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Abstract

In this paper we face the problem of the fair sharing of goods,
bads and possibly services (also collectively termed items) among
a set of players that cannot (or do not want to) use a common
cardinal scale for their evaluation owing to the very qualitative and
non economical nature of the items themselves.

To solve this problem we present two families of protocols (barter
protocols and auction protocols) and use a set of classical fairness
criteria (mainly for barter protocols) and performance criteria (mainly
for auction protocols) for their evaluation.

The protocols are either based on auctions mechanisms or on barter
mechanisms and are presented in detail, discussed and evaluated
using the suitable fairness and performance criteria.

Keywords: allocations, auctions, barters, fairness criteria, per-
formance criteria

1 Introduction

In this paper we face the problem of the fair sharing of goods, bads and
possibly services (also collectively termed items) among a set of players
that cannot (or do not want to) use a common cardinal scale for their eval-
uation owing to the very qualitative and non economical nature of much of
the items themselves.

To solve this problem we present two families of protocols (barter protocols
and auction protocols) and use a set of classical fairness criteria (mainly for
barter protocols) and performance criteria (mainly for auction protocols) for



their evaluation.

As to the fairness criteria (Brams and Taylor (1999) Brams and Taylor
(1996)) we use envy-freeness, proportionality, equitability and [Pareto] ef-
ficiency with some modifications and adjustments in order to make them
suitable for the new contexts.

The performance criteria that we use include: guaranteed success, [Pareto]
efficiency, individual rationality, stability and simplicity.

As to the families of protocols we have a family Fj of protocols that are based
on auctions mechanisms and that can involve any number of players as an
auctioneer and a set of bidders and a family F5 of protocols that are based
on barter mechanisms and that involve a pair of players at a time but can
involve an arbitrary number of such pairs.

All these protocols are presented in detail, discussed and evaluated using the
suitable fairness and performance criteria.

The paper closes with a section devoted some concluding remarks and to
future research plans.

2 The family I}

The family F; contains three types of auction mechanisms:
(a1) a sort of Dutch auction with negative prices/bids,
(ag) a sort of English auction with negative prices/bids,
(a3) a sort of first price auction with negative prices/bids.

In mechanism (a;) the auctioneer tries to allocate a bad to one bidder by
rising his offer up to a maximum value M whereas in mechanism (ag) the
auctioneer starts with an offer L and the bidders make lower and lower of-
ferings until one of them wins the auction and gets the bad and the money.
We call such mechanisms positive auctions since the bidders bid to get the
auctioned item.

In mechanism (a3) the bidders bid for not getting a bad! that is assigned to
the losing bidder (the one who bid less than the others) together with a com-
pensation from all the other bidders. We call such mechanism a negative
auction since the bidders bid in order of not getting the auctioned chore.
Of each mechanism we provide a description and the best strategy. Once the
mechanisms have been described we also prove how the first two mechanisms
are really equivalent and define some relations between them and the last

'We use as a synonym also the term chore.



one. We also apply the performance criteria to such mechanisms for their
evaluation and prove under which conditions they are satisfied.

3 The family F,

The family F3 contains two subfamilies of models that we present in their
basic two players A and B version.
The former subfamily contains a set of explicit barter models whereas the
latter subfamily contains an implicit barter model and a mixed barter
model.
In the explicit barter models the players A and B show each other the
set of items that each of them is willing to barter within a procedure that is
characterized by either simultaneous or consecutive requests from one player
to the other in which the barter may involve either a single item or a subset
of items.
An explicit barter is an iterative procedure that may end either with a success
(and so with an exchange of items) or with a failure but, at each step, may
also involve a reduction of the items each player is willing to barter.
In the implicit barter model none of the players show his items to the
other so that each player, in his turn, proposes to the other a pair of items
(i, 7) that he is willing to barter so that the other may either accept or reply
with a counter proposal. The barter ends when an agreement is reached or
both agree to give up since they decide that no barter is possible. During
the barter each player reveals to the other the items he is willing to barter
and this can ease the reaching of an agreement.
Last but not least in the mixed barter model we have that one player (be
it A) shows his items to B that, on the other hand, behaves as in the implicit
case. Also in this case the barter goes on as a series of proposals and counter
proposals with an incremental definition of the bartering set of the player B.
The implicit barter model and the mixed barter model are classified, in the
paper, as iterative barter models.

4 The classical criteria

In this section we recall the classical definitions of both the evaluation
and the performance criteria as they are found in the literature. Such criteria
will be specialized, whenever needed, for the various models we introduce in
the paper.



4.1 The performance criteria

As performance criteria we use: guaranteed success, individual
rationality, simplicity and stability.
With guaranteed success we denote the fact that a procedure is guaranteed
to end with a success, with individual rationality we denote the fact that
it is in the best interest of the players to adopt it so that they both use a
procedure only if they wish to use it and can withdraw from it without any
harm or a penalty greater than their potential damage.
Simplicity is a feature of the rules of a procedure that must be easy to
understand and implement for the players without being too demanding in
terms of rationality and computational capabilities.
Last but not least with stability we denote the availability to the players of
equilibrium strategies that they can follow to attain stable outcomes in the
sense that none of them has any interest in individually deviating from such
strategies (Myerson (1991), Patrone (2006)).

4.2 The evaluation criteria

As evaluation criteria we use a set of classical criteria (Brams and
Taylor (1999), Brams and Taylor (1996)) that allow us to verify if a barter
can be termed fair or not.

Such criteria are:

envy-freeness;

proportionality;

- equitability;

[Pareto] efficiency.

We say a barter is fair if they are all satisfied and is unfair if any of them is
violated.

In the case of two players (Brams and Taylor (1999), Brams and Taylor
(1996)) envy-freeness and proportionality are equivalent, as it will be shown
shortly.

Generally speaking, we say that an agreement turns into an allocation of the
items between the players that is envy-free if (Brams and Taylor (1996),
Brams and Taylor (1999) and Young (1994)) none of the actors involved in
that agreement would prefer somebody’s else portion, how it derives to him
from the agreement, to his own. If an agreement involves the sharing of ben-
efits it is considered envy-free if none of the participants believes his share
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to be lower than somebody’s else share, whereas if it involves the share of
burdens or chores it is considered envy-free if none of the participants be-
lieves his share to be greater that somebody’s else share. In other words a
procedure is envy-free if every player thinks to have received a portion that
is at least tied for the biggest (goods or benefits) or for the lowest (burdens
or chores).

If an allocation is envy-free then (Brams and Taylor (1999)) it is propor-
tional (so that each of the n players thinks to have received at least 1/n of
the total value) but the converse is true only if n = 2 (as in our case). If
n = 2 proportionality means that each player thinks he has received at least
an half of the total value so he cannot envy the other. If n > 2 a player,
even if he thinks he has received at least 1/n—th of the value, may envy
some other player if he thinks that player got a bigger share at the expense
of some other player.

As to equitability in the case of two players (and therefore in our case) we
say (according to Brams and Taylor (1999)) that an allocation is equitable if
each player thinks he has received a portion that is worth the same in one’s
evaluation as the other’s portion in the other’s evaluation. It is easy to see
how equitability is generally hard to ascertain (Brams and Taylor (1996) and
Brams and Taylor (1999)) since it involves inter personal comparisons of util-
ities. In our context we tried to side step the problem by using a definition
that considers both utilities with respect to the same player.

