % by using the rule:

& [ o=@ (64

we get:
dlly

dr
(where G(r) = F(r)V~') if we note that at the second member of (63) we
have a term that through the derivation contains ¢(r) and cancels out with
the derivative of the integral.
At this point relation (65) can be rewritten as:

= N[1 = F(r) = rf(r)]G(r) + NG(r)f(r)zo (65)

dlly _ f(r)
W = N[l - (7’ — ZBo)l — F(T)](l — F(T))G(?") (66)
If we recall the definition of hazard rate as:
M) = 1750 f(;)(r) (67)
we get: .
— = N[L = (r = 20)A()](1 = F(r)G(r) (68)

We now consider the two cases xy > 0 and 2o = 0 (where z; is the value that
the seller assigns to the good to be auctioned).

In the case xy > 0 we have that the derivative in r = zg is positive (as well
as for r < xp) so the function Il is increasing and therefore may reach a
maximum value only for r > x.

In the case o = 0 we have:

dll

—— = N[L=7A(2)](1 = F(r))G(r) (69)
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and if r = 0 we have 4% = 0 and, if A(r) is bounded, 4I* >= 0 if r > 0 so
that Iy has a local minimum at » = 0 and this means that a small reserve
price can cause an increase in the seller’s revenue.

From these considerations we have that a revenue maximizing seller should
always set a reserve price r > x.

We now wish a justification of this fact and so why a reserve price r > xq
should cause an increase in the revenue for the seller.

In oder to do that we consider a S P.S B auction with two bidders and suppose
that the seller has a value zy = 0.

In this case if r > 0 there is the risk that if Y5 < Y] < r (where Y] is the
highest value among the two bidders) the object is left unsold with a loss.
On the other hand it may be Y; > r > Y5 (since in the case Y} > Y5 > r the
value of r has no effect) so that the object is sold at r instead of Y3 with a
gain.

We can see how the probability of the first case is F(r)? (as the probability
that both Y; and Y3 are lower than ) so that the expected loss is at the most
rF(r)? whereas the probability of the second case is® 2F(r)(1 — F(r)) with
an expected gain of 2rF(r)(1 — F(r)) that, for small values of r, is greater
than the expected loss.

This fact is called the exclusion principle and state that it is optimal for
the seller to exclude some of the bidders and precisely those whose value is
lower than r even if their valuation would be greater than x.

At this point if we impose a first order condition or relation (68) or:

dIly
9 _p 70
dr (70)
we get:
1—(r—zoAr)=0 (71)
and so the optimal reserve price expressed as:
1
- 72
YD B (72)

If the hazard rate A is increasing with r (and we recall > z4) we have that
the derivative has the followings signs:

- for r = 7* we have 1 — (r — zo)A(r) = 0

- for r < r* we have 1 — (r — zo)A(r) > 0

®We note that F(r) = P(Y2 < r) and 1 —F(r) = P(Y; > r) whereas the factor 2 counts
the number of ways in which this can happen.
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- for r > r* we have 1 — (r — z9)A(r) <0

so in r = r* we have a maximum of the function II; and the condition is
also sufficient. Another remarkable fact is that r* does not depend on the
number Nof the bidders.

7.10 Other topics

We now make some comments on the following issues:
(1) the effect of the entry fee,
(2) the issue of efficiency versus revenue,
(3) the commitment at not selling.

As to the point (1) we note how an entry fee represents another way of
excluding some potential bidders from the auction whereas the commitment
at not selling is a way to make the fixing of a reserve price a credible threat.
In the previous section we have seen how a positive reserve price r causes the
bidders with a value z < r to be excluded from the auction. The same effect
can be obtained by the seller by fixing an entry fee f so to exclude from the
auction buyers with low values.

With the term fee we denote a fixed and non refundable sum that the bidders
must pay to the seller in order to be able to attend the auction and submit
bids.

Since a reserve price excludes all the bidders with a value z < r and we want
to define an equivalent mechanism through the application of the fee we say
that this is true if the fee is fixed as:

f= /OTG(y)dy (73)

and so at a level that is equal to the expected payoff in both a F'PSB auction
and a SPSB auction. From this we have that a bidder whose valuation is
x < r has no worth in paying f to attend the auction.

We have therefore seen how the same effect of a reserve price r can be ob-
tained by fixing a proper value of the fee f and vice versa how the effect of
f can be replicated through a properly fixed reserve price r.

As to the point (2) we note how both an entry fee and a reserve price raise
the revenue of the seller (since we have proved this for the reserve price and
we have shown how the two mechanisms are equivalent) but may have neg-
ative effects on the efficiency.
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To see why this can occur let us suppose that zo = 0. In this caseifr = f =0
the auctioned object is always sold to the highest bidder and so (from the
hypotheses on the bidding strategy /) to the bidder with the highest value.
From this we therefore have that the auctions FF/PSB and SPSB allocate
efficiently since the good is awarded to the bidder who evaluates it the most.
On the other hand, if » > 0 there is the positive probability that the object
is left unsold and this is a source of inefficiency that gives rise to a trade off
between efficiency and revenue.

Last but not least, as to the point (3) we note that the commitment of not
selling below the reserve price must be a credible threat in order to have
some effect on the bidders since, if they not feel it as a credible threat, they
can be tempted to wait for a further sale at a lower reserve price and this
may increase the probability that the object is left unsold by reducing the
demand. In this case the use of a secret reserve price may be of some help.

8 The Revenue Equivalence Principle

8.1 The definition

We have seen how the expected selling price is the same in a FPSB
auction and in a SPSB auction so that a risk neutral seller is indifferent
between the two auctions. In such auctions the bidders submit a bid (that
measure the willingness to pay of each bidder) and such bids determine both
who wins the auction and how much such a winner has to pay.

An auction is termed standard if its rules state that the object goes to the
bidder who makes the highest bid so the foregoing auctions are examples of
standard auctions as well as an all pay auction (where all the bidders pay
their own bids including the losing bidders) or a Third price sealed bid
(I'PSB) auction where the price that is paid is the third highest bid.

We can therefore state that:

- given a standard auction mechanism A;
- given a symmetric equilibrium strategy 54,

- if mA(x) is the equilibrium expected payment from a bider whose val-
uation is z,

- if the expected payment of a bidder with valuation/value 0 is 0,

then the expected payment function m#() does not depend on A so that the
expected revenue in any standard auction is the same (from the relation we
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have seen between the two quantities).
We formalize all this in the following proposition.

Proposition 8.1 (Revenue Equivalence Principle) If, given a set of
bidders, we have that:

- their values are independent and identically distributed,
- they are risk neutral,

then any symmetric and increasing equilibrium strategy of any standard auc-
tion such that a bidder with value 0 has a null expected payment yields the
same expected revenue to the seller.

Proof

We suppose to have a standard auction A with a fived symmetric equilibrium
B and we denote with m*(x) the expected payment of the bidder with value x
so that we have m*(0) = 0.

We use the symmetry hypothesis and consider bidder 1 and suppose that all
the other bidders follow the strategqy (3.

We therefore have that with a value x the equilibrium strateqy would be
b= [(x) so that bidder 1 (since he deviates unilaterally) bids ((z) instead of
B(a).

Now we have that bidder 1 wins the auction if 3(z) > B(Y1) where we have
that, as usual, Y7 is the highest value of the other N — 1 bidders. Since (3 is
increasing such condition is equivalent to the condition z > Y.

We now express the bidder 1 expected payoff as:

(2, 2) = G(2)x — m?(2) (74)

as the difference between the expected gain and the expected payment (or
loss) if G(z) = F(2)N~! is the distribution of Y; under the usual hypotheses
of independence and identical distribution.

The key point that allow us to prove the principle of the equivalence of the
revenues is that m*(z) will result to depend on 3 and z but to be independent
from x.

If we impose a first order condition on I14(z,z) or:

ol (z,x)
we get: p
9(z)x — —-m*(z) = 0 (76)
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At the equilibrium we have z = x so that from (76) we get:

d%mA(y) = g(y)y (77)

and, integrating both sides with the initial condition m*(0) = 0:

mA(x) = / " gwydy = G EYIY: < 7] (78)

Since the right hand side does not depend on the form of the auction A we
may derive that the expected payment (and therefore the expected revenue) is
independent from A and so is the same in every standard auction.

Example 8.1 If we consider the values as uniformly distributed on the in-
terval [0, 1] we get:

- F(z) ==z,
- G(x) = 2N if N is the number of the bidders,
- g(z) = (N = 1)2™2,

In this way for any standard auction such that m*(0) = 0 we get as the
payment of each bidder:

N -1
¥ N (79)

me) = [y = 1y 2y =
0
so that for the expected payment we get:

N

Elm* ()] = /01 7”fl/‘(90)f(f6)dfc:/01 e Loy — N1

NN +1)

(80)

since f(x) = 1. The ex-ante expected revenue for the seller is N times such
expected payment so we get:

BIRAw)) = NEm?(0)] = 5 1)

We note that:
- E[m*(x)] — 0 as N — o0

- E[R*(z)] — 1 as N — <
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8.2 The use

The Revenue Equivalence Principle (REP) can be used in the two
following cases, if its premises are satisfied so we can assume its conclusion
is true:

- to derive the equilibrium bidding strategies in the case of other types
of auctions;

- to derive the equilibrium strategy in the cases where the bidders are
unsure about the numbers of rivals bidders they face.

To show its use in the former case we take into consideration these two types
of auction:

- all pay auctions,

- third price auctions.

8.2.1 All pay auctions

We want to use REP to derive the equilibrium strategy in these types of
auctions. We recall that in an all pay auction all the bidders submit a bid,
the highest bidding bidder wins the auction and gets the auctioned object but
all the bidders pay their submitted bid to the auctioneer. All pay auctions
can be seen as models of lobbying activities where we have only one winner
but all those who participated in the activity must pay their costs for making
pressure.

Since we want to use REP to determine an equilibrium strategy in this
case we must have its premises satisfied so that we can derive and use its
conclusion.

We therefore suppose that:

- there is a symmetric, increasing equilibrium /3 such that 5(0) = 0;
- the values are symmetric, independent and private,
- the bidders are risk neutral.

From these premises we derive that the expected payment of each bidder
must be the same as:

mA(z) = G(o)EViYi < 2] = / " ygly)dy (52)

27



From the definition of this type of auction we have that the expected pay-
ment of a bidder with type (or value) x is his bid 47 (z) where 84 is the
symmetric, increasing equilibrium of an all pay auction.

We therefore must have that:

AP () = m (x) = / " ygly)dy (83)

We have now to verify that this is an equilibrium strategy and , in order to
do so, we suppose that all the bidders but one follow such strategy, whereas
this deviating bidder bids £(z). In this way the expected payoff for a bidder
with value x that bids ((z) is given by the following expression:

G(2)e — B(z) = Gl)e - / “ya(y)dy (84)

If we integrate by parts we get:

G(2)e — yGW)IE + / Gly)dy = G —2) + / Gy (85)

The last expression on the right is the same as the expression of the payoff
that it is obtained in the case of a F'P.SB auction if a single bidder deviates
and bids 3(z) instead of the equilibrium bid. As we have already seen such
a quantity is maximized by posing z = x so that also the deviating bidder
is better off by following the same strategy that is therefore an equilibrium
strategy.

8.2.2 Third price auctions

We want to use REP to derive an equilibrium strategy for this type of
auctions. We suppose to have N > 3 or at least three bidders. In this case
the rules of the auction are the following:

- the bidders submit a bid,
- the highest bidding bidder wins the auction and gets the object,
- he pays the third highest bid.

We again suppose that the hypothesis of the REP are satisfied so that the
expected payment in this type of auctions can be expressed as:

m(z) = / " yg(h)dy (86)
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We now use the symmetry hypothesis and consider bidder 1 and suppose
that he wins the auction with a value z so that Y; < x and pays a price
equal to 33(Y3) where Y5 is the second highest of the N — 1 remaining N — 1
bids (and so it is the third highest value among the values Xj;).

At this point we can write an expression for the density of Y5 conditioned on
the fact that z is the winning value as:

IV DY < o) = F%(N C)(F@) - Fo) ) (67)

In relation (87) we have that:

- (N =1)(F(x) — F(y)) is the probability that x > Y] > Y5 = y;

1(N72) is the density of the highest of N — 2 values;

- Fl(Nfl)(x) is the probability that x is the winning value.

At this point we can write in general terms the expected payment of a bidder
in a third price auction as:

md(z) = FN V(@) B3 (Ya)|Vi < ] = / "B ) FY (@) S (v < 2)dy

(88)
If we replace the expression from (87) we get:

@) = [ N - DFE@ - PO Py (69
If we use REP we can equate relation (89) with relation (86) so to get:
| B =@ - P Py = [Cwotias (@)

If we differentiate both members with respect to x but the first member
within the integral sign we get, using the fact that G(z) = F(z)¥~! and
therefore g(z) = (N — 1)F(2)N72f(x):

(N — 1)f(2) / "B YD (g)dy = wg(r) = 2(N — 1) f(@)F)¥2 (91)

If we simplify the leftmost quantity with the rightmost we get:

/ox F) A (y)dy = 2 F(x)N 2 (92)
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that can be rewritten as:
| By = or ) (93)
0

by using the fact that F(z)V-2 = F""?(z). If we differentiate again relation
(93) with respect to z we get:

P @) =i @)+ B (@) (94)
In this way we can derive at last 3° as:
B (a)
AN @)

We can further simplify relation (95) if we observe that, by independence
and identical distribution:

- P (@) = F(a)V?

BF(z)=z+ (95)

N- _
- AT @) = (N = 2)F@)V ()
so that we can rewrite relation (95) as:

F(x)
(N =2)f(x)

Since we want 3% to be an equilibrium strategy it must be increasing. A
necessary and sufficient condition for this to occur is that:

Fz)=z+ (96)

F(x)
97
(o) o
is increasing with x. This condition is equivalent to the following condition:
f(z)
——= >0 98
I (98)

or at the condition that InF' is concave or that F' is log concave. In other
words we have that InF is concave iff® % is decreasing and so iff ? is increas-
ing.
We note that this condition is satisfied if F'(z) is an uniform distribution
whose density is a constant. We can therefore state the following proposi-
tion.

SWe recall that iff stands for if and only if.
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Proposition 8.2 In presence of at least three bidders and if F' (the common
distribution) is log concave then a symmetric equilibrium strategqy is a TP
auction can be expressed as:

F(x)
(N —2)f(x)

so that the bid is greater than the bidder’s valuation.

BFz) =z + (99)

Example 8.2 If the values are uniformly distributed on [0,w| since we have:

- F(x) = £ (so that F is log concave),
- f(l’) - %7

we get:

BFx) =z + (100)

x
(N-2)
so that we verify that the equilibrium bid (or B(x)) exceeds the value x but
tends to x as the number N of the bidders increases.

Observation 8.1 We comment a little the reasons why 3*(x) > x.

In a TP auction a bidder could either underbid (so to bid b < ) or overbid
(so to bid b > x).

In the case b < x the bidder may win having a gain equal to the case where
he bids x but can lose having the possibility to win by bidding x and so having
a loss. This means that by underbidding a bidder is never better off and may
be worse off so underbidding is a dominated strategy.

We now prove that overbidding is not a dominated strategy so that a bidder
is better off by using it.

We fix an equilibrium strategy, 3, and suppose that all the bidders but bidder
1 follow it. Bidder 1 has a value x and bids b > x. If we have 3(Ys) < z <
B(Y1) < b the bidder is better off since he wins an auction that he would have
lost by bidding x. In this case he has a gain. On the other hand if we have
x < B(Ya) < B(Y1) < b by bidding b the bidder wins an auction that he would
have preferred to lose since he has a loss.