Last but not least, as to [Pareto] efficiency, we say (according to Brams
and Taylor (1999)) that an allocation is efficient if there is no other alloca-
tion where one of the players is better off and none of them is worse off. In
general terms efficiency may be incompatible with envy-freeness but in the
case of two players where we have compatibility.

5 The positive auctions

5.1 Introduction

We present two types of positive auctions where a seller A ¢ Z# offers
a chore to a distinct set % of buyers/bidders so to sell/allocate it to one
of them with a mechanism where the seller gives away the proper sum of
money and the chore and the selected buyer accepts that sum of money and
the chore.
As a seller A wants to maximize his revenue so wishes to pay the lowest sum
of money to allocate the chore to one b; € A.
On the other hand each bidder/buyer b; € % wants to get the chore according



to each one’s evaluation of it, evaluation that subjectively include losses and
gains and that is a private information of each bidder.

Such mechanisms coincide with the usual mechanisms of buying and selling
if we imagine negative payments so that the seller gives away the chore for
a negative sum of money and the selected buyer accepts the chore but pays
for it a negative sum of money.

For this reason we speak of a positive auction if the bidders bid for getting
a chore in contrast with a negative auction mechanism where the bidders
bid for not getting the chore that is allocated through the application of
simple and common knowledge rules.

5.2 The auction mechanisms

We present two algorithms that can be used in all the cases where the
auctioneer wants to “sell a chore” to the “worst offering” or to have a chore
carried out by somebody else by paying him the least sum of money?.

In the former mechanism the auctioneer offers a chore and a sum of money m
and raises the offer (up to an upper bound M) until when one of the bidders
accepts it and gets both the chore and the money. The auction ends if either
one of the bidders calls “stop” or if the auctioneer reaches M without any
of the bidders calling “stop”. In the latter case we have a void auction sale.
The auctioneer has a maximum value M that he is willing to pay for having
somebody else carry out the chore otherwise he can either give up with the
chore or choose a higher value of M so to repeat the auction with a different
(new or wider) set of bidders.

This type of auction is a sort of Dutch auction with negative bids paid
by the bidders to get the chore.

In the latter mechanism the auctioneer offers the chore and fixes a starting
sum of money L. The bidders start making lower and lower bids. The bidder
who bid less gets the chore and the money. Of course the auctioneer has no
lower bound. Under the hypothesis that the bidders are not willing to pay
for getting the chore we can suppose a lower bound [ = 0. If this hypothesis
is removed we can, at least theoretically, have | = —oo. We can have a void
auction sale if no bidder accepts the initial value L. The auctioneer can avoid

20f course when an auction is over and a bidder has got the chore and the corresponding
sum of money there is the risk that the chore is not carried out. The analysis and resolution
of such problems is out of the scope of an auction mechanism. We can imagine the presence
of binding agreements for the winning bidders that turn into either reinforcing rules or
penalties. Among the reinforcing rules we can imagine a linkage between the payment and
the degree of fulfillment of the chore with the full payment occurring only if and when the
chore has been fully accomplished.



this by fixing a high enough value L. In this case the bidders are influenced
by the value of L that can act as a threshold since if it is too low none of
them will be willing to bid. This case is as if the bidders start bidding from
—L and raise their bids up to —I so that the one who bids the most gets the
chore and pays that negative sum of money. In this case we have a sort of
English auction with negative bids.

5.3 Dutch auction with negative bids

In this section we examine the mechanism® where the auctioneer offers
the chore and a sum of money and raises the offer (up to an upper bound
M) until when one of the bidders accepts it and gets both the chore and the
money.

The auction we are describing is a sort of reversed Dutch auction where we
have an increasing offer instead of a decreasing price and a chore instead of
a good.

The value M represents the maximum amount of money that the auctioneer
is willing to pay to get the chore performed by one of the bidders. We
note that the value M is a private information of the auctioneer and is not
known by the bidders. This fact prevents the formation of consortia and the
collusion among bidders since M may be not high enough to be gainful for
more than one bidder (see also section 5.6).

If x is the current offer of the auctioneer A we can see M — x as a measure
of his utility.

As to the bidders b;, each of them has the minimum sum he is willing to
accept m; as his own private information so that x — m; may be seen as a
measure of the utility of the bidder b;.

We note that, if we define the set:

F = {i|m; < M} (1)

as the feasible set, the problem may have a solution only if F' # ).
In this case the algorithm is the following:

1. A starts the game with a starting offer xq < M;
2. bidders b; may either accept (by calling “stop”) or refuse;

3. if one b; accepts? the auction is over, go to 5 ;

3We call it also the ascending mechanism or the ascending case.
4Possible ties may be resolved with a random device.



4. if none accepts and x; < M then A rises the offer as z;, 1, = z; + 0 with
0<d< M —x;, go to 2 otherwise go to 5;

5. end.

The best strategy for A is to use a very low value of xy (or xy ~ 0) so to
be sure to stay lower that the lowest m; and, at each step, to rise it of a small
fraction 6 with the rate of increment of § decreasing the more x approaches
M. Though this strategy may indirectly reveal to the bidders the possible
value of M it is of a little harm to A since in any case no bidder is willing to
accept the chore for a value lower than his own value m;.

The bidder b;’s best strategy is to refuse any offer that is lower than m;
and to accept when x = m; since if he refuses that price he risks to lose the
auction in favor of another bidder who accepts that offer.

We have moreover to consider what incentives a bidder may have to act
strategically when defining his value m;. Of course there is no reason for
b; to define a value of m; lower than the real one (since he has no interest
in accepting lower prices). He could be tempted to define a higher value
m; > m; so losing the auction in favor of all the bidders who are willing to
accept any offer within the range [m;, m;]. This means that b; may use a
value higher than m; only if he is sure that the private values of all the other
bidders are still higher. Since no bidder can be sure of this, each of them has
a strong incentive to behave truthfully.

In this case, if F' # () (see relation (49)), the sum A would expect to pay is
equal to m; where j € F is such that m; < m; for all i # j, 7 € F. Of course
A does not know such a sum in advance since we are in a game of incomplete
information and that value is revealed to A only at the end of the game as
an ex-post condition.

5.4 English auction with negative bids

In this section we examine the mechanism® where the auctioneer offers
a chore and a starting amount of money L.
On their turn the bidders start making a succession of lower and lower bids
until when a bid is not followed by a still lower bid: the bidder who made
this last bid gets both the chore and his bid as a payment for the chore.
As to the auctioneer we note that the only parameter he can fix is the value
L.
The auctioneer can choose L so that it is the maximum amount of money he
is willing to pay (see also section 5.5) but it is neither too low (since in this

SWe call it also the descending mechanism or the descending case.



case the auction could be void) nor too high (since in this case it could also
favor the rising of collusions among the bidders (see section 5.6).

As to the bidders we note that if each bidder has an evaluation m; of the
chore as his private information his best strategy is to start bidding at any
moment when the current value of the bids is grater than m;, go on until the
current descending price reaches the value m; and then stop.

We note, indeed, that if = is the current value of the bids, the bidder b; has
a net gain equal to x — m; that is positive for x > m;, null for x = m,; and
negative for x < m; so that the least acceptable outcome is x = m; with a
null net gain.

5.5 The equivalence of the mechanisms

We wish to verify if the two proposed mechanisms are equivalent or not
with regard to the values of some parameters and the revenue for the auc-
tioneer.

The first thing we do is a comparison between M and L. We saw that M is
the maximum amount of money the auctioneer is willing to pay to sell the
chore (see section 5) and the same role is played by L so we can reasonably
expect that L = M is true.

We can reason as follows. We suppose to have the same chore and the same
set of bidders in the two auction types we examine.

It cannot be L > M otherwise A would risk to pay in the descending case a
sum greater than his maximum willingness to pay M in the ascending case.
On the other hand it cannot be L < M since A in the ascending case would
risk to pay a sum higher than the maximum sum he his willing to pay in the
descending case.

From all this we see how it must be L = M.

We now examine the auction’s revenue from the auctioneer/seller point of
view.

If we suppose that each of the n bidders b; has the evaluation m; of the chore
we can easily see how the chore is allocated to the bidder b; where:

Jj=argmin{m; |i=1,...,n} (2)

and possible ties are resolved with the use of a properly designed random
device. In both cases the revenue for the auctioneer is given by:

M—ijL—mj (3)

From this we can say that the two mechanisms are equivalent with respect
to the seller/auctioneer.



Let us consider things from the bidders point of view.

From their point of view, though they may prefer a descending mechanism
to an ascending one, things are equivalent since the chore is allocated to the
bidder b; where j satisfies relation (2).

We underline how in both mechanisms the bidders attend on a voluntary
basis so that their individual evaluations m; represent how much each of
them is willing to get to accept the chore. This implies that m; hides in itself
both costs and gains for each b; from the chore but the relative importance
and weight of costs and gains is a private information of each bidder.

5.6 The possible collusions

Up to now we have supposed that the bidders act one independently from
the others. Now we examine the possible collusions (¢;) among all the bid-
ders and (c¢y) among the auctioneer and some of the bidders.

As to (¢) we start with an analysis of the collusions in the descending
case. In this case, indeed, the bidders could agree that one of them (be it
b;) bids L, is compensated with 7; = maz{%£, m;} and all the others share
the resulting surplus among themselves.

This strategy is potentially fragile since b; may decide to keep the chore for
himself with a net gain of L —m; since any violation of the binding agreement
among the bidders can be hardly punished and every bidder b, whose my, is
greater than the share of the surplus may have an incentive to deviate from
that strategy.

Of course any coalition not including all the bidders (a limited coalition) is
fragile since the excluded bidders are free to make their bids so to incentive
the others to leave the coalition.

If a limited coalition includes b; (see section 5.5) its members may not be
sure to get the chore but for a price equal to m; so that no share of a surplus
is possible.

In the ascending case the bidders do not know the value of M so collusions
are more risky and less profitable.

A possible strategy could be that the bidders keep from bidding until when
the price offered by A reaches a minimal ex-ante agreed-on value m. At this
point one of them, be it b; who evaluates the chore as m; < m, accepts m
and the chore so that the auction is over and b; gets the chore and the sum
m; whereas the other n — 1 bidders share equally the surplus m — m; among
themselves.

The choice of m is risky since the bidders may agree on a value that is higher
than M so it is never reached in the auction. This risk may be minimized
by reducing m > m; (with j defined with the rule (2)) so correspondingly
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reducing the surplus deriving from the auction.

This strategy is, however, fragile since b; has strong incentives to deviate
unilaterally from it and keep the chore for himself (since any violation of the
binding agreement among the bidders can be hardly enforced) with a net
gain of m — m; and no surplus to be shared among the other bidders.

In order to maximize the surplus m — m; the bidder b; should be b; with j
defined by relation (2). On the other hand, this choice maximizes also the
temptation for b; to deviate unilaterally from that strategy (since he is the
bidder who gains the most from such a deviation).

As to (cy) we have that both in in the ascending case and in the descending
case we can hardly imagine the possibility of collusions between the auction-
eer and [part of] the bidders owing to the nature of the proposed mechanisms
and to the fact that the auctioneer pays for allocating the chore to one of the
bidders that, in his turn, is paid for getting the chore.

5.7 Some possible applications

In this section we list some possible applications of the proposed auction

mechanisms under the hypothesis of the independent bidders. In this case
we can use the proposed mechanisms to define the allocation or localized
or point wise chores to one of the bidders.
This is the case of incinerators, solid wastes disposal sites, chemical plants
and the like. The main point is that the carrying out of the chore requires
the assent of a single bidder. This is a rather gross simplification since the
damages from the allocation of a chore are hardly confined to the single
bidder but exert their influence also on “adjacent” bidders. We could try
to account for the presence of collateral damages among bidders through a
mechanism of the side effects whose description is out of the scope of the
present paper.

6 The negative auction

6.1 Introduction

We present here a mechanism for the allocation of a chore from the auc-
tioneer A to one of the bidders from a distinct set of actors %. Both the
chore and the members of # are arbitrarily selected by A: the bidders b; bid
for not getting the chore whence the denomination of negative auctions.
The final aim of such auctions is the transfer of the chore from the auc-
tioneer to one of the bidders (the losing bidder) together with a monetary
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compensation from the other bidders (the so called winning bidders).

6.2 The auction mechanism

The auction mechanism has the following features:
- a set of n independent bidders %;

- each bidder b; € £ has an evaluation m; of the chore as his private
value;

- the auctioneer A can either fix or not a fee f that can be paid by the
bidders that want to escape the auction mechanism;

- the bidders may therefore decide either to pay the fee or not so that
the set % reduces to a set A (possibly with the same cardinality if no
bidder pays the fee);

- the members of the set Z attend both the auction phase and the
allocation and compensation phase.

The auction mechanism is characterized by the following simple auction
phase rule: the bidders of # submit their bids in a sealed bid one-shot
auction and the bidder who submits the lowest bid (be it b; with evaluation
m;y) loses the auction. Possible ties are resolved with the aid of a properly
devised random device.

Once the losing bidder has been identified we have the allocation and com-
pensation phase. Bidder b; gets the chore (allocation) and a compensation
made by:

- the evaluation my of the chore;
- the fees payment revenue mf if m bidders of n decided to pay the fee.

Under the hypothesis of truthful bidding (so that each bidder’s submitted
bid z; is equal to m;) the sum m; is paid to b; from each of the other winning

bidders b; € B with i # 1 as e;(m;) = mlz_’:l"mj for i # 1.

We note that the composition of the set % is a private information of A
whereas the composition of the set % is made publicly known. In this way
the bidders who attend the auction are not able to know the amount of extra
compensation deriving from the paid fees.
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6.3 The fee and its meaning

The fee has been introduced in the auction mechanism so to implement
the principle of individual rationality since the bidders are chosen by the
auctioneer at his will and do not attend the auction on voluntary basis.
The auctioneer therefore fixes a fee f and must properly choose it in order
for not having a void auction.

From this we can argue that at least we must have f > 0. If, moreover, A
can guess the values m; of the m; he can choose f > min m; so to force
some of the less damaged bidders to attend the auction. Last but not least
the higher f is fixed the more all the members of 2 have a strong incentive
to attend the auction hoping in a certain number of payments and therefore
in a substantial additional compensation.

We note that fixing a fee f = 0 is different from not having a fee so as having
a free ticket is different from no ticket: a fee f = 0 allows the bidders to
escape the auction at no cost whereas if no fee is fixed all the bidders are
forced to attend the auction and submit to its rules.