To understand that overbidding is a good strateqy we must compare the gain
and the loss. If b — x = € is small (or smaller than one) the gain is of the
order €2 whereas the loss is of the order € so that the former is greater than
the latter.

Observation 8.2 If we compare the equilibrium bids in the FPSB, SPSB
and TP auctions (and under the hypothesis that the distribution F' is log
concave) we get:

Bl(z) < B*(x) =2 < B*(2) (101)
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8.2.3 Uncertainty on the number of the bidders

In the auction forms we have examined up to now we have supposed that.
- each bidder knows his value x;;
- each bidder is uncertain about the values X; of the other bidders’

- all the other aspects of the situation (such as the number of the other
bidders and the nature of the common distribution of probability) are
common knowledge among the bidders.

We now introduce an uncertainty on the number of the bidders that are
involved in an auction. We note that this uncertainty may occur in the case
of sealed bid auctions as well in the case of the Internet auctions (whose
treatment is outside the scope of the present paper).

To do so we introduce the following sets:

- A ={1,...,N} as the set of the potential bidders,
- of C N as the set of the actual bidders.

We maintain the hypothesis of the common distribution F and so of the
symmetry of the bidders.

We perform the analysis by considering a bidder i € &/ and denote with p,
the probability that any bidder of &7 assigns to the event |</| = n + 1 or
that he is facing n other bidders.

The process by which we pass from .4 to & is not important but for the
fact that it is symmetric so that each bidder holds the same beliefs about
how many other bidders he faces. This means that the probabilities p,, are
common knowledge among the bidders and do not depend on the identity of
a bidder.

We consider therefore a standard auction A and a symmetric, increasing
equilibrium J. Since the bidders do not know exactly the number of the
bidders each of them is facing we have that # does not depend on such
number. We now want to evaluate the expected payoff of a bidder with a
value x that bids ((z) instead of the equilibrium bid §(z).

The bidder we are considering wins the auction if the highest value of the
other bidders (as drawn from the distribution F') is lower than z or if Yl(n) <z
where n is the actual number of the other bidders. This event occurs with a

"We recall that X is a random variable that takes values in a given interval whereas
with « we denote a realization of such variable and so a known (at least from one bidder)
value.
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probability given by G(™ = F(z)" that is derived by using the hypotheses of
independence and identical distribution.
The overall probability that this bidder will win by bidding ((z) is therefore

expressed as:

N-1
G(z) = paG™(2) (102)
n=0
with:
N—1
> po=landp, >0 (103)
n=0

In this case we have the following expected payment:
M (z,2) = G(2)z — m*(x) (104)

as the difference between the expected gain and the expected payment if a
bidder with value x bids 3(z).

In this way we have that RE P holds also in the presence of uncertainty about
the number of the bidders.

We now assume that the auctioned good is sold by using a SPSB auction.
Also in the presence of an uncertainty over the exact number of the bidders
it is still a [weakly| dominant strategy to bid one’s own value so that we have
B(x) = z. In this case the expected payment of a bidder in &7 with the value
x can be expressed as:

N—1
m¥(x) = paG (@) B |y < a] (105)

n=0

If we now consider a F'PSB auction with a symmetric increasing equilibrium
[ we have that a bidder with a value = that bids a sum ((z) has an expected
payment that can be expressed as:

m!(z) = G()B() (106)

as the product of the probability to win for the bid the bidder makes and
that depend on his value. Since our aim is to obtain the unknown strategy
B we can use REP and impose the equality:

m?(x) = m*(z) (107)

Y P GO@EYY < 1] = Ga)() (108)
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In this way we derive an expression for ((z) as:

. = G(n) (ZE) n n o — G(n) (.7)) n
Blz) = ;pnwE[Yf " <] = Zp o 2@ (109)

where 0 (x) is the equilibrium bidding strategy in a FPSB auction in
which there are n + 1 bidders for sure. In this way according to relation
(109) the equilibrium strategy is the weighted average of the strategies that
can be used when the number of the actual bidders is known for sure by all
the bidders that attend the auction.

9 The extensions

9.1 Introduction

In order to examine the possible extensions we can introduce we recall
the basic hypotheses on which the REP is based and also recall that the
general framework is of private values. They are:

independence of the values of the bidders,

- all the bidders are risk neutral so they try to maximize their expected
payoff,

- all the bidders can pay up to their values and so have no budget con-
straints,

- all the bidders’ values are distribute according to the same distribution
F" over the same support.

The extensions we introduce are relaxations of such hypotheses and tend to
verify how REP is affected by each of them, if it keeps its validity or not.

In what follows we are going to introduce a relaxation at a time so that we
drop one assumption at a time but keeping the others as valid and effective.

9.2 Risk averse bidders

If we relax the hypothesis of risk neutrality of the bidders and introduce®
risk avers bidders the REP is no longer valid.

8We recall that the bidders (that can be seen as buyers) can be characterized as risk
averse, risk neutral and risk seeking and the same classification is true also for the
seller.
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We have indeed that risk neutrality implies that the expected payoff can
be expressed as the difference:

expected gain — expected payment (110)

and so is both linearly separable and linear in the payment. This linearity
is crucial in the derivation of the REP and since it is lost when the bidders
are no more risk neutral this implies that RE P is no more valid.

In case of risk aversion each bidder is supposed to have a von Neuman
Morgernstern utility function:

u: Ry — R (111)
defined so to satisfy the following conditions:
- u(0) =0,
-u >0,
- u” <0,

and each bidder is supposed to maximize his expected utility rater than his
expected profit/payoff. For this purpose we may state the following propo-
sition.

Proposition 9.1 If the bidders are risk averse with the same utility func-
tion and their values are:

- private,
- independent,
- symmetric,

we have that the expected revenue in a FPSB auction is greater than the
expected revenue in a SPSB auction so that the REP (that states their equiv-
alence) is violated.

Proof

We start by noting that risk aversion makes no difference in a SPSB auction
since it is still a [weakly] dominant strategy for a bidder to bid his own value
or B(x) = x so that the expected payment (or the expected price) is the same
as in the case of risk neutral bidders.

In order to prove that the REP is violated we must consider the case of a
FPSB auction and prove that the expected payment is modified since it is
either lower or higher so that the equality is violated and the REP 1is no
longer valid.

We therefore consider a FFPSB auction where:
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- bidders are risk averse,
- the bidders have an utility function u,

- the equilibrium strategies are defined by an increasing differentiable
function v : [0,w] — Ry such that v(0) = 0.

Again we use the symmetry hypothesis and examine the individual deviation
so we suppose that all the bidders but bidder 1 follow the strategy v. We
therefore have that bidder 1 will never bid more than vy(w) (since he wins for
sure with a lower bid with a greater gain).

Given a value x the problem of each bidder is to chose z € [0,w] and bid v(2)
so to maximize his expected utility and so to solve:

max,G(2)u(z —v(2)) (112)

We note that if u were linearly separable we would get u(x) — u(y(2)) and
from the fact that u is increasing the problem of mazimum over u would be
equivalent on a problem of maximum over x — ~y(z).

If we consider the problem (112) (where G(z) = FN71(2) is the distribution
of the highest of N — 1 values lower that z that is supposed to be the winning
value) we can impose the first order condition (by evaluating the derivative
with respect to z) so to get:

g9(2)ulx —~(2)) = G(2)u'(x = v(2))7'(2) = 0 (113)

In a symmetric equilibrium it must be optimal to chose z = x so we get:

glx)u(z —~(x)) _ z)u'(z — y(x
v'(x) - ettt o
: ) — u(z —y(r)) g(z) (115)

u'(x —~(z)) G(x)

We underline how our aim is to prove that v(x) > [(x) so we derive a
condition on 3 and v as a condition on 3’ and ~' that gives a contradiction
so that our hypothesis is false and we prove our assertion.

We can indeed derive 5" and ~' and compare them so that from the second
condition we derive y(x) > B(x) as we wished to prove.

If bidders are risk neutral with an equilibrium strategy of () we have u(z) = x
so that v'(x) =1 and we can rewrite the relation (115) as:

B(2) = (z — y(a)) 2 (116)



If w is strictly concave and w(0) = 0 for all y > 0 we have:

U(y; : g(o) < /() (117)
or: u(y)
7 () >y (118)

By using such relation in the relation (115) we get:

oy Wz =) g@) g

(@A) LD > (@ - gl 22 (120)

so that v'(x) > B'(x). We have therefore proved that 3(x) > v(z) = v/ (x) >
B'(x) where (B is the equilibrium strategy with risk neutral bidders and ~y is
the equilibrium strateqy for risk averse bidders.

Since we have 3(0) = ~(0) = 0 we should have B(x) > vy(z) = B'(z) > +'(x)
so since the conclusion is false we have a contradiction and therefore the
hypothesis that we have made is false and we have proved that v(x) > [(x).
In his way we have that in a FPSB auction risk aversion causes an increase
in the equilibrium bids . Since bids are increased also the expected revenue is
increased. In a SPSB auction, on the other hand, the expected revenue is
unaffected by risk aversion so we have proved that the expected revenue in a
FPSB auction s greater than the expected revenue in a SPSB auction so
that REP does not hold anymore.

Observation 9.1 The proof is based on the fact that we prove that ' (x) >

B'(z). If on the other hand we suppose 3(x) > ~(x) since 5(0) = v(0) we
should have [('(x) > ~/(x). Since we prove that by supposing ((x) > ~(x)
implies v'(x) > B'(z) we have a contradiction so that we can derive y(x) >

Blx).

We give now an intuitive justification of his fact.

In order to do so we consider bidder 1 and suppose that the strategies of the
other bidders are fixed. Bidder 1 bids b with a value x. Now we imagine that
the bidder 1 considers decreasing his bid from b to b — A so that:

- if he wins with b — A he has a gain of A;
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- if he loses he has a null gain.

A risk averse bidder thinks that it is more important for him not to risk losing
the auction than the small gain that he can make by slightly lowering his bid.
This means that a risk averse bidder bids higher than a risk neutral bidder
since he prefers winning by bidding more than possibly winning by saving a
small A but with a higher probability of losing so that in this way this bidder
has an insurance against the probability of losing by bidding b — A.

Observation 9.2 Standard auctions with risk neutral bidders are character-
ized by the fact that the payoffs functions are separable in money so they are
quast linear or linear in the payments. In this case each bidder maximizes his
expected payoff that may be expressed as the difference between the expected
value and the expected payment. This separation is crucial in the proof of the
REP. Risk averse bidders, on the other hand, mazximize the expected utility
that depends on the difference between the value and the payment but, since
the utility function is not linear but is concave, we have that the maximand
1s no longer linear in the the payments that the bidders make and this non
linearity is a reason for the failure of the REP.

9.3 Budget constraints

In some cases the bidders may face financial constraints so they are not
always able to pay the amounts equal to their values. Such financial con-
straints may influence equilibrium behavior in both FPSB auctions and
SPSB auctions so we have to examine how this may affect the REP.
Again we suppose that the values of the bidders are:

- symmetric,
- independent,
- private,

and that the auction form involves a single object and N potential buyers
(the bidders) that bid for it.

Bidder ¢ assigns a value X; to the object and has a budget constraint W; so
that he is characterized by the pair (x;, w;) of the realizations of such random
variables and cannot pay more than w; since if he bids more than w; and
defaults he has to pay a small penalty.

We note that for each bidder the pair (X;, W;) is identically and indepen-
dently distributed over [0, 1] x [0, 1] according to a common density f. We
note how this is true among the bidders but for a single bidder the two values
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may be correlated.

In this way we have that bidder i knows the realized pair (x;,w;) and knows
that the other bidders’ pairs are independently distributed according to f.
We moreover underline how we have risk neutral bidders and our aim is to
compare a F'PSB auction with a SPSB auction. We recall that a risk neu-
tral bidder has a payoff that is given by the difference between his valuation
for the object and his bid so we can write:

payoff = z - B(x) (121)

With & we denote the signal that is received by the bidder as his own type
though he may decide to not use it and bid as if he has received a different
signal z.

In this case the private information is bidimensional since the type of bidder ¢
is (z;, w;). If we denote with superscript A a generic auction of either FPSB
or SPSB type we have that a bidder’s strategy is a function:

BA:[0,1] x[0,1] — R (122)

that defines the amount he bids depending on his value and his budget con-
straint.

9.3.1 SPSB auctions

For this type of auctions we can state the following proposition.

Proposition 9.2 In a SPSB auction it is a dominant strategy for a bidder
to bid according to the following strategy:

B*(z,w) = min{z,w} (123)

Proof
To carry out the proof we consider separately the effects of:

- the constraint on budget;

- the value.

For what concerns the budget we have that bidding more than w is a dom-
inated strategy since if the bidder wins the auction he must default and pay
a penalty with a negative payoff. To be more correct we can state that
if b > w > Y, the bidder would have won also by bidding w whereas if
b > Y, > w he wins but, since he cannot pay more than w, he has to renege
so that he must pay the penalty having therefore a negative payoff.

In this way we have argued that it must be b; < w;.

For what concerns the value x we have two cases:
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- I S Wy,
- T, > W;.
In the former case it is as if the budget constraint were not present so that
we have the same equilibrium strategy as in a unconstrained SPSB auction
so that B*(z,w) = x = min{z,w}.
In the latter case we can have the following cases:
- x; > w; > by > Y] so the bidder wins but would have won also by bidding
Wy,
- x; > w; > Y, > b; the bider loses but could have won by bidding w; so
having an avoidable loss,

-x; > by > w; > Yy the bider wins but must renege so has to pay a

penalty and suffers a loss.

We have seen how bidding w; is never worse off and in some case it may be
even better off so it is a dominant strategy.

We can therefore define for every type {z,w} a value z” as:
2" = min{z, w} (124)

Since both x and w are supposed to assume values in the interval [0, 1] we
have that also 2" assumes values in the same interval. This allows us to define
a bidder whose type is {z”,1}. Such a bidder has no financial constraints by
definition. Moreover from the fact that:

min{z", 1} = 2" = min{x,w} (125)
we have that:
B*(x,w) = min{z,w} = 2" = min{z",1} = B*(2",1) (126)
or:
B*(z,w) = B*(2",1) (127)

so that in a SPSB auction the two types {z”,1} and {x,w} behave in the
same way and submit the same bids.

Once the strategy has been defined we can define as m?(z, w) the expected
payment of a bidder (with value z and budget constraint w) in a® SP auction
so that from equation (127) we can derive that:

m?(z,w) = m*(2”,1) (128)

9In what follows we are going to refer to a generic second price auction and identify it
with the acronym SP.
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so that the two bidders are equivalent also for what concerns the expected
payment.

From this we can define the set of types of bidders who bid less than the type
{z",1} in a SPSB auction as the following set:

L*(2") = {(X,W | B3(X,W) < B*(2",1)} (129)

so that:
F*(2") = P(X" <a") = / F(X, W)dzdw (130)
LQ(:E//)

is the probability that a bidder of type (z”,1) bids more than one of these
bidders. In relation (130) F? is the distribution function of the random
variable X” = min{X, W}. A bidder of type (z”,1) (and so without budget
constraints) will win the auction with a probability distribution defined as:

P2 ()Nt = G2(a") (131)

where again we have used both independence and identical distribution. In
this way we can write the expected utility if a bidder of the type (z”,1)
bids B?*(z,1) having a signal (or a value z”) as G?(z)z” — m?(z,1). At the
equilibrium (by definition of equilibrium) it is optimal to bid B?(z”, 1) if the
true type is (z”,1) and in this way we get:

1

w2, 1) = / "y w)dy (132)

(where ¢? is the density function corresponding to G?) so that the ex ante
expected payment in a SPSB auction with financial constraints is expressed
as:

/ m? (2", 1) f(2")da" = B[y;)] (133)

where YQZ(N) is the second highest of N draws from the distribution F2. We
get the rightmost equality in (133) if we replace the expression for m?(x”,1)
exchange the order of integration and use the expression for the density of
Y2( that we already used in one of the foregoing sections so to derive the
definition of the searched for expected value.