We recall that during the fee payment phase the bidders do not known either
each others identities or their number so that the decision of either paying
or not the fee is up to each bidder.

Let us consider what could happen if such hypothesis should prove false so
that the bidders of #Z may guess how many bidders are willing to pay the
fee and even may agree on some common strategies (see further on).

At the offset A contacts the n members of % and it may happen that m
decide to pay the fee whereas k = n — m decide to attend the auction.

In this way the auctioneer collects a sum m f to be given to the losing bidder
as an extra compensation.

A critical case may occur if m = n so that all the all the bidders of #Z pay
the fee, % = () and the auction is void. In this eventuality the fees are given
back to the bidders, since no auction occurs, so that each of them has a null
utility (since he pays f but gets back f). It is easy to show that this all
pay strategy where the bidders have 0 utility is fragile if there is at least on
bidder b; such that (n — 1)f > m; since the deviating bidder gets a payoff
equal to (n — 1) f whereas all the other get a payoff equal to —f.

6.4 The compensation rule and the strategies

In section 6.2 we supposed that each bidder would truthfully bid xz; = m;.
In this way, assuming for simplicity that no bidder paid the fee, we have:

(1) the losing bidder b; gets a compensation equal to m; and coincident
with the damage m, that derives him from the allocation of the chore;
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(2) each winning bidder b; with ¢ # 1 gets a gain deriving from the fact
that he succeeded in not getting the chore (and so equal to m;) but has
to undergo a compensation rule and so has to pay a sum equal to:

My

Zj;él,i mj +m;

(4)

€l<m1) =my

with i # 1.

If we denote with p the probability for b; of winning the auction (and therefore
(1 — p) is the probability of losing the auction) we have:

Er = (1 —p)(m; —my) + plm; — ei(my)] = plm; — e;(m;)] (5)

where Er denotes the expected gain of the generic bidder b; in the case of
truthful bidding z; = m;.
In a similar way we can denote as:

(1) Eg the expected gain for b; from bidding x; > m; with the correspond-
ing probabilities of winning (p’ > p) and of losing (1 —p' < 1 — p);

(2) Ep the expected gain for b; from bidding z; < m; with the correspond-
ing probabilities of winning (p’ < p) and of losing (1 —p' > 1 — p).

If we imagine the variables z; (with j = 1,...,k) as independent random
variables identically (possibly uniformly) distributed over the interval [0, M|
for a suitable value M > 0 we may state that:

(1) p = 0if x; — 0;
(2) p'=pif z;i =my;
3) p —1ifx; — M.
We have two cases of strategic bidding or:
(1) x; < my;
(2) z; > m,.

For both cases we assume that only player b; deviates from the strategy of
truthful bidding whereas all the others go on with that strategy.

In case (1) we have that, by bidding z; < m;, b; can either become or remain
a loser with a loss equal to m; — x; or can remain a winner with a gain
that can be proved to be lower than his losses. In this way we have that,
by bidding z; < m;, b; at the best has a gain that is lower than his losses so
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that strategy is dominated by the one of truthful bidding and is surely not
used by bidder b;.

In case (2) we have that, by bidding z; > m;, b; can either remain a loser
(with a gain equal to x; — m;) or became a winner (so to pay instead of
being compensated) or remain a winner(so to pay a higher compensation to
b1). In this case (2) we note that:

- the probability of the first event is lower than the corresponding prob-
ability of b; being a loser by bidding m;;

- the probability of the last event is higher than the corresponding prob-
ability of b; being a winner by bidding m;

- under the hypotheses we made on the variables x; we have that:
(1= p) (i —mi) =0 (6)
as x; — M.

In this way we may argue that the higher b; bids the more he risks having a
loss. This is the main reason why bidding x; > m; is a bad strategy for b;.
Another reason may be found by leaving the individual deviation approach
and using a Pareto-like reasoning.

We note first of all that compensations and payments are made on the basis
of the declared bids x; and not on the basis of the private evaluations m;.
This means that the ordering of the bidders b; according to their effective bids
x; may differ from the ordering made according to their private evaluations
m;. Since, if one player b; has the incentive to deviate and so to bid z; > m;,
this is true for all the players we have that we may have m; > my for some
bidders ;. In this case bidders b; would possibly pay a sum higher than
their due share. In order to avoid this every bidder has one more reason for
avoiding a bid x; > m;.

6.5 The properties and the applications

In order for the description of the basic mechanism to be completed we
have to verify whether the proposed basic mechanism satisfies or not a min-
imal set of basic performance criteria and to describe the possible ap-
plications of the proposed basic mechanism.

The performance criteria that we use include: guaranteed success, [Pareto]
efficiency, individual rationality, stability and simplicity.

The property of guaranteed success, from the auctioneer point of view, is
satisfied whenever the auction is not void. This happens for sure if A does
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not fix any fee (and therefore the auction cannot be void and a losing bidder
exists for sure) so conflicting with the requirement of individual rational-
ity (see further on) but can occur also if he fixes a fee on condition that the
value f is fixed at the right level .

From the bidders point of view the property of guaranteed success is satis-
fied since the auctioned item is assigned to the bidder who makes the lowest
bid and the others compensate him for this according to a simple rule of cost
sharing.

As to [Pareto] efficiency we may state that the bidder with the lowest
evaluation gets the chore and an equivalent compensation and all the other
bidders pay a sum that is lower than the missed damage from not having the
chore allocated to each of them so have a positive gain.

If the chore was allocated to another bidder with a higher evaluation all the
winning bidders would pay a higher fraction of the compensation so they
would be worse off. This is enough to say that the allocation to the lowest
evaluation bidder is [Pareto] efficient.

The satisfaction of the property of individual rationality is guaranteed by
the presence of the fee f that allows some bidders to escape the auction by
paying it.

As to stability we have argued in section 6.4 that for each bidder the truthful
bidding is the best strategy. Though this arguing must be justified on more
solid grounds we think that the intuition we have given should be enough to
assure the satisfaction of this property.

Last but not least simplicity is assured by the fact that the rules of the auc-
tion are simple enough so to be implemented even by bidders with a bounded
rationality.

As to the applications of the basic mechanism we mention here all those
cases where a chore must be allocated from the auctioneer to one of the
bidders from an equivalent (with respect to the chore) set of bidders.

7 Some remarks about the explicit barter
models

7.1 The basic motivation

The basic motivation of the models we propose in section 8 is the need to
describe how an exchange of goods can happen without the intervention of
any transferable utility such that represented by money or by any other nu-
merary good. In this way the involved actors do not need to share anything,
such as preferences or utilities as shared information, but the will to propose
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pool of goods that they present each other so to perform a barter.

All the barters are in kind and are essentially based on the following very
simple basic scheme (see section 8.2): we have two actors that show each
other the goods, each of them chooses one of the goods of the other and, if
they both assent, they have a barter otherwise some rearrangement is needed
and the process is repeated until either a barter occurs or both agree to give

up.