9.3.2 FPSB auctions

In a FFPSB auction we can imagine that the equilibrium strategy is of
the form:

BY(x,w) = min{B(z),w)} (134)
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where (J is a function that increases with x (the valuation for the bidder). In
this case B(x) is the bid if the evaluation (or the signal) is .

We note that we must have §(z) < z since in the case G(x) > x the bidder
with a value # < w (where w represents the financial constraints) would have
a negative payoff  — 3(x) and would be better off by bidding less.

In this case we assume that the searched for equilibrium exists so that we
can define a value 2’ such that 5(z') = min{G(z),w} so to define, also in
this case, the type of bidder (2, 1) that is without any financial constraint.

Also in this case we have:

B'(z,1) = min{B(z'),1)} = B(z') = min{f(z), w)} = B'(z,w) ~ (135)

and in this way we have B'(z,w) = B(2/,1) so that the two types (z/,1)
and (z,w) behave in the same way in the F'PSB auction.
If we define, as we have done in the case of the SPSB auctions, the set:

L'(2") = {(X,W) | B (X,W) < B'(2/,1)} (136)

as the set of bidders who bid less than the bidder of type (z’, 1) we can derive
also in this case that:
E[R'] = E[Y;™)] (137)

where YQQ(N) is the second highest of N draws from the distribution F.

9.3.3 Revenue comparison

The key point is that for all the valuations = we have §(z) < z . If we
use such condition in the definitions (136) and (129) we get:

L'(2') = {(X,W)|BY(X, W) < B'(2',1) = min{B(z"), 1} = () < 2"}
(138)
and:

L*(2") = {(X,W)|B*(X,W) < B*(2",1) = min{a", 1} = 2" (139)

From these relations if we impose ' = 2" = x we get L'(z) C L?*(x) so that
from the definition of the distribution functions (see (130)) we get:

- Fl(z) < F*(a),
- FlY(z) < F*(z) if z € (0,1),
so that F'! stochastically dominates F? and therefore:

E[Y; ™) > By (140)
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Roughly speaking, relation (140) derives from the fact that the variable with
distribution F'' assumes higher values with higher probabilities that those
of the variable with distribution F? whence such inequality. From these
considerations we can derive the following proposition.

Proposition 9.3 If we have bidders with financial constraints and:

-a FPSB auction has a symmetric equilibrium B'(z,w) =

min{3(x), w},
- a SPSB auction has a symmetric equilibrium B?(x,w) = min{z,w},

then the expected revenue in a FPSB auction is greater than the expected
revenue in a SPSB auction.

This conclusion derives from the fact that budget constraints are less influent
in a FFPSB auction than in a SPSB auction.

We can try to compare two situations. Firstly we suppose to have a budget
constraint W; and then we suppose that the valuation of a bidder is given
by Z; = min{X;, W;} so that he has no budget constraints. In this second
situation we can apply REP so that a FPSB auction and a SPSB auction
give the same expected revenue, be it R.

If we consider the first situation where we have a budget constraint we have
that:

- in a SPSB auction the value R is unchanged since the bidding strategy
for the bidders is unchanged;

- in a F'PSB auction the revenue is greater than R since we compare a
situation where the bidders have values X; > Z; and budgets W; > Z;
with a situation where their values are Z; and they have no budget
constraints.

10 Some notes on auctions with interdepen-
dent values

10.1 Introductory remarks

Up to now we have supposed that the signals of the bidders are indepen-
dent and independently distributed and in this way we made some hypotheses
over the values and the information of the bidders. At this point we relax
such hypotheses and introduce both interdependent values and correlated
signals.
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10.1.1 Interdependent values

We now relax the hypothesis of private values so that a bidder may
modify the value he gives to an object depending on the signals he receives
from the other bidders.

In this way we speak of interdependent values so that:

- each bidder has private information on the value of the object,

- such value may be represented through a random variable X; € [0, w;]
that we term a signal.

The value V; of the object for bidder ¢ can therefore be expressed as:
‘/Z' :’Ui<X1,X2,...7XN) (141)

and so as depending on the signals of all the bidders. In (141) v; represents
the bidder ¢ valuation and we assume it is:

- non decreasing in all Xj;
- twice continuously differentiable;
- strictly increasing in X;.

The value V; depends only on the signals of the bidders with no further
uncertainty. We can however generalize and suppose that:

- Vi,..., Vy are the unknown values to the bidders,
- Xi,..., Xy are their signals,
- S is a signal known only to the seller,
so that we have:
vi(z1,...,xy) = EVi|X; =z;i=1,... N] (142)

as the expected value for bidder ¢ conditional on the values x;. In both cases
we suppose that:

- Ui<0,...,0):0,
- E[Vj] < o0,

- bidders are risk neutral so each of them maximizes the difference be-
tween the value and the payment (if he wins) or V; — p;.
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From this general scheme we may derive:

- the private values model if we impose v;(X7, ..., Xy) = X; for every
bidder;
- the pure common value model if we impose V = v(Xj, ..., Xy) for

every bidder.

In the former case the valuation depends only on each bidder’s signal whereas
in the latter the bidders have the same valuation of the object. In he pure
common value case we have that the bidders know only their signals so
the ex post common value is ex ante unknown to the bidders.

In the case of interdependent values the decision problem is harder since
the exact value of an object is unknown and depends on the signals of the
other bidders. We have therefore that an a priori estimation of such a value
may need to be revised owing to the information gathered during the auction.
During the course of the auction indeed there may be events that convey
information about the signals of the other bidders. Such events typically
occur in open cry auctions and include:

- the number of the currently active bidders,
- the announcement that a bidder dropped out,

- the announcement that a bidder won the auction.

10.1.2 The winner’s curse

In an auction we generally have both ex ante information (or prior to or
during the execution of the auction) and ex post information (or after the
end of the auction). If, thanks to the symmetry hypothesis, we focus on a
particular bidder, say bidder 1, the ex ante information include:

- the private signal X; = z,
- an estimate of the value of the object E[V|X; = z].

If the object is sold with a F'PSB auction we can try to understand what
does it mean that bidder 1 is the winner by bidding a value that corresponds
to the signal x.

If all the bidders are symmetric and follow the same strategy ( this means
that the highest of the N — 1 signal is lower than z (since [ is increasing) so
that for bidder 1 we have:

ElV|IX) =2,Y < x] (143)
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(where the conditional event is the condition of being the winner since Y;
is the highest of the other N — 1 signals) as the estimate of the value upon
being a winner and:

E[V|X,=2,Y; < 7] < E[V|X; = 1] (144)

where E[V|X; = z] is the same estimate without knowing to be the winner.
The inequality holds since the latter conditioning events wider than the for-
mer.

The announcement of the victory causes a decrease in the estimated value
and this may represent the bad news that give raise to the winner’s curse as
the possibility to have overestimated the value of an object.

The same phenomenon is present in a pure common value model where we
have that the signals of the bidders can be expressed as:

In (145) the ¢; are independent and identically distributed random variables
with Ele;] = 0.
In this case we have:

EX;|V=v]=E[V+¢|lV=v=FEv+¢|=0v (146)

(since Ele;] = 0) so that each signal is an unbiased estimator of the common
value but for the largest of N such signals. This is caused by the fact that
max is a convex function so that:

E[mazx X;|V =v] > mazx E[X;|V =v] =v (147)

so that the expectation of the highest signal overestimates the value of the
object. This implies the need for a bidder to shade their values below their
initial estimates so to avoid the winner’s curse.

10.1.3 English ad SP auctions

Our aim is to show how, in the current framework, an English auction is
no more equivalent to a SPSB auction.
We recall that an English auction is an open cry ascending auction where
the bids of the bidders are common knowledge among them whereas the SP
auction is a one shot sealed bid auction where this exchange of information
cannot occur. In an English auction indeed the active bidders know the
prices at which the other bidders drop out and so can make inferences about
the values of such bidders and update their estimates of such values.
The exchanged information of an English auction may be irrelevant in two
cases:
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- if there are only two bidders since when one of them drops out the
auction ends;

- if the bidders have private values since the information produced by
the others have no meaning for each bidder that does not update his
private value.

10.1.4 Affliation

We suppose that the signals of the bidders are correlated so that the joint
density function f(X) of the signals X= {Xj,..., Xx} cannot be expressed
in general as:

F(X) = TIL, fi(X3) (148)

since we assume that the signals are positively affiliated as a strong form of
positive correlation. We define affiliation in an informal way as follows: given
a set of variables Xj if a subset of the X; are all large this raises the probability
that also the remaining X; are large. From this informal definition we derive
that:

- if the Y7,Y5, ..., Yy are the ordered statistics of the variables X; and
the X, are affiliated also the Y; are affiliated;

- if G(-|z) is the distribution function of Y; conditional on X; = z and
g(-|X) is the corresponding density function then, if 2’ > = we have:

/
g(ylﬂfl) > 9Wl7) (149)
Gyle') — Gly|z)
- if v is an increasing function and ' > = we have:
Ely(Y1)| X1 = 2] > E[y(Y1)| X1 = 2] (150)

10.2 The symmetric model

In this section we proceed as follows:
- we define symmetric equilibrium strategies,
- we compare the expected revenues,

for the following three types of auctions:

- English or open ascending;
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- second price;
- first price.

We disregard Dutch or open descending auction that is still equivalent to a
FPSB auction.

We recall that in the case of independent private values the bidders are
symmetric if their values are drawn from the same distribution. In the present
case on the other hand we have:

- interdependent values,
- affiliated signals,

so we have to consider both the symmetry of the valuations v; and the
symmetry of the distributions of the signals.

We assume that all the signals X; are drawn from the same interval [0, w]
and that the valuations of the bidders can be written as:

vi(X) = u(X;, X_;) (151)

for every bidder i. In this way we define the symmetry since the func-
tion u is the same for all bidders and is symmetric in the values X_; =
Xy, X2, Xi1, ..., Xy so that, with regard to a given bidder i, the sig-
nals of the other bidders can be exchanged without affecting the value of the
function w. This means, for instance, that, in the case of three bidders, we
have u(z,y, z) = u(x, z,y).

At this point we assume that:

- the joint density function f of the signals is defined on [0,w]" and is a
symmetric function of its arguments;

- the signals are affiliated.

We can define:
v(z,y) = EV1|Xy = 2,Y1 =y (152)

as the expected value for bidder 1 that receives a signal z if the highest signal
among the other V — 1 bidder is y. In this case we have that:

- from the symmetry we derive that v is the same for all the bidders;

- from (150) we derive that v is a non decreasing function of both x and
Ys

- we assume that v is strictly increasing in x;
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- we impose v(0,0) = 0 from the condition v(0) = 0.
Once this new definition of symmetry has been introduced we can:

- use it to devise the symmetric equilibrium strategies in the three cases
we listed at the offset of this section;

- use it to perform a comparison of the three formats by computing the
expected revenue for each type of auction.

10.3 Second price auctions

We start by devising a symmetric equilibrium strategy in a SP.SB auction
through the following proposition.

Proposition 10.1 A symmetric equilibrium strateqy in a SP auction is
given by:
B (z) = v(x,z) = E[Vi| X, = 2,Y] = 7] (153)

iof we consider bidder 1 that receives the signal x and the highest of the other
values is x.
Proof
We suppose that all the bidders but bidder 1 follow 3 = 3% whereas bidder 1
with a signal x bids b = B(y) (as he had a value y) so to get a payoff equal
to:

I1(b, x) = expected valuation — expected payment (154)

or:

(b, ) = / o y)g(ylz)dy — / ' By)g(yl)dy (155)

where y = 71(b) and g(-|z) is the density of Y1 = max;z1 X; conditional on
X1 = .
We can rewrite (155) as:

BL(b)
(b, z) = / (02, ) — vy, 9))g(yla)dy (156)

where we have used the equality 5(y) = v(y,y). If we impose a first order
condition on IT with respect to b we have that the sign of the derivative depends
on the sign of the term (v(x,y) —v(y,y)). To devise this sign we use the fact
that v is increasing in the first argument so that:

- if x >y we have v(z,y) —v(y,y) >0

- if x <y we have v(z,y) —v(y,y) <0
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so that T1(b, z) is mazimized if we take 37*(b) = x or b = B(x). In this
way we have derived the first order condition by imposing the adoption of the
strategy as the optimal strategy and then we have showed how this necessary
condition is also sufficient.

The proposition we have proved states that if the bidder 1 with a signal x
bids #(x) and the highest competing bid (and so the price) is G(x) bidder 1
would just “break even”. In this case if the highest competing bidder bids
B(x) then bidder 1 can infer Y] = z as new information so that the expected
value is:

EWVi|X: =2, Y] =z] =v(z,z) = B(x) (157)

In case of private values we have v(x,z) = = and the equilibrium strategy
is a dominant strategy. In the case of interdependent values where we have
v(z,y) the strategy 3?(x) = v(z,z) is not dominant though it is unique in
the case of:

- symmetric equilibria,
- with an increasing equilibrium strategy.

To illustrate this result we give an example where we have:
- a common value,

- bidders’ signals are independently distributed conditional on that value.

Example 10.1 We have three bidders with a common value V uniformly
distributed over [0,1]. If the realization of V' is V = v the signals X; are:

- uniformly,

- independently

distributed over [0,2v].  We have X = {Xi, X5, X3} and define Z =
max{ Xy, Xo, X3}. In this case we have:

fx, @V =v) = % (158)

over [0,2v]. In this way the joint density of (V,X) is the product of the three
densities (by the independence) so that it is 1/8v3 over the set:

{(V,X)|Vi X; <2V} (159)
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From (159) we get:

1 1
Vv Z EZ == §m(l${X1,X2,X3} (160)
so that we have:
1 1 1 4 . ZQ
— dv = —dv = —— 161
f(x1, 22, 23) " f(x1, 2,23, V)dv [Z ) v 1622 (161)

3
We therefore get that the density of V conditional on X = x is the same
as the density of V' conditional on Z = z and the same holds also for the
conditional expectations so we get:

f(v, X =x) 1 1622

f(U!X:X):f(’U\Z:Z):m:@m (162)

over [1z,1]. In this way we derive:

! 2z
VIZ)dv =
f(VIZ)de = 57

MWX:ﬂ:EWMMi/ (163)

=

The aim is to evaluate v(x,y) since 3*(z) = v(z,x). To do so we note
that given the wvalues X1, X5, X3 if Y1 = max{Xy, X3} we have Z =
max{ Xy, Xo, X3} = max{Xy,Y1} so we get:

2maziz,y
v(o9) = EVIX) =0, = ) = EIVIZ = mas{a )] = St
(164)
so that the searched for strategy is given by:
2z
= 3(x) = 165
v(z,x) = () T a (165)

since max{zx,x} = x.
Observation 10.1 Given V € [0,1] the values X; are independently and
uniformly distributed over [0,2v] so that we can write:
1
XV =v)=— 166
JIV =)= o (166)

From the independence we can write:

f(X0, X, X3, V) = f(Xy, Xo, X3|V) f(V) = fF(Xu|V = 0) f(Xa]V = 0) f(Xa]V =0) = %
(167)
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from (166) and from the fact that f(V) = 1. Relation (167) is true over the
set:

{(V.X)|ViX; < 2V} (168)

The conditions that define such sets are equivalent to the following:

7 = maz X; < 2V (169)
or: 1
V>oZ (170)

We note that to evaluate f(X;, X2, X3) we need to integrate (X1, Xo, X3, V)
with respect to V' over the interval [1, %Z] and from this we derive the result
of the example.