7.2 Goods and chores as services

The key point of the proposed models is that each of the two players owns
a set of items that enters it the barter process, I for A and J for B.
In the paper we suppose both I and J contain goods or elements that have
a positive value for both players. From this point of view a good may also
be a service that one player is willing to perform on behalf of the other.
In this case, for instance, player A asks to player B for one of the available
B’s services in exchange for one of the available A’s services that player B
asks to player A. Of course this occurs in the one-to-one barter case.
Another perspective sees the two sets I and J as containing chores or items
that have a negative value for both players.
In this latter case the two players try to allocate each other their chores so
that a chore allocated from A to B can be seen as a service performed by B
on behalf of A to solve a problem of A. In this way we can unify the two
perspectives and consider the goods case as a general case.

7.3 Some definitions

With the term barter we mean, see section 8, an exchange of goods for
other goods without any involvement of money or any other numerary good.
We can have either a one shot barter or a repeated or multi shot barter.
In the one shot case the two actors execute the barter only once by using a
potentially multi stage process that aims at a single exchange of goods and
can involve a reduction of the sets of goods to be bartered.

In the multi shot case they repeatedly execute the barter process, every
time either with a new set of goods or with a possibly partially renewed set
of goods but usually excluding previously bartered goods.

In section 8 we are going to examine only the one shot barter between the
two actors so that there is no possibility of retaliation owing to repetitions
of the barter.

In order to avoid interpersonal comparisons and the use of a common scale we
let the two players show each other their goods and ask separately to each of
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them if he thinks the goods of the other are worth bartering. If both answer
affirmatively we are sure that such interval exists otherwise we cannot be
sure of its existence. Anyway the bartering process can go on, though with
a lower possibility of a successful termination.

In this way we describe the absence of a common market (as a place where
goods have a common and exogenously fixed evaluation in monetary terms)
between the two players as well as the absence of any outer evaluator that
can impose or even only suggest common evaluations according to a common
numerary quantity to both players.

8 The explicit barter models

8.1 Introduction

We suppose the actor A with his pool I = {iy,...,i,} of n heterogeneous
goods and the actor B with her pool J = {ji,...,jm} of m heterogeneous
goods.

The sets I and J represent all the goods that both players are willing to
barter on that occasion so that there is no “hidden good” that can be added
at later stages. This is a design choice that qualifies the proposed models
as models of explicit barter. If we imagine that the players have “hidden
goods” that can be revealed and added to the sets at later stages we deal
with what we may define an implicit barter. In the present section we deal
only with barters of the former type.

In this case A assigns a private (i.e. known only by him) vector v4 of n
values to his goods of the set I, one value v(i) for each good i € I.

Also B assigns a private vector vg of m values to her goods of the set J. These
vectors are fixed before the barter begins and cannot be modified during the
barter. From these hypotheses, for any subset K C I, player A once for all
can evaluate, by using a property of additivity, the quantity:

va(K) = Z vx (i) (7)

A similar quantity may be independently evaluated by player B.

In a similar way we can define a private vector s4 of m values of the appraisals
of the goods of B from A and a vector sg of n values of the appraisals of the
goods of A from B. In this case A can evaluate:

sa(H) = 3 sx(n) (8)

JneEH
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for any subset H C J. A similar quantity may be independently evaluated
by player B.

These assignments reflect the basic hypotheses that A can see the goods of
B but does not know vp (the values that B assigns to her goods) and the
same holds for B with respect to A.

In this way we can define four types of barter:

1. one-to-one or one good for one good;

2. one-to-many or one good for a basket of goods;

3. many-to-one or a basket of goods for one good;

4. many-to-many or a basket of goods for a basket of goods.

The second and the third case are really two symmetric cases so they will be
examined together in a single section.

8.2 One-to-one barter

Even in this simple type of barter there must be a pre-play agreement
between the two actors that freely and independently agree that each other’s
goods are suitable for a one-to-one barter. The barter can occur either with
simultaneous (or “blind”) requests or with sequential requests.

In the case of simultaneous requests, at the moment of having a barter we
can imagine that the two actors privately write the identifier of the desired
good on a piece of paper and reveal such information at a fixed time after
both choices have been made. In this case we have that A requires 57 € J and
B requires i € I so that A has a gain s4(j) but suffers a loss v4(i) and B has
a gain sp(i) but suffers a loss vp(7).

The two actors can, therefore, evaluate privately the two changes of value of
their goods (that we may slightly improperly call utilities):

ua(i, j) = sa(j) — vali) (9)

up(i,j) = (i) — vB(j) (10)

since all the necessary information is available to both actors after the two
requests have been devised and revealed.

Equations such (9) and (10) are privately evaluated by each player that
only declares acceptance or refusal of the barter, declaration that can be
verified to be true by an independent third party upon request. We note
that a possible strategy for both players is to maximize the value they get
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from the barter (and so s4(j) and sp(i)). Owing to the simultaneity of the
requests this is not a guarantee for each player of maximizing his own utility
since in equations (9) and (10) we have a loss due to what the other player
asks for himself (and so v4(7) and vg(j)) (see section 8.4).

The basic rule for A is the following®:

if(us > 0) then accept 4 else re fusey (11)

and a similar rule holds also for B.
We have therefore the following four cases:

1. both players accept, accept, and acceptp,
2. player A refuses and B accepts, refuses and acceptp,
3. player A accepts and B refuses, accept and refuseg,
4. both players refuse, refuse, and refusep.

that we are going to describe in detail in section 8.3.
In the case of sequential requests we can imagine that there is a chance
move (such as the toss of a fair coin) to choose who moves first and makes a
public request. In this way both A and B have a probability of 0.5 to move
first.
If A moves first (the other case is symmetric) and requires j € J, B (since she
knows her possible request i € I) may evaluate her utility in advance using
equation (10) whereas the same does not hold for A that, when he makes the
request, does not know the choice i € I of B and so cannot evaluate v4(i).
At this level B can either explicitly refuse (if up < 0) or implicitly accept (if
In the refuse case B can only take the good j off her set so that the process
restarts with a new deliberation of the possibility of the barter and a new
chance move.
In the accept case the implicit acceptance is revealed by the fact that also
B makes a request. In this case B may be tempted to chose ¢ € [ so to
evaluate:

max up(i,j) = mazx (sp(i) —vp(j)) = maz sp(i) (12)

where the quantity vp(j) is fixed (since it depends on the already expressed
choice of A) and cannot be modified by B.
Acting in this way, B may harm A by causing us < 0 and this would prevent

5In the general case we have uy > ¢ with ¢ > 0 if there is a guaranteed minimum gain
or with € < 0 if there is an acceptable minimum loss.
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the barter from occurring at this pass. Roughly speaking we can say that
since B choses after A she can act accommodatingly or in an exploiting way:
in the first case the probability that the barter occurs are higher than in the
second case. Anyway B makes a request of 7 € I so that also A can evaluate
his utility through equation (9).

Now, using rules such as (11), we may have the cases we have already seen
but except for the case of double refusal since the case where who choses as
the second refuses is handled at a different stage of the algorithm (see section
8.3).

All this goes on until both accepts so the barter occurs or one of them empties
his set of goods or both decide to give up since no barter is possible, how it
will be clear from the description that we are going to make in section 8.3.

8.3 Formalization of the models

In this section we present a concise but fairly detailed listing of the two
models of the one-to-one barter, starting from the case of simultaneous or
“blind” requests.