Starting from the following equality:

fwX =x) = f(v|Z = 2) (171)

we can derive:
EVIX =x|=E[V|Z = Z] (172)

10.4 English auctions

In a sealed bid auction there is no exchange of information during the
auction so that the strategy of each bidder determines the amount he bids
as a function of his private information. On the other hand, in an English
(or open ascending) auction the various bidders can follow directly the bids
of the others.

In this way each bidder knows:

- the prices at which some of the other bidders drop out,
- the number of the active bidders at each stage.

These information represent the relevant information in the case of the sym-
metric model whereas, for instance, the identities of both the active bidders
and the bidders who dropped out have no relevance.

English auctions are represented by an open (commonly known to the bid-
ders) ascending price but may have variable rules so it is necessary to specify
precisely the rules we intend to follow in the formal definition of such type
of auctions.

From our point of view we are going to adopt the following rules:

- an auctioneer starts with a null price and gradually raises it;
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- the current price is common knowledge among the currently active
bidders;

- the active bidders signal in some way (that is common knowledge
among all the active bidders) their willingness to buy and so to at-
tend the auction;

- bidders can drop out at any time (and so are no more active) and
cannot reenter at a higher price;

- the auction ends when there is only one active bidder left that is there-
fore the winner of the auction.

In this case we define a symmetric equilibrium strategy as:

B=B", N8 (173)
as composed by N — 1 functions each defined as:

BE10,1] x RY % — Ry (174)
for 1 < k < N. The generic function:

B5(x, pryts - - DN) (175)
represents the price at which bidder 1 will drop out if:
- his signal is z,
- there are still £ active bidders,

- the prices at which the other N — k bidders dropped out were:
P41 2 Pkv2 = 2 PN (176)

For instance, if £ = 2 (so there are only two active bidders) N — 2 bidders
already dropped out at the prices:

P3>Pa =" 2 DN (177)

On the other hand if £ = N all the bidders are active so that we have:

5% (x) (178)
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We consider now the possible strategies of the bidders. At the offset of the
auction all the bidders are active so we can write the following continuous
and increasing function:

N (z) = u(x, 2, ..., 1) (179)

so that all the bidders have the same signal.
We suppose that bider N is the first to drop out at the price py with the
unique!® signal zy such that:

BV (xx) = pn (180)

In this case the other N — 1 bidders may infer the value of the signal for the
dropping out bidder so that they can use the following strategy:

NNz, py) = u(z, z, ... 2, 2N) (181)

where 3V~1 is again continuous and increasing. At this point we can proceed
recursively for all k such that 2 < k < N and suppose that the bidders
N,N —1,...,k+ 1 have dropped out at the prices:

Dkl = Pky2 =+ * 2 PN (182)

In this way the remaining k active bidders follow the strategy:

B5(x, prgts - oN) = w(X, T, X, Tt -, TN) (183)

where:
BN (@1, Pryas - PN) = P (184)

is the price at which the k£ 4 1-th bidder dropped out.

Our aim is to prove that such strategies represent an equilibrium of the
English auction.

Before introducing and proving the corresponding proposition we make some
comments.

If we are at the stage of the auction where bidders £+ 1,k + 2,..., N have
dropped out we have k active bidders. Since the strategies are revealing
we have that the prices at which each bidder dropped out has revealed to
the others the corresponding signal so that the signals zy.1, Tgio0, ...,z N are
common knowledge among the currently active bidders.

We now consider bidder 1 with a signal x and suppose that the other k£ — 1
active bidders are following the strategy 3* so that bidder 1 has to evaluate

0Unicity derives from the fact that 3 is both continuous and increasing.
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whether or not he should drop out at the price p. To do so bidder 1 can try
to understand what could happen if he wins the auction at the price p or if,
necessary and sufficient condition, the other £ — 1 active bidders drop out at
p. In this case bidder 1 could be able to infer their signal y as the value such
that:

ﬁk<y7pk+17"'7pN) =D (185)

so that the inferred value of the object would be:

w(T, Yy Yy Tha1y -5 TN) (186)

and should be greater than p for the bidder 1 to go on attending the auction.
We note that in relation (186) we have k£ — 1 times the value y (since k — 1
bidders should drop out now for bidder 1 to win the auction) and N — k
signals xx4; of the bidders who have already dropped out before the current
stage.

In this way we have that the strategy for bidder 1 is to keep on with the
auction until he wins the auction so that he just breaks even and the inferred
value is equal to its price. We now give the following proposition.

Proposition 10.2 In an English auction the symmetric equilibrium strate-
gies are defined by the following relations:

N (z) = u(x, 2, ..., 1) (187)

and
B, prgts - pN) = w(X, T, T, Tt - TN) (188)

where in (187) all the N bidders have the same signal and in 188) the same
signal is owned by the remaining k bidders.
Proof
We consider bidder 1 with a signal X1 = x and suppose that the other N — 1
bidders follow the strategy [ as defined by (187) and (188).We can denote
with:

Yi.Ya, ... Yus (189)

respectively the highest, the second highest and the smallest of the X; for
1=2,..., N with realizations:

Y1, Y2, -, Yn-1 (190)

Bidder 1 may either win the auction or lose it. In both cases we aim at
showing that it is optimal also for bidder 1 to follow the same strategy followed
by all the other bidders.
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We suppose that the realizations (190) are such that bidder 1 wins the auction
if he too follows B so that his signal must satisfy the following condition:

x>y (191)

If 1 wins the auction he pays a price equal to the second highest bid or the
price at which the bidder with a signal y; drops out so is payoff is given by:

u(xaylvy% s ayN—l) - u(y17y17y2a s 7yN—1) (192)

as the difference between the valuation and the paid price. The quantity
expressed by difference (192) is strictly positive since u is increasing in all
its arguments. In this way we conclude that since bidder 1 cannot affect the
price he pays and if he wins he has a positive payoff he cannot do no better
than to follow (3.

The other possibility is that 1 loses the auction even if he follows the strategy
(. This may occur if x < yy. In the eventuality of losing bidder 1 may either
drop out or keep on.

If he keeps on and wins he gets a payoff:

u(xvylay% s 7yN—1> - u(yl)ylayQa s 7yN—1) <0 (]‘93)

since u is increasing in all its arguments. In relation (193) we have the ex
post value of the object.
We have proved also in this case that 1 is better off by following the strategy

3.

The equilibrium strategy § does not depend on the distribution of the signals
and so they form an ex post equilibrium. This means that:

- the strategy [ is a Nash Equilibrium of the complete information game
that results if the signals are completely known;

- the strategy (3 has a no regret feature so that the bidders have no reason
to regret the outcome (both as winner and as losers) when the signals
are revealed.

As to the second point we note how in a SP auction the bidders may suffer
from a regret when the signals are revealed. This means that the equilibrium
in a SP auction is not an ex post equilibrium so that at least one bidder
would like to have behaved in a different way. With the term regret we
denote indeed the fact that a bidder knows that he could have done better by
behaving in a different way from that prescribed by the ex ante equilibrium.
The English auctions have such no regret property since:
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- if the signals are revealed to the winner he has no regret from winning,

- if the signals are revealed to the losers they have no regret from losing
since if they were to win they would have had a negative payoff.

10.5 First Price auctions

We define also in this case the equilibrium bidding strategies by following
classical guidelines and so by supposing that all the bidders but bidder 1
follow the strategy (0 that we want to define and that we suppose to be:

- increasing,
- differentiable.

Once the strategy has been defined we show how it is optimal also for bidder
1 to follow it.

Though bidder 1 does not follow the strategy (3 (that maps a value or a signal
on the corresponding bid) we note that:

- he does not bid less than 5(0) since he would surely lose;

- he does not bid more than (w) since he could win the same by bidding
less but so having a higher payoff.

We recall indeed that the signals X; assume values over the common interval
[0, w].

In what follows we denote with G(-|z) the distribution of Y7 = max;,1X;
conditional on X; = x and with g(:|z) the conditional density function.

We therefore can define the expected payoff for bidder 1 in the case:

- he has a signal z;

- he bids as his signal were z and so bids b = 3(z) so that z = 371(b).

The last condition, if the strategy is revealing, allows the inferring of a signal
from the revealed bid. Under the foregoing hypotheses the expected payoff
for bidder 1 can be expressed as:

z

(2, ) = / (o(,y) () g ylr)dy = / o y)g(yla)dy— / B(=)g(yla)dy

(194)
(z,2) = / "o, y)glyle)dy—B(2) / glyle)dy = / o y)g(yla)dy—B(=)C(2la)
(195)
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since G(0|z) = 0. If we impose over relation (195) a first order condition as:

oll(z,z)
=0 (196)
we get:
oz, 2)g(2lz) — A(2)g(z]z) — B'(2)G(2]x) = 0 (197)
| (v(, 2) — B(=))g(zlz) — B ()G (2lx) = 0 (198)

From relation (198) we have that at symmetric equilibrium is optimal to have
z = z (though we have to prove such assertion) so we get:

B(2) = (o(a, 2) — Bla)) LD (199)

Condition (199) is only a necessary condition. In order for it to become
also a sufficient condition we must impose v(x,z) — B(x) > 0. If we had
v(xz,z) — B(z) < 0 a bid of 0 would be better. In this case we indeed have
f'(z) < 0 would mean a negative expected payoff.

From the assumption v(0,0) = 0 we have 3(0) = 0 that is the boundary
condition of the differential equation (199).

The solution of the differential equation (199) together with the aforesaid
boundary condition is a symmetric equilibrium strategy as it is stated in the
following proposition.

Proposition 10.3 In a FPSB auction a symmetric equilibrium strateqy is
expressed as:

Bl (x) = / " u(y. y)dL(yl) (200)
where:
Liylo) = exn(~ [ %dw (201)

For the proof of this proposition we refer to Krishna (2002).

If the values are private we have v(y, y) = y and if the signals are independent
we have G(-|z) = G(-) since G does not depend on = and the definition (201)
boils down to the following:

L(y|z) = exp(— /j %dt) = exp(— /: @d(}(t)) = exp(—logG(t)|2 = gg;
(202)
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In this way we have:

50 = [ G = g [ otatids = BV <] (203)

so that the strategy (200) reduces to the equilibrium strategy in the case of
private values.

10.6 Revenue comparison

In this section we examine the performance of the three auction types we
have seen up to now (F'P, SP and English auctions) through a comparison
of the expected revenue as it results from the symmetric equilibrium for each
type of strategy.

We can state that if the signals are affiliated we have:

Eng - SP = FP (204)

where Eng denotes the English auction type and > is the binary relation
“outperforms” or “performs better than”.
As a first step we have the following proposition.

Proposition 10.4 In an English auction the expected revenue is at least as
great as the expected revenue from a SP auction.

Proof

In a SP auction the equilibrium strategy is given by (*(z) = v(z,x) =
EVi|Xy = 2,Y1 = x| so that (if v > y) we can write the following chain
of equalities /inequalities:

v(y,y) = Eu(X,Y1,.. . Y1) [ X1 =y, Y1 =y
:E[U( 1,3/1,...YN_1)|X1 :y,yl :y] (205)
S E[U(X17}/17 e 'YN—1)|X1 = ani - y]

since u is increasing in all its arguments and all the signals are affiliated.
In this way we get v(y,y) < v(z,y) so that the expected revenue of a SP
auction can be written as:

E[R?] = E[F*(Y1)[ X1 > V1]
= Ev(Y1, Y1) X, > Y]

S E[E[u(ifh}/la}/?a s 7YN71)’X1 = 1'73/1 = y”Xl > }/1] (206)
= E[U(Yla}/h}/?? s 7YN71)‘X1 > }/1]

= E[62(Y17}/27"'7YN—1>]

— B[R]
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where R? is the revenue is a SP auction, (3% is the strategy in an English
auction when only two bidders remain and 3*(Yy,Ya, ..., Yn_1) is the price
paid by the winning bidder.

Observation 10.2 We note that an English auction has a strictly greater
revenue than a SP auction only if the values are interdependent and the
signals are affiliated.

If the values are private the revenue in the two cases is the same and the
same holds if the signals are independent.

We now consider the comparison between S P auctions and F'P auctions. We
can state the following proposition.

Proposition 10.5 The expected revenue in a SP auction is at least equal
to the expected revenue in a F'P auction.

Proof

We consider a bidder with a signal x so that:

- a FP auction his payment, conditional upon winning, is his bid
pH(w);

- in a SP auction his payment, conditional upon winning, is given by
E[FPN)| X1 = 2,1 <a] ;

where B' and (3% are respectively the equilibrium strategies in a FP and in a
SP auction. We want to prove that:

BF(V)|X: =2,Y1 <z] > () (207)

For doing this we remark how in both auctions the probability that a bidder
with a signal x wins the auction is the same and coincides with the probability
that x is the highest signal among the signals of all the bidders. This remark
is the key point of the proof for which we refer to Krishna (2002), pages 97
and 98.

From the preceding points we can state that in the symmetric model with:
- interdependent values,
- affiliated signals,

the three types of auctions we have seen can be ranked in terms of expected
revenue as follows:

E[R¥"9) > E[R?] > E[R"] (208)
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11 A few words on the linkage principle

Up to now we have compared three auction formats through a computa-
tion of the expected revenues in the respective symmetric equilibria.
In a preceding section we have seen the revenue equivalence principle as
a way to justify the equality of the expected revenues in F'P and SP auc-
tions.
We now introduce the revenue ranking principle or linkage principle as a
way to justify the fact that the revenue in a SP auction is greater than the
revenue in a F'P auction.
Also in this case we consider a symmetric setting and assume a standard auc-
tion A where the highest bid wins the object and where we have a symmetric
equilibrium $4. In this case we denote as W#(z, ) the expected price that
bidder 1 pays when he wins under the hypotheses that:

- he receives a signal z,
- he bids as if his signal were z so he bids 34(2).

In a F'P auction a bidder pays what he bids so we have:
W (z,2) = B'(2) (209)

where 3! is a symmetric equilibrium strategy of this type of auctions.
In a SP auction the winning bidder pays the second highest bid and so the
following random value:

W2(z,x) = E[B*(V1)| X, = 2,1 < 7] (210)

where Y] is the second highest bid or is the highest of the N — 1 remaining
bids and (3? is the symmetric equilibrium strategy in a SP auction.

We can now state the linkage principle as a proposition. Before we give some
notation. With W(z,x) where i = 1,2 we denote the partial derivative of
W4 with respect to the i—th argument evaluated in (z, z).

Proposition 11.1 If A and B are two auctions where the highest bidder
wins and pays a positive amount and each auction has a symmetric and
increasing equilibrium such that:

(a) for all signals x we have Wit(z, x) > WE(x,z),

(b) W4(0,0) =0 = W5(0,0),
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then the expected revenue from A is at least as large as the expected revenue
from B.

Proof

We consider the auction A and suppose that all the bidders but bidder 1 follow
the strateqy * whereas bidder 1 with a signal x bids as if his signal were z
and so bids 3*(z). The probability for him to win are given by:

G(z|x) = PlY) < 2| X, = 7] (211)

FEach bidder mazimizes the difference between the expected gain and the ex-
pected payment that can be expressed as:

/0 o y)glyle)dy — G WA, ) (212)

At the equilibrium it is optimal for the bidders to follow the equilibrium strat-
eqy and so to bid according to the received signal so that z = x. If therefore
we impose a first order condition on (212) by differentiating with respect to
z and we impose z = T we get:

g(z|x)v(z, x) — g(a:|:13)WA(x, x) — G(a:|m)WlA(m, z)=0 (213)

that can be rewritten as:

i el glaln)
In a similar way for auction B we get:
b, o) gleln) n
From equations (213) and (214) we can derive:
Wiz, x) — WE(z,x) = —é((?l?) WAz, z) — WB(z,2)] (216)
If we now define:
Az) = WA (z,z) — WB(x,2) (217)
we get:
A'(z) = Wiz, 2) = W (z,2)] + Wy (z,2) — Wy (2, 2)] (218)

or, by replacing the first term on the right side with the equivalent term form
(216) and using definition (217):
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Al(z) = —%A(@ + Wiz, z) — WE(z,2)] (219)

From the hypotheses we have:
(a) A(0) = W#(0,0) — W¥#(0,0) =0,
(b) Wiz, z) — WE(x,2) > 0.

Since A'(z) > 0 we have A(x) > 0 (by considering it as a function of x)
whence the thesis.

Observation 11.1 We recall that with the function v(z,z) = E[V1|X; =
x,Y] = y| we denote the expectation of the value for bidder 1 when he receives
the signal x and the highest signal among the other bidders is Y1 = y. Such
a function, owing to the symmetry, is the same for all bidders and is a non
decreasing function of x and y.

Proposition (11.1) allows us to rank alternative auction forms by comparing
the statistical linkages between the signal of a bidder and the price he would
pay upon winning so that the greater is the linkage the higher the expected
price paid upon winning where the linkage is between a bidder’s own infor-
mation and how he perceives the other bidders will bid. This proposition
does not make any assumption on the distribution of the signals but in the
applications it is usually assumed that the signals are affiliated.

Example 11.1 (F'P auctions versus SP auctions) We now wuse the
linkage principle to justify why a SP auction outperforms a FP auction
as to the revenue.

In a F'P auction we have:

Wh(z,2) = B'(2) (220)
where we have that:
- x s the recewwed signal,
- z 18 the used signal,
- B is the symmetric equilibrium strategy in this type of auctions.

From equation (220) we derive, by performing a derivate with respect to x:

Wy (z,2) =0 (221)
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for every x.
In a SP auction we have:

W2(z,2) = E[*(V)| X1 = 2,Y] < 2] (222)

where 32 is the symmetric equilibrium strateqy in this type of auctions.
From equation (220) and (222) we derive W'(0,0) = 0 = W?(0,0) so to
apply the linkage principle where A is the SP auction and B is the FP
auction we must verify if the condition on the derivatives is satisfied or not.
If we consider relation (222) and apply the affiliation between X, and Y; we
have that since 32 is increasing and so is not decreasing F is a non decreasing
function of X1 and Yy. From this we derive that:

W2(z,2) >0=W;(z,2) (223)

With this we have proved that the hypotheses of the linkage principle are
satisfied so that we can apply it and derive that the revenue in a SP auction
s not lower than the revenue of a F'P auction.

If the signals are independently distributed then W4 (z,z) does not depend on
x so that we have:

- WQA(ZVT) = 0;
- WQB(Zax) = 07

for any two auctions A and B. In this case from (219) we have that A(x)
and A'(z) have opposite signs but, since A(0) = 0, this is not possible so we
must have A(x) = 0 and therefore W4 (z, z) = WB(z,x) so the two auctions
have the same revenue.

As we have already seen, the assumption of private values is unimportant
for revenue equivalence since if the signals are independently distributed we
have a revenue equivalence also with interdependent signals.

We now say something about the presence of public information.

With this wee mean the possibility that the seller may possess information
that may be useful to the bidders. In these cases there is the problem of
what the seller should do with this information and so if to keep it hidden
or to reveal it and in this case if the revelation should occur in any case or
only if it is favorable (so that the revelation occurs strategically).

In order to answer to these questions we have to modify the current model
through the introduction of a further random variable S that denotes the
information available to the seller. In this way the valuations of the bidders
depend also on S and can be expressed as:

%:Ui(S,Xl,XQ,...,XN) (224)
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with v;(0) = 0. In the symmetric case we have:

where u is any symmetric function of its last NV — 1 arguments. We assume
that the variables S and X; are affiliated and distributed according to a joint
density function f that is a symmetric function of its last N arguments or of
the signals of the bidders.

If the public information is not available the bidders do not know .S before
bidding so we have:

v(z,y) = BEVi| Xy = 2,1 = ¢ (226)

If, on the other hand, the seller reveals the public information in all the
circumstances (and so in a non strategic way) the bidders know that S = s
before they bid so we have:

(s, z,y) = E[V4|S =35, X1 =2,Y] =] (227)

with ©(0,0,0) = 0. Equation (227) defines the expectation of the value for
the bidder 1 when:

- the public signal is s;
- the bidder receives a signal x;
- the highest signal among the other N — 1 bidders is .

From the symmetry hypothesis this function is the same for all the bidders
and from affiliation it is an increasing function of its arguments. We note
how it is:

0(z.y) = B[(S, X0, V)| Xy = 2,Y1 = 4] (228)

We now consider the effect of revealing the public information on the expected
revenue of the seller in a F'P auction.
In order to find a solution we can see the two situations:

- with public information,
- without public information,

as two different auctions. In this case, if the hypotheses of the linkage prin-
ciple are satisfied, we can use it to see in which case the expected revenue is
higher.

If the public information is available the strategy of a bidder depends on:
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- the public information S,
- the signal of the bidder X.

We now can assume the existence of a symmetric equilibrium strategy

B(S, X) increasing in both variables. The expected payment of a winning
bidder when he gets the signal x but he bids as if his signal were z so he bids

A

B(s, z) is: A )
Wl(z,z) = E[3(S, 2)| X, = ] (229)

From the fact that S and X; are affiliated and B is increasing (and so not

decreasing) we have: )
Wy (z,2) > 0 (230)

On the other hand when S is not available we have 8! as the equilibrium
strategy in a F'P auction so that we have:

W(z,z) = 6'(2) (231)
(since the winner pays his own bid) so that we have:
Wi(z,2) =0 (232)
From relations (230) and (232) we have:
Wi(z,z) > Wiz, x) (233)

Since moreover we have TW1(0,0) = W(0,0) the hypotheses of the linkage
principle are satisfied so that we can apply it and derive the conclusion that
the expected revenue in a F'P auction is higher when the public information
is available than when it is not publicly available.

The linkage principle we have seen applies in cases where only the winning
bidder pays a positive amount. We want to extend it to other auction types
such as the “all pay” auctions where all the bidders pay their bid indepen-
dently from being a winner or not.

In this case if we denote with M%(z, ) the expected payment of a bidder
with a signal x who bids as if his signal were z in the auction mechanism A
we have what follows.

In an “all pay” auction we have M4P (2, x) = 47 (z) where 847 (2) is a sym-
metric and increasing equilibrium strategy. In an auction in which only the
winner pays we have M*(z, 1) = Fy, (z|x)W*(z, x) so that in a FP auction
we have M'(z,z) = Fy,(z|x)3(2) as the product of the probability of win-
ning and the bid corresponding to a signal.

To deal with these cases we have the following proposition that represents
an extension of the linkage principle.
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Proposition 11.2 If A and B are auctions were the highest bidder wins and
each auction has a symmetric and increasing equilibrium such that:

(1) Vo M3 (x,x) > MB(z,z),
(2) M4(0,0) > MPB(0,0)

the expected revenue of auction A is at least as large as the expected revenue
of auction B.

We note that M“(z,7) can be seen as an unconditional expected payment
whereas W#(z, x) is the expected payment conditional on winning.

12 Some additional and more informal notes

In this final section we use Klemperer (1999) to make some further and
mainly qualitative comments on auction theory.
Auction theory is important for:

- practical,
- empirical,
- theoretical

reasons.
For practical reasons since the auctions have practical applications , for
empirical reasons since they represent a test ground of economic theories
and for theoretical reasons since they represent a tool for the development
of general theories.

The basic model of auction theory is based on the hypotheses of a fixed set
of symmetric and risk neutral bidders that bid independently one from the
others and for a single object.

From this simple model we can define more complex models if we relax such
assumptions singularly one at a time. With this we mean that we relax one
of the hypotheses keeping the others as valid so that we can:

- introduce risk aversion,

- introduce correlation or affiliation among the information of the bid-
ders,

- introduce asymmetries among the bidders.

We can also imagine that:
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the bidders may have a cost for entering the auction;

the bidders may not know the exact number of the bidders each of them
is facing;

the bidders may collude among themselves;

the bidders may have budget constraints.

12.1 The standard auction types

In this section we consider very briefly and within a rather informal frame-
work the following types of auction:

(1) an ascending bid auction or open oral or English auction;

)
2) a descending bid auction or Dutch auction;
) a F'PSB auction;

(
(3
(4) a SPSB auction.

In the case (1) the price is raised until a single bidder remains. That bid-
der wins the auction, gets the auctioned object and pays the final price of
the auction or the price at which the penultimate bidder dropped out. The
bidders gradually quit the auction while the price continuously raises and
cannot reenter the auction at higher price nor they can make jump bid. This
last feature derives from the fact that the bidders do not make themselves
the offers but simply accept the offers made by the auctioneer. On the other
hand if the bidders themselves make the price they could make jump bid if
this is not explicitly forbidden by the rules of the auction.

In the case (2) the price starts high and lowers continuously until a bidder
calls stop and get the object at that price.

In both these cases the information is public but in the latter it is of little
use since when it is revealed the auction ends. This revelation has a great
importance in the former case where the prices at which some of the bidders
drop out give information to the remaining bidders on the value of the auc-

tioned object.
In case (3) we have that the bidders:

- make independent sealed bids;
- the highest bidding bidder wins the auction;

- the highest bidding bidder pays a price equal to his bid.
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From the last point we derive the fact that this type of auction is termed
“first price”.

The auctions of type (4) are identical to those of type (3) but for the fact
that the paid price is the second highest bid whence the name “second price”
we give to this type of auctions.

12.2 The basic model of auctions

In every auction model a basic feature is the presence of asymmetric infor-
mation that turn in the adoption of the paradigm of games with incomplete
information (Gibbons (1992)). In these cases each player is characterized by
a type as a private information so that each knows his own type but has only
a probabilistic assessment of the types of the other players/bidders. In these
cases we can use the Bayesian-Nash equilibria where:

- the strategy of each player depends on his information;

- each player maximizes his expected payoff given the strategies of the
other players and his beliefs (as probability distributions) about the
information of other players.

Under these hypotheses we can have:

- a private values model where the value of the object is a private
information of each bidder;

- a interdependent values model where the value of the object is
unknown to each bidder at the time of the auction and may be affected
by the information available to the other bidders;

- a pure common values model where the actual value is the same for
all the bidders (ex post) but each bidder can have private information
on the ex ante value of the object.

In the latter case the exchange of signals may have each bidder modify his
valuation of the object in contrast with the private value case where this
value is unaffected by such an exchange of the signals.

We can anyway define a general model where both the private value model
and the pure common value model are seen as particular cases. In this general
model we have that:

- each bidder receives a signal as his private information;
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- each bidder’s value is a general function of all the signals so that bidder
i receives a signal t; but is value is v;(¢1, ..., t,) and so depends on the
signals of all the other bidders (if they are known to him).

In this case we have a private value model if for each bidder i we
have v;(t1,...,t,) = v;(t;) and a pure common value model if we have
vity, ..., tn) = v(t1,...,t,) for every set of signals ¢y,...,¢, and for every
pair of bidders i, j.

12.3 Bidding in the standard auctions

A standard auction is an auction of one of the types we have listed in
section 12.1 or, in more general terms, it is an auction where the bidder who
evaluates the most an object gets it.

If we consider the descending auction we have that each bidder must
choose at which price to call himself out conditional on the object being still
available. In this case that bidder is the winner of the auction and the price
he pays is the highest price among the prices offered by the bidders.

We can easily see how such Dutch auction (DA) is strategically equivalent
to a F'PSB auction so that the players’ bidding strategies are the same in
both cases. In this way we can state that DA = F'PSB auction and that a
DA can be said to be an open first price auction.

On the other hand if we consider the case of private values we have that:

- in an ascending or English auction for each bidder it is a dominant
strategy to stay in the auction until the value reaches the bidder’s
value and then drop out;

- in this way the next to last bidder drops out when is value is reached
and

- the bidder with the highest value (that would be the last one to drop
out) wins he auction and pays a price corresponding to the value of the
second highest bidder.

In this way, under the hypothesis of private values, an English auction is
strategically equivalent to a SPSB auction. We note that in a SPSB auction
an optimal strategy for a bidder is to bid one’s own value for the object
independently from the strategies of the other bidders. This means that
truth telling is a dominant strategy so that the bidder with the highest
value wins the auction and pays a price equal to the value of the second
highest bidder (since all the bidders use the strategy of truthful bidding).

Let us now verify that truthful bidding is a weakly dominant strategy. For
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the bidder ¢ we assume a value v and suppose that the other highest bid is
w. We can have two cases:

- underbid so that ¢ bids v — x,
- overbid so that i bids v + z,

for some arbitrary value x > 0.
In the underbid case we can have the following cases:

- v >wv—x>wso that ¢ wins and pays w as in the case he bids v;

- v >w >v—xso i loses but could have won (by bidding v) with a
surplus of v — w;

- w>v>v—xs01iloses as in the case he bids v.
In the overbid case we can have the following cases:
- v+ 2 > v > w so that ¢ wins and pays w as in the case he bids v;
- v+x>w > v sot wins but with a loss v — w;
- w>uv+x>vs01loses as in the case he bids v.
From these considerations we easily see how:
- bidding v — x never causes a gain but may cause a loss;
- bidding v + = never causes a gain and can even cause a loss;

so that the best strategy is bidding v.

In the case of private values (or in presence of only two bidders) we therefore
have that English auction=SPSB auction so that an English auction can be
termed a second price open auction.

If, on the other hand, values are not private we have that in an English auc-
tion the players gain information on the values at which some of the other
bidders drop out. This exchange of information cannot occur in a SPSB
auction so that the two formats cannot be equivalent in the cases where the
values are either common or interdependent.

A key feature in auctions with common values components is the so called
winner’s curse. With this term we denote the fact that each bidder must
recognize that in a symmetric equilibrium he wins only when he has the high-
est signal. From this we have that in presence of common values components
(and so in presence of relations among the signals) if a bidder disregard the
information coming from the other bidders’ behavior he may pay more on
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average than the proper value of the object.
From these premises we therefore can use the equivalences we have proved
and speak of:

- first price auctions as comprising both F'PSB auctions and Dutch auc-
tions;

- second price auctions as comprising both S PS B auctions and ascending
or English auctions.

We state that a model where the value for a bidder depends on some extent
from the signals of the other bidders may be defined as a common value
model so we have:

- common values or interdependent values;

- pure common values if the bidders’ actual values are identical func-
tions of the signals of the other bidders;

- private values if the actual value for a bidder depends only on [the
realization of] his signal.

We underline how up to now we have dealt with the so called normal auc-
tions. In these cases the auctioneer is a seller of an object whereas the
bidders are his buyers so that:

- the object is transferred form the seller to one of the buyers:
- a sum of money is transferred from [one of] the buyers to the seller.

In this case the highest offering bidder wins the auction and gets the object.
Another type of auctions is represented by the procurement auctions
where the auctioneer is a buyer whereas the bidders are the sellers and:

- a sum of money is transferred from the buyer to one of the sellers
- the object is transferred from one of the sellers to the buyer.

In this case the lowest offering seller/bider is the winner of the auction. In
these notes, if not stated otherwise, we deal with normal auctions.