In this case the algorithm is based on the following steps:

(1) both A and B show each other their goods;
(2) both players decide if the barter is [still] possible or not;

(a) if it is not possible then go to step (6);
(b) if it is possible then continue;

(3) both simultaneously perform their choice (so A chooses j € J and B
chooses i € I);

(4) when the choices have been made and revealed both A and B can make
an evaluation (using equations (9) and (10)) and say if each accepts or
refuses (using rules such as (11));

(5) we can have one of the following cases:

(a) if (accepts and acceptp) then go to step (6);
(b) if (refuses and acceptg) then \\at A’s full discretion

i. either A executes I = I\ {i} and if (I # () then go to step
(2) else go to step (6);
ii. or A only executes a new choice and then go to step (4);

(c) if (accept and refusep) then \\at B’s full discretion
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i. either B executes J = J \ {j} and if (J # @) then go to step
(2) else go to step (6);

ii. or B only executes a new choice and then go to step (4);
(d) if (refuses and refuseg) then
i. A executes either I = I\ {i} or a new choice; \\at A’s full
discretion
ii. B executes either J = J \ {j} or a new choice; \\at B’s full
discretion
iii. if (both A and B make a new choice) then go to (4);
iv. if (only one of A and B makes a new choice and the reduced
set of the other is not empty) then
- if (the barter is still possible) then go to (4);
- if (the barter is not possible) then go to (6);
v. if (only one of A and B makes a new choice and the reduced
set of the other is empty) then go to step (6);

vi. if (both reduce each one’s set and I # () and J # ) then go
to step (2) else go to step (6);

(6) end of the barter.

The solution we have adopted at point (5)(d) is the most flexible since it mixes
the two cases (5)(b) and (5)(c) and gives the two players the full spectrum
of possibilities at the same time remaining simple enough to be understood
and implemented by the players.

We remark how at the very beginning of the process we suppose that the
barter is possible though this is not necessarily true at successive interactions.
We now give the description of the model with sequential requests. We
denote the player who moves first as 1 (it can be either A or B) and the
player who moves second as 2 (it can be either B or A) and for both we use
male forms. With a similar convention we denote as I; the set of goods and
11 a single good of player 1 whereas for player 2 we have respectively I, and
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(1) both players show each other their goods;
(2) both players decide if the barter is [still] possible or not;

(a) if it is not possible then go to step (10);

(b) if it is possible then continue;

(3) there is a chance move to decide who moves first and makes a choice;
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4) 1 reveals his choice iy € Is;

5) 2 can now perform an evaluation of all his possibilities;

(4)
(5)
(6) if 2 refuses he takes iy off his barter set then go to (2);
(7) if 2 accepts he can reveal his choice i € I;

(8)

8) both 1 and 2 can make an evaluation (using equations such as (9) and
(10)) and say if each accepts or refuses (using rules such as (11))

Y

(9) we can have one of the following cases:

(a) if (accept; and accepts) then go to step (10);
(b) if (refuse; and accepty) then \\at 1’s full discretion
i. either 1 performs I; = I\ {i1} and if (I; # @) then go to step
(2) else go to step (10);
ii. or 1 only performs and reveals a new choice and then go to
step (8);
(c) if (accept; and refuses) then \\at 2’s full discretion
i. either 2 performs J; = J; \ {j1} and if (J; # 0) then go to
step (2) else go to step (10);

ii. or 2 only performs and reveals a new choice and then go to
step (8);

(10) end of the barter.

We note that the case (9.¢) (accept; and re fusey) can occur as a consequence
of the case (9.b).

8.4 Possible strategies in the one-to-one barters

We now make some comments on the possible strategies that the players
can adopt in the case of the algorithms we have shown in section 8.3.
In the case of simultaneous requests both players perform their choice
without knowing the choice of the other. If they evaluate their utilities
according to equations such as (9) and (10) their best strategy would seem
to choose the good of the other that each value at the most.
In this case we have that:

A requires j = argmazjcysa(j) and causes B a loss that A may only
roughly estimate;
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B requires ¢ = argmat;c 1sp(i) and causes A a loss that B may only
roughly estimate.

Acting in this way each of them may have the other player to refuse the
barter. As we have seen a refusal may turn into the withdrawal of a good
from one of the sets I or J. This fact is surely unfavorable for each player.
Both players therefore have strong incentives to devise better strategies.

In what follows we introduce one possible strategy under the hypothesis the
both players use a more slack rule than rule (11) so that acceptance or refusal
are rather discretionary than linked to a condition satisfaction criterion.
We devise a strategy for player A whereas for player B we have two possi-
bilities:

(1) B follows a generic non systematic strategy,
(2) B follows a similar strategy.

The strategy for A is the following.

A orders the set J of B in increasing order (from the lowest to the highest)
according to the values he gives to its elements.

In the case (1) B uses a generic strategy of selection whereas in the case (2)
she uses an analogous strategy over the set I of A.

The process of choice and request involves a certain number of pass until
an agreement is reached either in a positive or in a negative sense. At the
generic [-th pass (with [ = 1,...) A requires the current item of higher value
Ji € J whereas B chooses ¢ € [.

After the [—th choice from both A and B at pass [ we may have:

(a1) A accepts so that everything depends on the decision taken by B,
(ay) A refuses so that both goes at pass [ 4 1-th.

In this way A (but a similar argument holds also for B) scans the vector
J from higher to lower values goods looking for the right opportunity to
perform a barter and having as the last choice the remaining good of lowest
value. We recall indeed that at any pass both players may decide to prune
their own sets of goods.

In the case of sequential requests we have that the two players make the
choice one after the other according to an order that, at each step, depends
on a random device. In this case, therefore, the players can adopt strategies
similar to those we have seen for the simultaneous requests case but can try
to exploit the advantage of being second mover.

Let us suppose we are at a generic step where A moves as first and B as
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second. We consider B’s point of view but similar considerations hold also
for A’s point of view. B has ordered the goods of I in increasing order of
value. In this case we have:

- A chooses j € J so that B is able to evaluate vg(7)

- B can choose i € I so to get a high value of his utility up(i,j) =
sp(i) —vp(j) but

- without hurting A since in that case A could refuse the barter.

We recall that a refusal may turn into the pruning of a set and so in a un-
favorable outcome for the requesting player that had requested the pruned
good. From these considerations we derive that the step-by-step strategy
that we have seen in the simultaneous requests case can be profitably used
also in this case.

Similar strategies can be conceived, with the proper modifications and adap-
tations, for the other three models of barter that we are going to describe in
the next two sections.

8.5 One-to-many and many-to-one barters

In these two symmetric cases one of the two actors has the possibility to
require one good whereas the other has the possibility to require a basket of
goods (that can even contain a single good) and so any subset of the goods
offered by the former. This kind of barter must be agreed on by both ac-
tors and can occur only if one of the two actor agrees to be offering a pool
of “light” goods whereas the other agrees to be offering a pool of “heavy”
goods.

The meaning of the terms “light” and “heavy” may depend on the application
and must be agreed on during a pre-barter phase by the actors themselves.
We remark how the adopted perspective (lack of any quantitative common
scale) turns into qualitative evaluations of the goods so that they are termed
light if they are assigned qualitatively low values whereas they are termed
heavy if they are assigned qualitatively high values.

The aim of this preliminary phase is to give one of the two actors the possi-
bility of asking for any set of goods whereas this same possibility is denied to
the other. If there is no agreement during this phase, three possibilities are
left: they may decide either to give up (so the bather process neither starts)
or to switch to a one-to-one barter (see section 8.2) or to a many-to-many
barter (see section 8.6).