We note how we could reduce a procurement auction to a normal auction by
reversing the flows and this requires that we speak of an exchange of negative
money from the bidders to the auctioneer and an exchange of a “negative”
object from the auctioneer to the bidders.
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12.4 The basic result

If we have a certain number of risk neutral bidders with:
- privately known signals
- independently drawn from a common, strictly increasing and atomless
(or continuous ) distribution,
then any auction mechanism where:

- the object is allocated to the bidder with the highest signal,

- the bidder with the lowest feasible signal expects a null surplus,

gives the same expected revenue to the auctioneer since each bidder makes
the same expected payment as a function of his private signal.
This result applies:

- in the private value model where the value of a bidder depends only on
his signal;
- in the common value model if the bidders have independent signal.

On the ground of this result the four types of auctions we have seen in the
foregoing sections yield the same expected revenue under the stated condi-
tions and the same is true for other types of auctions such as the “all pay
auctions”.

In an all pay auction:

- the bidders submit sealed bids at once;
- the highest bidder wins the auction and gets the object;
- all the bidders pay their bid.

We note that “all pay auctions” are models of situations where all the in-
volved players suffer a cost for carrying out an action but only one player
(the winner) benefits (wins) from the positive effects of such actions. Typical
examples are:

- lobbying competition;

queues;

legal battles;

war of attrition.

The general result we have enunciated in the foregoing paragraphs is known
as the Revenue Equivalence Theorem or Principle and to denote it we
use the acronym REP.
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12.5 The attitude towards risk

Up to now we have generally supposed to deal with risk neutral bidders
so that they maximize their expected payoft.
Within the framework of normal auctions, we now widen our perspective
and consider both the types of the auctioneer/seller A and the types of the
bidders/buyers B. Such types are:

- risk averse ra,

- risk neutral rn,

and allow us to define the Table 1.

Avs B| rn | ra
n (0) | (1)
ra (2) | (3)

Table 1: The various attitudes towards risk

The case (0) is a classical case where both the auctioneer and the bidders
are risk neutral. If we start with considering the risk averse attitude of the
bidders we can state that:

- in a SP auction risk aversion has no effect since it is still optimal
strategy for the bidders to use truthful bidding;

- in a F'P auction a slight increase in the bid increases slightly the prob-
ability of winning with a parallel reduction of the value of winning but
this is desirable for a risk averse bidder if the current biding level were
optimal for a risk neutral bidder.

From this we have that risk averse bidders bid more aggressively in F'P
auctions.
Summarizing we have:

- for risk neutral bidders SP and F'P auctions are revenue equivalent;

- a risk neutral seller with risk averse bidders (case (1)) prefers a F'P
auction to a SP auction.

In the case (2) where a risk averse auctioneer faces risk neutral bidders
(so that REP holds) we can state that in a SP auction the winner pays a
price set up by the runner up and, by REP, must bid the expected value
of this price if a F'P auction. This means that, conditional on the winner’s
information:
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- the price is fixed in a F'P auction,

- the price is random but with the same mean in a SP auction,

so, if we disregard the winner’s information, the price is riskier in a SP
auction and therefore a risk averse seller has the following ranking:

FP = SP - ascending/English (234)

where > denotes a binary relation of strict preference.

Before going on we try to fix what we are doing. We started from a basic
auction format that is grounded on a set of basic hypotheses and, in order
to introduce and evaluate some possible extensions, we relax one hypothesis
at a time but keeping all the remaining hypotheses valid.

We started with risk neutrality and relaxed it to introduce risk aversion
(case (3)). We now consider the hypothesis that the private information of
each bidder is independent from the private information of other bidders and
relax it so to admit correlated or affiliated information.

With the term affiliated information we denote the fact that the signals
of the bidders are affiliated so that a high value of one bidder’s signal makes
high values of the other bidders’ signals more likely.

In case of affiliated signals we can state that:

English auction - SPSB - FPSB (235)

where > denotes a binary relation of “higher expected prices”.

12.6 Correlation and affiliation

At this point we relax the hypothesis that each bidder’s private informa-
tion is independent from the information of the other bidders and, on the
other hand (since we relax an hypothesis at a time), we revert to the assump-
tions that the bidders are risk neutral.

We therefore assume that the private information of the bidders is affiliated.
In this case we have:

English auction = SPSB - FPSB (236)

where > denotes a binary relation of “higher expected prices”.

This ranking derives from the fact that the surplus (the difference between
the value and the paid price) of the winning bidder is due to his private
information so the more the price depends on the information of the other
bidders the more closely the price is related to the winner’s information owing
to the affiliation among such information.

We recall that:
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- in an ascending auction with common value elements the price depends
on the information of all the other bidders;

- in a SPSB auction the price depends on the information of only one
bidder.

As to the auctioneer side we note that if the auctioneer has access to pri-
vate information he is better off by revealing it honestly. This is due to
the linkage principle that states that the expected revenue is raised by link-
ing the winner’s payment to information that is affiliated with the winner’s
information.

12.7 Asymmetries

So far we have considered some of the basic hypotheses of the REP and
we have relaxed one of them at a time so:

- we have relaxed risk neutrality as risk aversion,

- we have relaxed independent private information as correlated or affil-
iated information.

Another assumption is that the private values or signals of the bidders are
drawn from a common distribution (the so called symmetry assumptions).
We can now relax this assumption while keeping the others as valid.

We recall that the symmetry involves both the same shape and the same
support so the possible asymmetries include:

- distributions with the same shape but with different support,
- distributions with [almost] the same support but with different shapes,

- almost common values.

12.8 Collusions

With the term collusion we denote an agreement that the bidders sub-
scribe before the auction occurs so to the reduce the payment to the auc-
tioneer. If the plan succeeds the object is allocated to one of the bidders at
a lower price than in the case where the auction were conducted normally
without any ex ante agreement. Once the object has been obtained at a
lower price can be resold and the revenue be divided among the colluding
bidders.

Here we only note that a collusive agreement may be easily subscribed in a
SPSB auction where:

76



- the designated winner bids a very high sum,
- all the other bidders bid 0,

- no bidder has an incentive for deviating unilaterally from this agree-
ment.

In this case the object is allocated at a 0 price.

In a FPSB auction, on the other hand, a possible collusive agreement could
be the following: the designated winner may bid a small amount whereas all
the others bid 0. Since such amount is known to all the other bidders the
agreement is fragile. In this case indeed the bidders that should bid 0 have
strong incentives to deviate and bid slightly more than the agreed on sum
for the designated winning bidder in order to secure the object with a high
surplus.

12.9 Other types of auctions

So far in these notes we have dealt with types of auctions involving the
sale of a single indivisible object.
Other auction formats include the sale of multiple objects in cases where:

- bidders demand one object each,

- bidders demand more than one object each.

In the case of sales of multiple objects (that can be either homogeneous or
heterogeneous) we can have the following cases:

- simultaneous auctions so that the objects are sold simultaneously,

- sequential auctions so the objects are sold sequentially and no buyer is
interested in more than one object

We recall that in a standard auction the seller/auctioneer controls the mech-
anism whereas the buyers/bidders submit bids. A possible variant is repre-
sented by the double auctions where the buyers and the sellers are treated
symmetrically and the buyers submits bids whereas the sellers submit asks.

12.10 Budget constraints

If the bidders face budget constraints the RE P may fail. A budget con-
straint is an upper bound on the capability of a bidder to pay so if he binds
himself to paying more than this constraint he must default and pay a penalty.
To see why REP may fail we suppose it holds in the case where the bidders:
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- have private independent values v;,
- bidder ¢ has a budget constraint b;.

We underline how the b; are independently drawn from a strictly increasing
atomless (or continuous) distribution so also the x; (see further on) corre-
spond to independent draws from a strictly increasing atomless distribution.
In a SP auction where truthful bidding is a dominant strategy bidder 7 bids
as if he had a value x; = min(b;, v;) and no budget constraint.

By using REP therefore we have that the expected revenue is the same as
the revenue in a F'P auction where the bidders have value x; and no budget
constraint or in a F'P auction where the bidders have values z; and budget
constraints z;. This is an expected revenue lower than the expected revenue
from a F'P auction where the bidders have values v; > z; and budget con-
straints b; > x; so F'P auctions are more profitable than SP auctions and
REP (that states that the two formats are equivalent as profitability) fails
to hold.

12.11 The Revenue Equivalence Principle

We now present the Revenue Equivalence Principle and give a proof
from Klemperer (1999).
For these purposes we consider a model where the values are independent ad
private and the bidders compete for a single object. In this model bidder ¢
values the object v; and it is common knowledge that each v; is independently
drawn from the same distribution F'(v) on the interval [v, ] so that:

- F(v) =0,
- F(v) =1,

the corresponding density function is f(v),
- all the bidders are risk neutral.

Now we consider a generic mechanism for allocating the object to one of the
bidders and denote with S;(v) the expected surplus that the bidder i obtains
in equilibrium when his value is v. Within the current framework we have:

Si(v) =vP(v) — FE (237)

where P;(v) is the probability for bidder i of winning the auction and so of
getting the object at the equilibrium with a value v and F is the expected
value of the payment by bidder ¢ when his value is v.
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We can compare S;(v) with the surplus that ¢ with a value v deviates so to
follow the strategy that the type v is supposed to follow at the equilibrium.
In this latter case ¢ has the same surplus plus an additional surplus due to
the difference between v and v times the probability of winning by following
the strategy of v. At the equilibrium we impose that type v must prefer not
to deviate so we impose the following inequality:

Si(v) > S(B) + (v — ) P,(0) (238)
If ¥ = v+ dv so that v — v = —dv we get the following equilibrium condition:
Si(v) > Sw + dv) — dvP;(v + dv) (239)

that expresses the preference of bidder ¢ for type v over v + dv. If we impose
the symmetrical preference for v 4+ dv over v we get:

Si(v + dv) > Sw) + dvP;(v) (240)
If we rearrange relations (239) and (240) we get:
Si(v + dv) — Si(v)

P(v+dv) > g > Pi(v) (241)
v
At this point if we take the limit as dv — 0 we get:
— P, 9242
20— pw) (242)

The differential equation (241) can be easily solved so to obtain:

Si(v) = Si(w) + / Py(x)dz (243)
v
Relation (243) allows us to say that at any type © the slope of the surplus
function is P;(0) so that if we know S;(v) we now the whole graph.
At this point we can consider two generic mechanisms with:

- the same S;(v),

- the same P;(v),

for every bidder ¢ and every value v so that the have the same S;(v). From this
we have that any type v of the bidder ¢+ makes the same expected payment in
both mechanisms since S;(v) = vP;(v) — E and the bidders are risk neutral.
This means that the bidder 7 expected payment averaged across the possible
types is the same for both mechanisms. Since this holds for all the bidders
we have that the two mechanisms have the same expected revenues for the
auctioneer.

We have:
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- any mechanism that gives the auctioned object to the bidder with the
highest value at the equilibrium (as all the standard auctions do) is
characterized by P;(v) = F(v)"! since a bidder wins the auction only
if all the others have lower values and in this way we evaluate the
probability that this event occurs;

- many mechanisms, among which we include the standard auctions, give
to the lowest feasible type no chance of surplus so that S;(v) = 0.

Under these hypotheses all these mechanisms yield the same expected pay-
ment by each bidder and yield the same expected revenue for the auctioneer.
Since we have never used the hypothesis that the auctioned object is a single
object we can extend the REP to k indivisible objects with the constraint
of one object to each winning bidder. We can therefore state the following
proposition.

Proposition 12.1 In the cases where we have:
- n risk neutral potential buyers

- each with a privately known value independently drawn from a common
distribution F(v) that is strictly increasing and atomless (or continu-
ous) over [v, 9] and

- no buyer wants more than one of the available k identical and indivisible
objects

then any auction mechanism where:
(1) the objects always go to the k buyers/bidders with the highest values,
(2) any bidder with value v expects 0 surplus,

yields the same expected revenue and results in a buyer with a value v making
the same expected payment.

The result can be extended to the common and /or private value case in which
each buyer 7 receives a signal t; drawn from the interval [t,{] and the value
of each bidder V;(t,...,t,) depends on all the signals.
The REP main use is in the determination of the bidding strategies of one
type of auction, that satisfies its hypotheses, through the comparison with
another type of auction of which the strategy is known.
In an ascending auctionthe expected payment for a bidder with type v is
given by:

Bi(v)EY1[Yr < 0] (244)
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where P;(v) is the probability of winning the auction and Y; is the highest
of the remaining n — 1 values. In this case we have:

(1) G(v) = F(v)" ! as the distribution of Y3,
(2) g(v) = (n—1)F(v)"2f(v) as the corresponding density function.

We can write:

[Tx(n—1)f(z)F(z)"2dz
EV|Y) <v] = 5 245
or, using integration by parts over the denominator:
oF(a) g — [ F(e)de
EY1|Y; = — = 24
[ 1| 1 < U] F(U)n_l ( 6)
and, at last:
vEF(v)" ™t — [P F(x)" dx [P F(z)"dx
EY1|Y; = = - — 24
[ 1| 1< U] F(U)n_l v F(U)n_l ( 7)
At this point we can write or an ascending auction:
[ F(z)"dx
PENIY: < o] = )= 2] = P)b(v)  (248)

F(v)n1
where we have that:

- the last term on th right is the expected payment in a F'PSB auction
where the winning bidder pays his own bid,

- the last equality on the right is imposed by REP that imposes the
equality between the two expected payment so that we can derive the
bidding strategy in a F'PSB auction as:

Y F(x)" tdx
b(v) =v— % (249)

As another application of this procedure we can consider an “all pay” auction
where:

- the highest bid gets the object,

- every bidder pays his own bid.
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In this case we use REP (since all its hypotheses are satisfied) to impose:
b(v) = Pi(v)E[Y1]Y] < 0] (250)

where the first member is the expected payment in an “all pay” auction and
the second member contains the expected payment in an ascending auction
as given by the first equality of relation (248). Since we have P;(v) = F(v)"™!
replacing all these quantities in relation (250) we get:

b(v) = vF ()" — / " F) e (251)

as the bidding strategy for a bidder with value v in an “all pay” auction with
other n — 1 bidders that have the same common distribution function F'(v).

Appendix: three more auction types

Introductory remarks

In this closing section we briefly introduce three more types of auctions
either for the allocation of an item with a negative value for both the bidders
and the auctioneer or for the sharing of a cost among a certain number of
players.

For the former purpose we introduce the following models:

- negative auctions (Cioni (2009)),
- candle auctions,

whereas for the latter purpose we examine the applicability of a sort of an
“all pay auction” where the players/bidders compensate a given common
cost through their bids.

This Appendix simply aims at presenting the three formats with their main
features and so it is relatively short and written in a rather informal style.

Negative auctions

A negative auction is a type of auction for the allocation of a chore
where the bidders bid for not getting it.
With the term chore we denote an item that the seller/auctioneer wishes to
allocate to one of the bidders but that the bidders prefer to avoid getting so
they wish to be paid (as a compensation) for accepting it. We can therefore
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state that a chore has a negative value for both the auctioneer and the bid-
ders.

The aim of the proposed mechanism is therefore the identification of one of
the bidders as the losing bidder whereas the others are the winning bidders.
The losing bidder gets the auctioned chore and a compensation from the win-
ning bidders whereas each of the winning bidders has a gain from not having
the chore allocated to himself but must pay a fraction of the compensation
to the losing bidder.

From these premises we derive the motivations for the mechanism:

- the allocation of the chore to the less demanding bidder that is supposed
to be the one who is less damaged from the allocation of the chore,

- the participation of the other bidders to the compensation of that bid-
der,

- all this happens without any involvement of the auctioneer that may
even know very imperfectly the bidders and so cannot choose one of
them in any direct way.

The allocation therefore occurs from the auctioneer A to one of the bidders
from a set B on n elements. In this Appendix we present a simplified version
of this type of auctions and so:

(1) without any fee,
(2) without any support among the bidders,

(3) without any support to the bidders from other actors that we call sup-
porters.

The fee represents a sum of money that each of the selected bidders may
pay so to be able to avoid attending the auction. In this way the collected
fees represent an extra compensation for the losing bidder. Such fees are col-
lected in a phase that precedes the auctioning phase and represent a private
information of the auctioneer that is revealed to the losing bidder only after
the allocation of the auctioned item and the payment of the proper compen-
sation.

As to the point (2) we note what follows. In this simplified version we assume
that the bidders are fully independent one from the others so that the dam-
age received from one bidder from the allocation of the chore has no effect
on the other bidders.

In real world cases this is not true since the allocation of the chore to one
of the bidders may have side effects also on other bidders. These potentially
damaged bidders therefore may act in two ways:
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- each of them may promise some funds to his most preferred bidder (as
the one from whom he receives the lowest damage) so to induce him to
accept the chore;

- each of them may promise some funds to his less preferred bidder (as
the one from whom he receives the highest damage) so to help him to
avoid the allocation of the chore.

In both cases we have an additional phase before the proper auctioning phase
where the bidders can exchange “promises of payments” among each other
committing themselves to honor those payments under a penalty if they fail
to do so.

As to the point (3) we note what follows. The bidders that are invited to the
auctions are selected by the auctioneer in arbitrary ways. Once they have
been selected and made public other actors may wish to participate in the
auction in the ways we have already seen before.

Such actors are called supporters and decide to join the auction on volun-
tary basis without receiving any direct compensation but the gain they can
get from the fact that the chore is allocated to one of the bidders from whom
they receive a reduced damage.

Also in this case we have an extra phase that precedes the proper auctioning
phase. In this way, in the most complex case, we may have up to five phases
if we include also the compensation phase.

In both cases we plan to extend the basic model we are going to present
here so to make it capable of representing more complex and more realistic
situations such those we have listed before.

In all such cases the basic idea is simple: to take into account the inter-
actions among different actors and the damages that each of them either
receives from or causes to other actors owing to the allocation of the chore.
A different approach could be the following:

- to keep the auction simple without any additional phase,
- to allocate the chore and the corresponding compensation,

- to allow for local second level compensation among the losing bidder
and his neighboring bidders that can turn also into a transfer of the
allocated chore.

In this case we must introduce some stopping mechanisms so to prevent the
procedure from cycling forever.

Coming back to the basic model we note what follows. We underline how A
has the responsibility of choosing:
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(a) the chore to be auctioned,

(b) the bidders of the set B that, in this simplified version, are forced to
attend the auction.

For every bidder b; € B we define the following quantities:
- the evaluation v; of the chore;
- the bid z;;

- the probability p; of losing the auction and the complementary proba-
bility ¢; = 1 — p; of winning it.

The value!! v; € [0, M] (for a suitable common positive value M) is a private
information of each bidder and represents both the damage that b; receives
from the allocation of the chore and the missed damage deriving him from
the fact that the chore has been allocated to another bidder.

The bid x; is the realization of a random variable X;, one for each bidder.
The random variables X; are assumed to be independent and identically
distributed over [0, M]. The bid represents what each bidder claims as a
compensation in the case he is the losing bidder and may define the fraction
of the compensation he has to pay if he is one of the winning bidders.

At the end of the auction each bidder may be either the losing bidder or one
of the winning bidders so that his payoff is:

wla) = { 07 (252)
where ¢; is the fraction of the compensation to the losing bidder. Possible
ties are resolved with a properly designed random device but are supposed
to occur with a null probability.

We note that x; — v; represents the difference between the received compen-
sation and the damage whereas v; — ¢; is the difference between the missed
damage and the fraction of the compensation to be paid to the losing bidder.

From relation (252) it is possible to derive the expected gain for bidder b; as:
61'(%'1', Ui) = pi(xi — Ui) + (1 - pi)(UZ' — CZ‘) (253)

where p; is the probability for bidder b; of losing the auction and ¢; = 1—p; is
the probability of winning it. We can moreover state that the bid x; depends
on the value v; according to a continuous function (3 such that:

1We use the term V; to denote the corresponding random variable.
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- B(vi) = @i,
- 2 < B(M).

According to a traditional approach in auction theory (see Krishna (2002)),
the aim would be to find a function § that maximizes the expected gain as
expressed from relation (253) and then prove it is a strategy of equilibrium.
In order to do this we have to characterize the expression for p; and the value
Ci-

For what concerns ¢; we have the following two possibilities. In what follows
we suppose that b; is the losing bidder who bid x; having a value v;. This
can be obtained simply renumbering the bidders when the auction is over.

(1) A constant share as:

Iy
254
— (254)
where x; is the compensation requested by the losing bidder.
(2) A proportional share as:
T
Tis (255)

where x; is the compensation requested by the losing bidder and X =
Dok 21k are the bids of all the bidders but the losing one.

For what concerns p; we note that we want to express it as a function of the
values V; and the searched for strategy 3. We evaluate it by supposing that
the random variables V; are:

- independent,

- identically distributed so to have the same distribution function and
therefore the same density function.

To evaluate p; we use symmetry and consider one of the bidders, be it b;.
We have that b; loses the auction if and only if he makes the lowest bid or if
and only if:

Vi #18(V;) > (256)

or:

Niz1 (Vi > 87 (21)) (257)

so that (by using both independence and identical distribution) we can write:

P(Nip1 Vi > 87N (@1)) = Ia P(V; > 87 (21)) = i [1 — P(Vi < 37 (21))]
(258)
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or:

P(Nip1Vi > B (21)) = Mia[1=F (87 (z1))] = [1=F (87 (z1))]""" = G(57" (21))
(259)

in this way we have defined p; as a function of the searched for strategy f3.

At this point we can rewrite relation (253) as:

e(z,v) =GB (@)@ —v) + (1 =GB () (v —0o) (260)

where we generically denote with x = ((v) the bid of a bidder, with v =
B~1(x) the corresponding valuation of the chore from a bidder and with ¢
the contribution to the losing bidder.

At this point we should impose on relation (260) a first order condition as:

de(z,v)
dx
In the present paper we follow a somewhat different approach. To introduce
such approach we start with some preliminary considerations in the simple
case of three bidders to extend it to the general case of n bidders but only
in the case of uniform distributions.

0 (261)

Some preliminary considerations

In order to make some quantitative considerations and to define the best
strategies for the players in this simple version of the negative auction mech-
anism we consider the simplest case of three players i = 1,2, 3 each with an
evaluation v; of the chore and each making a bid x;. If we focus on player 1
we can have the following cases:

(1) 1 < x9 < 3
(2) To < a1 < T3
(3) 22 <x3 <13

In the case (1) the bidder 1 loses and has a gain x; — v;. If we impose it is
non negative we have z; < v;.
In the case (2) the bidder 1 wins so that he has to pay a sum defined as:

T i)
< = 262
r, + $3x2 - 2 ( )

since the losing bidder is the bidder 2. The last inequality derives easily from

the fact that 7y < x3. In this case 1 has a gain given by:
s} T2 I

Ty >V —— >V — — 263

T+ 23 2= 2 ! 2 ( )

V1 —
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since x1 > 5. From the last inequality of relation (263) we derive that 1 has
a positive gain if the following inequality holds:

I S 2U1 (264)

Also in the case (2) the bidder 1 wins so that he has to pay a sum defined

as:
I T sl
Ty < — Ty = — 265
1+ T3 2= 2(1}2 2 2 ( )

from the relations x5 < 3 < ;. In this case 1 has a gain expressed as:

I I
> v — — 266
I +l’3x2 vl 2 ( )

V1 —

Also in this case we derive that in order for 1 to have a positive gain the
relation (264) must hold.

We have therefore derived that if 1 loses he gets l; = x; —v; (increasing with
x1) and if he wins he gets not less than:

wy = v — % (267)

(decreasing with 7). At this point we can try to define the best strategy for
bidder 1 in this particular case and in order to do that we can:

- evaluate for which value of x; we have [; = w; (so to minimize the
maximum loss);

- evaluate for which value of x; we have the maximum expected value of
the gain for bidder 1.

According to the minimize the maximum loss approach we have:

T

Ty — V1 = U — ? (268)
or: 4
to which it corresponds:
1

In this case the best strategy for 1 is to bid more than his evaluation of the
chore so to get, in the worst case, the gain given by relation (270).

This result has been obtained under the hypothesis that losing and winning
are events with the same probability of occurring.
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At this point we can introduce probability considerations so to use to the
maximize the expected value of the gain approach. For this aim we
need to assess the value of the probability p;.

In this simplified case we have:

p1 = Pl{z: <22} N {z) < 23} (271)

If we consider x5 and x3 as random variables uniformly distributed on the
interval [0, M] for a suitable M > 0 we have:

Pl{zy <@} = 3f

Pl{zs <a}] =7

so that, if we suppose they are also independent, we get:

x
p=0-) (272)
In this way we may define the lower bound of the expected gain for bidder 1

as:

x x x
E(xy) = (1 - Ml)Q(l’l —v)+[1-(1- Ml)Q](Ul - 51) (273)
From relation (273) we derive the following constraints on z:
- T 2>,
- I S 2U17

since bidder 1 does not want negative gains either if he wins or if he loses.
Expression (273) can be rewritten as:

Ber) =pi- (1= 0) +p2- (o1 = 5) (274)

where:
pr=(1-%)
pp=1-(1-%)

If we recall that x; € [vy,2v], in relation (274) we have the sum of two
products and in each product we have, with regard to xy:

- one decreasing term (either p; or (vy — %));

- one increasing term (either py or (z1 — vy)).
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We moreover have that p; and ps = 1 — p; have reciprocal behaviors as
functions of x;.
If we impose p; = py we get:

T1\9 1
or:
T =(1-2"YHM (276)

From the expressions of p; and p, and from relation (276) we have that (given
the constraints we have seen on x1):

- if vy is lower than z;/2 (so that z; < Z1) then p; dominates over po,
- if vy is higher Z;/2 (so that z; > Z;) then p, dominates over p;.

In the former case bidder 1 must maximize the term (z; — v;) and so must
bid z; = 2v; (given the constraints we have seen on 7).

In the latter case bidder 1 must maximize the term (v; — %) and so must
bid z; = v; (given the constraints we have seen on x1).

Since these results have been obtained using M that is not known to the
bidders we can argue that the result represented by relation (269) is a good
suggestion for bidder 1 also in this probabilistic context.

In the next section we are going to generalize these arguments to the case of
n > 3 bidders.

The possible strategies in the general case

In this section we examine the general case of n players but keeping the
basic hypothesis we have made in section 12.11 for the distributions of the
random variables (uniformity and independence). It is easy to verify how he
relations we derive in this section are in accordance with what we derived for
n = 3 in section 12.11.

In this case we focus on a generic bidder ¢ that bids x; and may either lose
or win.
If 7 loses he gets a gain x; — v; whereas if he wins he has to pay:

T T xX;

i S 1 = 277
x1+---+xi+...xnm_(n—l)xlx n—1 (277)

since 1 is the losing bidder that bid z; < z; for any j # 1.

In this case 7 has a gain given by:
1 €

V; — xX; Z Vi — V7 —< 278
Tttt x, (n—1) (278)
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From such expressions of the gain in the two cases we obtain the following
constraints on x;:

T 2 v
r; < (n— 1y

since if they are both satisfied bidder ¢ is sure to have a positive gain in every
possible case.
If we follow the same approach that we used in section 12.11 we can impose:

Z;

i Ui =0 — 279
Ti—V; =0 =1 (279)
In this way we get that ¢ should bid:
2(n—1
n
with a benefit: 5
P e (251)
n

It is easy to see how the higher is the number of the bidders n the more the
bid tends to 2v; whereas the benefit tends to v;.

If we adopt the probabilistic approach we may define the lower bound of the
expected gain for bidder 7 as:

E(z;) = (1 M)(n_l)(l“i —v)+[1-(1- M)(n_l)](vz‘ - ) (282)
In this case we have:
pr=(1- %)(n_l)
pp=1- (-3
If we impose p; = py we get:
(1- %) = 9=(n-1) (283)
or:
T =(1-2"""YMm (284)

that tends to 0 as the number of the bidders n grows, independently from
M.
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In this case p, dominates over p; so that the best strategy for ¢ is to maximize

the term:
T

) (285)

(Ui_n—l

under the constraints x; € [v;, (n — 1)v;] so that the best strategy for 7 is to
bid x; = v; with a benefit given by:

V; n—2
v; o n—lvl (286)

higher than the benefit expressed by relation (281).

In this case the strategy suggested by relation (280) may be seen as a con-
servative strategy to be adopted in cases where the number of the bidders n
is not too high.

Candle auctions

Candle auctions have been used in the past as a variant of the English
auction with a random termination time associated either to the going out
of a candle or to the falling of a needle inserted in a random position in a
burning candle.

We are planning to use such auctions for the allocation of a chore at one
bidder from a set of bidders that have been selected by the auctioneer through
a set of private criteria that do not depend on the willingness to attend of
the single bidders.

The main motivation of this type of auctions is the following.

We have an actor that wants to allocate a chore to another actor to be
chosen among a set of actors and the information he has about these actors
are imprecise so that he cannot profitably choose one of them being sure to
have chosen the best one. On the other hand he wants the selected actor to
be compensated from the other actors for having been selected. For these
reasons he can use the proposed auction based mechanism.

In this section we present the simplest form of a candle auction for these
purposes whose basic ingredients are:

- an auctioneer A and a set B of n bidders b;, i =1,...,n;

- a random integer L > 0 and a counter ¢ that starts at 0 and stops at
L;

- afee f and a common pot P (initialized at 0) that is the compensation
for the winning bidder;
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- a random number generator that generates (according to an uniform
distribution) an integer in the interval [1,n] at each tick of the counter;

- a private value v; that represents the damage that each bidder receives
from the allocation of the chore.

At each tick of the counter every bidder is selected with a probability equal
to p; = 1/n whereas the complementary probability is ¢; = (n — 1)/n. We
note that successive selections are independent events and that if we consider
every selection as a success we are dealing with a binomial distribution on
each bidder.

We note how both the value of L and the entity of the fee f play an important
role in the mechanism. If L is too small the probability that all the bidders
refuse for the whole duration of the auction is high and the same is true if f
is too small. On the other hand it is meaningless to have L too high so that
at each step from one value of the counter on all the bidders accept. In this
case the pot is no more incremented and the auction is a mere waste of time.
The same may be true also if the fee f is fixed too high since in this case the
bidders tend to accept too often and the content of the pot remains low.
The rules of the auctions are the following:

- at each tick of the counter a random integer ¢ is generated and a bidder
b; is selected;

- the bidder b; can either accept or refuse;
- if he refuses he adds a fee f to the common pot so that P = P + f
- if he accepts he qualifies as the current chore holder;

- when the counter expires the current chore holder wins the auction and
gets both the chore and the content of the common pot P.

The counter is incremented of one unit at each acceptance or refusal and
runs for L 4 1 ticks (from 0 to L) and at ¢ = L it stops with no selection so
that we have L useful ticks.

If all the bidders refuse at every tick at the end of the auction we have P = L f
and the auctioneer can use this sum to allocate the chore to a further player
not included in the set B.