If there is a pre-barter agreement we may have two symmetrical cases. In
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this section we are going to examine only the “one-to-many” case. In this
case we have that A owns “light” goods and may require only a single good
j € J but B owns “heavy” goods and may require (at her free choice) a
subset Iy C I of goods with |f0| < n and the two requests may be either
simultaneous or sequential.

In the case of simultaneous requests both actors can evaluate their respec-
tive utilities, soon after the requests have been revealed, by using equivalent
relations to (9) and (10):

A

1. ua(lo,5) = s4(j) — va(lo)
2. UB(jg,j) = SB(fO) - UB(j)

where both players use equations like (7) and (8) and the additivity hypoth-
esis.

Also in this case we can have the four cases we have seen in section 8.2. We
note, however, how in this case if, for instance, A refuses, using a rule such
as (11), he can either repeat his request (with B keeping fixed her request )
or can act as we are going to show in section 8.6. In the latter case indeed
A can partitions his goods in subsets that he is willing to barter, possibly
updating these subsets at every refusal. Except for this fact the barter goes
on as in the one — to — one case with simultaneous requests.

In the case of sequential requests the procedure does not use a chance
move to assign one of the two actors the right to move first but gives this
right to the actor that owns the pool of “light” goods. After this first move
the barter goes on as in the one — to — many case with sequential requests
but without any chance move and with the modification we have introduced
for the case of the refusal (see section 8.6).

8.6 Many-to-many barter

In this case A may choose and require any subset Jo C Jwith 1< ]jo\ <
m of the goods of B whereas B may chose and require any subset IyCI
with 1 < |f0| < n of the goods of A and the two requests may be either
simultaneous or sequential.
Also this kind of barter must be agreed on by both actors in a pre-barter
phase during which they both agree that in the course of the barter each of
them can ask for a subset of the goods of the other player.
Since also in this case we can have either simultaneous or sequential requests
the algorithms are basically the same that in cases of one-to-one barter. The
main differences are about the use of the subsets and the way in which every
case of refusal is managed
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As to the point (1) we note that in the algorithms we must replace single
elements with subsets of the pool of goods so that the evaluations must be
performed on such subsets by using equations (7) and (8) and so the addi-
tivity hypothesis.

As to the point (2) in the algorithms for the one-to-one barter the solution
we adopted was the possible pruning of the set of the goods from the refusing
actor (see the points 5 or 9 (b), (¢) and (d) of the algorithms of section 8.3).
This solution cannot be applied in the present case since this policy could
empty one of the two initial pools or both in a few steps. To get a solution
in this case we can devise an independent partitioning strategy of the two
sets of goods from both actors A and B.

In this case at the very start of the barter the two players show each other
their sets of goods so to hide their preferences that are partially revealed
only after each refusal. After every (possibly double) refusal the player who
refuses (be it A) uses the procedure partitioninga(I) to split I in labeled
disjoint subsets so to make clear to B which are the subsets of goods that he
is inclined to barter at that stage. The case of B is fully symmetric. We note
that under the additivity hypothesis the sets I and J can be partitioned at
will by their respective owner.

This solution is implemented by replacing all the occurrences of the assign-
ment instructions I = I'\ {i} and J = J\ {j} respectively with the following
assignments:

I = partitioninga(I) ={L; | U;  =1LNI1;=0Vi# j} (13)

J = partitioningg(J) ={J; | Ui Ji=J J;NJ; =0V i # j} (14)

so to replace a flat set with a set of disjoint labeled subsets.

In this case, referring to A, we have that if A refuses the barter proposed by
B he can either repeat his request with B keeping fixed her request or he
can partition his set in subsets as collective goods that he is willing to barter
with subsets of the goods of B. The case of B is fully symmetrical.

We recall how the barter in this case may evolve as follows. At the very
start the two players propose each other their sets of goods. Then we can
have the following cases. (1) Both players make a request and both accept.
In this easy case the barter is successful and ends. (2) Both players make
a request but one accepts whereas the other refuses. The refusing player
has the possibility to rearrange his set of goods. This rearrangement is a
partitioning of the player’s set of goods according to the rules (13) or (14)
so that the other player, at the next step, knows which are the subsets that
can enter successfully into a barter.

(3) Both players make a request and both refuses. The rearrangement is
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performed by both players at the same time.
For further details we refer to section 8.3.

8.7 The basic criteria

In this section we refer to the criteria we introduced in section 4.

Such criteria, in order to be used in our context of two players without
either any common scale or any numerary good, must be adapted or must
be redefined someway so to be in agreement either with the essence of their
classical definitions or with intuition or with both. In what follows we are
going to make use of a general notation that must be specialized in the single
models we have already presented in the proper past sections.

We start with envy-freeness. If we denote with”® a4(-) and [4(-) the values
in A’s opinion and evaluation, respectively, of what A obtains and loses from
the barter (and with ap(-) and lp(-) the same quantities for player B) we
say that the allocation deriving from a barter (or a barter tout court) is
envy-free if we have for A:

~—

v
—_

CLA(-

La(’)

(15)

and for B:

Q

~—

v

B(
Is(")
As we have already seen from section 8.1 on, if a barter actually occurs it
is guaranteed to be envy-free. Relation (15) means that the value that A
assigns to what he gets from the barter is at least equal to the value that
A assigns to what he loses from the barter. We assign a similar meaning to
relation (16) with regard to B.
Since, in the case of two players, we want to maintain the equivalence between
proportionality and envy-freeness we must give a definition that mirrors the
classical definition of proportionality and reflects this equivalence.

1 (16)

"With - we denote a generic set of bartered goods. This set may contain also a single
element.
8n the one-to-one barter model, for instance, we have that:

—_

- aa(’) = sa(j)
2. 14(") =va(d)
3. aa(r) =sp(i)
4. 1p(-) = vB(j)

whereas in the other cases the single elements must be replaced by the properly defined
subsets.
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For player A we may define a barter as proportional if it satisfies the following

condition:
aa() o ()
aa(-) +1a() — aa(s) +1a()
so that the fractional value of what A gets from the barter is at least equal
to that of what he loses from it. We remark that a,(-) + la(-) represents the

value that A assigns to the bartered goods.
A similar condition holds also for B:

(17)

ap(-) I5(-)
50 +150) = as() + I50) (18)

We say that a barter is proportional if both (17) and (18) hold.

It is easy to see how from equation (17) it is possible to derive equation (15)
and vice versa. The same holds also for equations (18) and (16).

As to equitability we must adapt its definition to our framework in the
following way. We need firstly some definitions. We define (with respect to
the occurrence of the barter itself) I and I’ respectively, as the ex-ante and
ex-post sets of goods of A and J and J', respectively, as the ex-ante and
ex-post sets of goods of B. If (i, 7) denotes the bartered goods (i from A to
B and j from B to A) in a one-to-one barter, we have:

I'= 1\ {i} U {5} (19)
J = J\ {j}u{i} (20)

In the case of other kind of barters involving also subsets of goods we must
appropriately replace single goods with subsets.