From the rules of the auction we can expect an initial succession of refusals
(when the content of the pot is low) followed by a succession of acceptances
and refusals (as the content of the pot increases) to end with a succession
where the acceptances are more than the refusals (when the content of the
pot is big enough so to be higher than the value v; for most of the bidders).
From these premises we derive that:

93



(1) at the generic step t = h € [0, L] we can have k € [0, h| refusals so that
P=Fkf;

(2) for each bidder b; we can define with k; the number of his refusals and
with k_; the number of the other bidders’ refusals so that we have
k= k_i+ ki

(3) at the generic step t = h we have t = h = k_; + k; + k, where k, is the
total number of acceptances from all the bidders;

(4) at t = L (when the counter stops) b; may be the last accepting bidder
so he has a gain only if k_; f > v;;

(5) at t = L (when the counter stops) b; is not the last accepting bidder so
he has a gain only if k; f < v;;

i

(6) we can define the value k = int( ?
the ratio) as the maximum number of refusals that b; can make before
having a loss in the case (5) since (k; +1)f > v;;

) (where int is the integer part of

(7) at the generic step t = h, bidder b; may be selected and can (according
to strategies to be specified shortly) either accept or refuse (and in this
case he pays the fee f).

We note that a bidder loses if he does not get the chore (and the pot) at the
end of the auction otherwise he is said to win (and so receives both the chore
and the content of the pot).

Before listing the possible strategies of each bidder b; we note that from the
relation t = h = k_; +k; + k, we cannot impose any constraint on the relation
between k_; and k; since they are independent one from the other.

We underline the fact that if b; wins he gets P = kf = k_;f + k;f so he gets
back what he paid during the auction so his real payoff depends only on k_;.
On the other hand if b; loses his real payoff depends on what he paid and
so on k;. In order to summarize the possible cases at the end of the auction
(and so at t = L) we define the following Table 2.

From Table 2 (where k; f is what b; has paid in the pot and k_; f is what has
been paid from the other bidders) we have that at ¢t = L:

- in case (1) we have k;f < v; and k_;f > v; so b; is better off both if he
loses and if he wins;

- in case (2) we have k;f > v; and k_;f > v; so b; is better off only if he
wins;
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kif,vi | koif, v
(1) < >
(2) > >
(3) < <
(4) > <

Table 2: Possible relations between payments and evaluation

- in case (3) we have k;f < wv; and k_;f < v; so b; is better off only if he
loses;

- in case (4) we have k;f > v; and k_;f < v; so b; is always worse off.

We can now present the possible strategies that a bidder b; can use at each
step t = h. We recall that the counter is incremented of one unit after each
acceptance or refusal from the selected bidder but at t = L when the auction
ends.

We have the following strategies:

(1) strong,
(2) weak,
(3) very weak.

Each strategy is applied at the generic step ¢t € [0, L—1]. We remind that the
following strategies must be considered within the framework where there is
a random selection mechanism of the bidders and only the selected bidder
can select one of the two actions accept r refuse.

In the strong strategy b; accepts only if k_;f > v; (hoping to be the last
accepting bidder) and (k; + 1)f > v; otherwise he refuses. We note that
the sum k_;f may only increase so that the condition k_;f > v; may only
become more favorable to the bidder b;.

With (k; + 1) f we denote the sum that b; would end up paying by refusing
once more. In this case we have that b; accepts only if he has a gain either
if he wins or if he loses.

In the weak strategy b; accepts only if k_;f > v; otherwise he refuses. In
this case he hopes to be the last accepting bidder since this condition does
not guarantee that also k;f < v; is satisfied and there is no guarantee that
b; will be the last accepting bidder.

In the very weak strategy b; accepts only if (k; + 1)f > v; otherwise he
refuses. In this case he hopes not to be the last accepting bidder since this
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condition does not guarantee that also k_;f > v; is satisfied and there is no
guarantee that b; will not be the last accepting bidder.

A common feature with these three strategies is the following: if bidder b;
(upon being selected) accepts at ¢ = h then he will be accepting at every
t > h (again upon being selected). This derives easily from the fact the the
accepting conditions once they have been verified cannot be falsified by
successive action of either the same bidder or of the other bidders.

The foregoing strategies can be used as follows:

- to define three types of bidders to be put into a competition among
themselves in the same auction;

- to define one type of bidders where each bidder can follow one of such
strategies depending on the current situation of the auction.

As to the second use, we recall indeed that each bidder b; has a private
value v; so that each bidder has his own values for which the condition of
acceptance is satisfied in each of the foregoing strategies.

Auctions for cost sharing

Given a set N of n players and a cost C'(N) there are many classical ways
through which the cost can be shared among the members of N.
Among such methods we mention both the Shapley value and the nucleolus
together with a bunch of methods that fall under the collective name of
methods of the separable costs.
Such methods are based on the definition of the separable cost or individual
cost of each player as the marginal contribution of each player to the cost of
the grand coalition (the set V). The separable cost for player i is defined as:

mi = C(N) = C(N \{i}) (287)

If we have Y, m; < C(N) we can define the individual separable cost
as » ., m; and the non separable cost as the part of the cost C'(N) that
cannot be compensated directly by the players or:

gmmzam—EJm (288)

It is possible to prove that if the core of the cost game associated to this
problem of cost sharing is non empty then we have g(N) > 0.
In this case from the definition we have:

m; = C(N) = C(N\{i}) = Y z; — C(N\ {i}) (289)

JEN
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where we have:
- C(N) = ien Tis
- x; is the fraction of the cost for the j-th player,

- from the definition of the core (see further on) we get (N \ {i}) <
CN\ {i}) where a(N \ {1}) = Sy 2

In this way we get:
mi=C(N)=C(N\{i}) <> ;- > zj=ux (290)
JEN JEN\{i})
or:

From this we have that in the associated cost game with a non empty core (see
the definition further on) the condition of individual rationality (z; < C(7))
imposes that we have:

Z m; < Z z(i) = C(N) (292)

so that we have g(N) > 0.

The various methods that can be used to share the cost C(N) depend on how
the non separable cost g(N) is shared among the n players since the portions
m; are allocated depending on the marginal contribution of each player as
expressed by relation (287).

The classical methods include (Fragnelli (2008)):

- equal cost allocation or EC'A,
- alternative cost allocation or ACA,
- cost gap allocation or CGA.

According to the EC' A method the non separable cost g(N) is equally shared
among the players so each player has to pay a total cost defined as:

g(N)

n

ECA; = m; + (293)

A possible variation is represented by a proportional share where each player
pays a fraction of the non separable cost determined by his individual sepa-
rable cost. In this case every player’s total payment is defined as:

m;

Z?:l mj
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where P stands for proportional. If m; is the same for all the players (or
m; = m for every j) we obviously get relation (293).

In the AC'A method the non separable cost is shared among the players
proportionally to the saving of each player that is defined as:

r; = C(i) —my (295)

or as the difference between the individual cost C'(7) (that the player ¢ suffers
acting as a singleton) and the marginal contribution to the cost for the player
¢ within the grand coalition V.

In this case from the definitions we again have:

From this we have that in the associated cost game with a non empty core (see
the definition further on) the condition of individual rationality (z; < C(7))
imposes that we have:

m; < z; < C(7) (297)

so that we have r; > 0.
With this definition we have that the total payment of each player is defined

as:
T

Z;L:l rj
according to a proportional allocation of the non separable cost defined as a
proportion of the individual savings.

Last but not least we introduce the method C'GA. Also in this case we have

to define a way to share the quantity g(N) among the players. To do such a
sharing we introduce the non separable cost of a coalition S C N as:

9(8) =C(8) = ) _mi (299)

€S

ACA; =m; + g(N) (298)

Also in this case from the condition of non emptiness of the core for the
associated cost game and from the condition m; < x; we get:

> om <Y 4 <C(8) (300)
€S €S

or:

g(S)=C(S) =Y m;i >0 (301)

1€S
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At this point we consider the non separable cost of all the coalitions to which
a player ¢ can belong and, for each player, determine the minimum of such
non separable costs as:

g9: = man{g(5) |i € S} (302)
Such values can be used to define the total payment of each player as:

9i
CGA; =m; + =——g(N) (303)
ZjeN gj

again according to a scheme of proportional allocation.
All these methods, to be applied, require the availability of the values of the
associated cost game and so essentially:

- C(i) for every i € N,
- C(S) for every S C N,
- C(N).

Such values are used for the evaluation of the values m; and of the non
separable cost g(N) and so enter in all those methods.
Given a cost game we can define its core through to the following relations:

- T < C(Z),
- 2ies T < C(5),
- ZieN Ti = O(N>

where x; is the cost suffered by each player from joining the grand coalition
N with a cost C(N). It is easily seen that if such relations are satisfied
the core is not empty and defines a set to which all the mentioned solutions
belong.

If the chore is not empty we have seen how we have:

- 9(5) geqo,
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whereas there is no guarantee that this is true if the chore is empty.

On the other hand we can state that if the core is empty then one at least of
such properties is violated and if one of such properties is violated then the
core is empty.

Another feature of foregoing solutions is that they are Pareto optimal in the
sense that switching from one solution to another one we have that some
players are better off but at least one is worse off. This feature depends on
the fact that the non separable cost amounts to g(N) so that if we have that
some player is better off we necessarily have that some other player must be
worse off since the sum of what they pay is fixed.

This means that we cannot say that one of such solution is better than (or
dominates) the others.

All the aforesaid methods are based on the idea of the sharing of the non
separable cost according to a fixed rule defined in some way.

A possible alternative is to resort to an auction based mechanism defined as
follows.

In this case the players know C'(N) (as the sum of a separable cost and
a non separable cost), each of them has his marginal contribution m; =
C(N)—C(N\{i}) so that what is left out to be allocated is the non separable
cost g(N) =C(N) = >, m,.

We consider firstly how to allocate the non separable cost g(/V) among the
various players/bidders.

The players know the entity of g(N) and each of them submits a bid b; in a
sealed bid auction so that the total sum:

B=) b (304)
1EN
is collected.

In the case b; > 0 for every i (so that B > 0) we can share the non separable
cost among the players as:

9i = 59(N) (305)

so that the total payment of each player amounts to m; + g;.
If B =0 (sob; = 0 for every i) we can adopt the proportional solution
we proposed before (see relation (294)). In this way, by using the marginal

contributions, we get:
m;

9i = —n
' Z?:l m;
so that also in this case each player pays m; + ¢;.

If B> 0 but b; = 0 for some ¢ we can adopt a mixed solution based on the
definition of the following quantities:

g(N) (306)
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- BZZi:bi>0bi
- M:Zi:bizomi

In this case we have that:

- the players with b; = 0 pay:

m.
i = ——=g(N 307
9= 3+ g¢W) (307)
- the players with b; > 0 pay:
bi
; = N 308
9 =3 5'W (308)

In this way if B = 0 from relation (307) we derive relation (306). Also in
this case each player pays m; + g;.

We now wish to verify if the strategy of biding b; = 0 for every ¢ is a Nash
Equilibrium (NE) or not. To verify this we suppose that all the bidders
follow that strategy but bidder 1 that bids b; > 0. If bidder 1 is worse off by
deviating then the initial strategy is a N E otherwise he has an incentive for
deviating and that strategy is not a NFE.

If bidder 1 deviates and bids b; > 0 he pays (with B = b;):

by
N 309

instead of: my
—qg(N 310
L) (310)

where we have:
- M = Zi;ﬁl m;
- M:Zlmlzml—l—M'

In order to prove that the deviation is unworthy we have to prove that we
have:

b1 mq
N)> —g(N 11
rgV) > T (31)
or: ;
1 mi
> 312
M 56~ M +m (312)
Relation (312) can be rewritten as:
blM/ + b1m1 > mlM’ + mlbl (313)
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This relation is true if by > my so that in this case bidder 1 is worse off by
deviating. On the other hand if b, < m; such relation is false and so the
bidder 1 is better off by deviating and bidding a small amount of money. In
this way we proved that the strategy where all the bidders bid b; = 0 is not
a NE.

In similar ways we can verify if for each player bidding b; > 0 is a NE or
not. We can use the same approach by supposing that all the bidders but
bidder 1 follow that strategy whereas bidder 1 either obeys (and bids b; > 0)
or deviates unilaterally (and bids b; = 0).

In the former case he gets:

by

—g(N 314

ZLg(N) (314)
whereas in the latter he gets:

my

LGN 315

() (315)
with B = B’ + b;. We therefore have:
b1 ma

—g(N) < =——9g(N 1
S 9(V) < H—g(N) (316)

so that if by < my deviating is not fruitful and therefore the strategy of
bidding b; > 0 is a NFE.

The next step is to adopt the same approach for the allocation of the whole
cost C(N) instead of the non separable cost g(N).

In this case the players know the entity of C(N) and each of them submits
a bid b; in a sealed bid auction so that the total sum:

B=> b (317)

1EN

is collected.
We can have three cases:

(1) B> C(N),
(2) B =C(N),
(3) B < C(N).

In the case (1) we have a surplus given by B—C (N )that can be proportionally
shared among the bidders as:

(B (V) (318)
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so that every bidders pays:

b; C(N)

b; — (B — C’(N))E = sz (319)
In the case (2) we have neither a surplus nor a deficit to be shared among
the bidders whereas in the case (3) we have a deficit given by C'(N) — B to
be collected in some way among the bidders.

To understand in which ways this can be achieved we can try to define the
N FE in this cost game.

As a starting tentative hypothesis we can assume that the deficit is equally
shared among the bidders as:

CWT_B (320)

We want to verify if:
(a) a generic strategy where the bidders bid b; > 0 is a NE;
(b) a strategy where the bidders bid b; = 0 is a NE.

In the case (a) we have that if the bidders follow that strategy each of them

pays:

C(N)—-B
n

We suppose that bidder 1 unilaterally deviates so to pay ab; with 0 < a < 1.

In this case we have:

bt (321)

B'=> bj+ab =B+ (a-1)b (322)
i#1
so that 1 pays:
C(N)-DB
ab; + % (323)

We want to verify if the individual deviation makes the deviating bidder
worse off or if we have:

C(N)- B C(N)—-B
oty + =8y N2 (324)
n n
or: )
aby — by > by (325)
since from relation (321) we have:
C(N)=B' =C B — (a—1)b, (326)
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From inequality (325) we derive a > 1 in contradiction with the fact that we
imposed o < 1. This means that by deviating bidder 1 is better off and so
the imposed strategy is not a NF.

As an example of this case we can verify that the strategy where each bidder
bids:

(327)

is not a NE. If we suppose that all the bidders follow that strategy but

bidder 1 who bids:
o

n

(328)

(with oo < 1) we have a deficit to be shared among that bidders that is equal
to:

C(N)— B = (1— a)C(nN ) (329)
so that b; pays:
e c(v) (V)
a——— — (1— 04)7 (330)

If by deviating by is worse off then the foregoing strategy (327) is a NE so
we want to prove that the following inequality holds:

—n (- a>07(f2v> > C(nN)

(331)

from where we derive @ > 1 in contradiction with the hypothesis that v < 1
so that by deviating b; is better off and the proposed strategy is not a NE.
If we examine the case (b) we have that by following that strategy (since
B = 0) every bidder pays:

C(N)

n

We suppose that bidder 1 deviates and bids b; > 0 so that B = b;. In this
case bidder 1 pays:

(332)

C(N)—bh
by + — 1 (333)
Since we have:
by + W) —b | O() (334)
n—1 n
thanks to the fact that we have:
by
bl—n_1>0 (335)
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and that we can easily prove that:

C(N) _ (V)

n—1 n

(336)

we have that by deviating bidder 1 is worse off so that the strategy b; = 0
for all 7 is a NE.

From this we have that each bidder has a strong incentive to bid b; = 0 in the
auction so that each of them gets an equal share of the cost but this equal
sharing makes this method of questionable interest unless we do not define
a different way of sharing the cost C'(N) among the bidders that is different
from the one defined by relation (320) (that turns into relation (332) if the
bidders follow the equilibrium strategy).
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