On the sets I’ and J' we define, for the player A, the quantities that repre-
sent the values for A himself, after the bater, of his goods and B’s goods,
respectively, as a4(I") and [4(J"). We therefore define a barter as equitable
for A if the fractional value of what he gets is at least equal to the fractional
value he gives to what he loses from the barter or:

aa(j) _ la(i)
an(l) = an(D)

On the other hand the barter is equitable for B if, using the corresponding
quantities we used in equation (21) but referred to player B, we have:

ag(i) _ ()
CLB(J/) 2 (IB(J)

If both relations hold we say that the barter is equitable. We remark that
we are under an additivity hypothesis where the value of a set is given by

(21)

(22)
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the sum of the values of its elements so that the value that a player assigns
to a set, such as I’ or J', is the sum of the values that the player assigns to
the elements of that set.

As to efficiency we say that a barter of the two goods (7, j) (or of the one-
to-one type) is efficient if there is not another pair of goods (¢, j') that gives
at least to one player a better result without hurting the other.

For players A and B this means that there is no barter (', ;') that satisfies
the following inequalities:

aa(j) _ aa(j’)
AG) = Ta() (23)
aB(i) CLB(i/) (24)

ls(j) ~ (")
with at least one of them satisfied with the < relation.
In such relations the pairs [4(i), a4(j) and and [4(i'), a4(j’) are related to A
and are associated respectively to (i, j) and to (i, j'). Similar quantities are
defined also for player B.
We remark how we are under the hypothesis that at least one of the following
inequalities hold:

1. i #i

2. j #

Also in this case if the barter involves subsets of goods such relations must
be modified by replacing single goods with properly defined subsets of goods.
We note that if the barter is such that both players attain:

aAmaz (25)
lA'min
and a
Bmaw (26)
lein

we are sure to have an efficient barter whereas if both attain:

GAmin (27)
lAm(lI
and a
Binin (2 8)
leax

we are sure that the barter is surely inefficient. In (25) and (27) with respec-
tively ayu,,.. and ay . < an, . wedenote the maximum and minimum values

mazx min
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that A assigns to the goods he can get from the barter and with l4, ., > la, .
and l,, . we denote the maximum and minimum values that A assigns to
the goods he may lose from the barter. In (26) and (28) we have the same
quantities assigned to the corresponding goods by player B.

We remark how conditions (25), (26), (27) and (28) are sufficient conditions
of efficiency and do not represent effective strategies for each player since
condition (25), for instance, has a quantity that depends on the choice of A
at the numerator but a quantity that depends on the choice of B as denom-
inator.

Last but not least, we note, from the equations (23) and (24), how efficiency
of a barter cannot be always guaranteed and must be verified case by case.

max

8.8 Fairness of the proposed solutions

In this section we aim at verifying if the solutions we have proposed in

the previous sections satisfy the criteria we stated in section 8.7 so that we
can say whether they produce fair barters or not.
We start with envy-freeness in the one-to-one barter. In this case a barter
occurs if and only if both A and B get a non negative utility form it or if
both players think each of them gets no less than one looses. This turns,
in the simplest case, in the following conditions (involving strictly positive
quantities):

(b1) sa(j) —wva(i) >0 or sald) > q

(bs) sp(i) — vg(j) > 0 or 224

so that (by) coincides with relation (15) and (by) coincides with relation (16).
In this way we can derive that if a barter occurs then it is guaranteed to
be envy-free (and therefore proportional, since we have maintained the
equivalence between the two concepts in the current case of two players).
In more complex settings things can be more tricky to prove but, following
similar guidelines, it is possible to show that whenever a barter occurs it is
guaranteed to be envy-free.

We recall that in every case where a set of goods is involved we can evaluate
its worth by using the additivity hypothesis.

As to equitability (see relations (21) and (22)) we refer only to player A
since the case of B is completely analogous. In this case we remark that:

(eq1) aa(j) < aa(l’)
(eqz) 1a(i) < aa(l)
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From (eq;) and (eqq) we can easily derive a4 (j)la(i) < aa(l")aa(I) or:

aA(I’) > lA(Z)

, 29
10 aall) 2
On the other hand from (eq) it is possible to derive:

r '

aa(j) ~ aa(l')

If we compare relations (29) and (30) with relation (21) we can easily see
that there may be possibilities to have an equitable barter for A and, in a
similar way, an equitable barter for B so to get an equitable barter.

For A this occurs if we get:

aa(l') _ aaj) _ lad)
aa(j) — aall’) = aa(l)

since the rightmost inequality is equivalent to relation (21).
In order for this to happen we must have:

aa(f)aa(l) > aa(I")la(i) (32)

| a()anli) = as()la(i)a > as(I')a(i) (33)

so that we need to find the minimum value o > 1 such that:

aax(j) > aa(l') (34)

holds. Instead than using (eq;) we could have used (eqq) so to derive the
corresponding necessary value for (.

In this way, since we do not use at all the condition of envy-freeness, we
establish an independence between the two concepts but for the fact that if a
barter is not envy-free it does not occur so that it is not possible to evaluate
its degree of equitability.

Last but not least we deal with the verification of the efficiency of a barter
(7,7) in the case of a one-to-one barter. In this case we must verify that there
is not another barter (¢, j') such that the relations (23) and (24) hold.
Even if A choses j (see section 8.4) B could have chosen ' such that 14(') <
14(i) so that relation (23) (with j = ;) would be verified implying that the
current barter (7, j) is not efficient.

Similar considerations hold also for B. From these considerations we derive
that efficiency for both players can be verified only a posteriori. If it is
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violated we derive inefficiency from which both actors may derive a regret
that could be (at least partially) compensated through repeated barters (see
section 8.9).

Summing up, we can say that, in the case of one-to-one barter:

- envy-freeness is guaranteed every time a barter occurs,
- equitability may be guaranteed at every barter,
- efficiency must be verified a posteriori at every barter,

so that the fairness of a barter is a by-product of the barter process itself
and is not a-priori guaranteed by its structure.
Similar considerations hold also for the other three models.

8.9 Extensions

The planned extensions include the possibility of (1) repeated barter
involving (2) even more than two players and (3) the relaxing of addi-
tivity.

If we allow the execution of repeated barters we must introduce and man-
age the possibility of the retaliations between the players from one barter
session to the following sessions and how the pool of goods are defined
and /or modified between consecutive barter sessions. In the proposed algo-
rithms (currently stateless) we can deal with the presence of the retaliation
through state variables that account for past attitudes of the players (Ax-
elrod (1985) and Axelrod (1997)).

If we allow the presence of more than two actors we must introduce the
mechanisms for the execution of parallel and concurrent negotiations.

If, for instance, we have three actors A, B and C we can have (in the case
of one-to-one barter with simultaneous requests) the following possibilities:
circular one-to-one requests where, for instance, A makes a request to B, B
to C' and C to A or one-to-many requests so that A makes a request to B
and C', B makes a request to A and C' and C' makes a request to B and A.
In the former case there can be no conflict/concurrence whereas in the latter
it can occur that two actors ask the same item to the third causing a conflict
that must be resolved some way.

In both cases we have: the barter occurs if and only if every actor accepts
what is proposed by the others; if all actors refuse the others’ proposals a
rearrangement (that depends on the nature of the barter) of the respective
pools occurs followed by a repetition of the barter; in all the other cases the
procedure must allow the refusing actors (two at the most) to repeat their
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request.

Obviously in all the other cases the interactions tend to be more and more
complex. Analysis of such extensions can be carried out using the tools sug-
gested in Myerson (1991), section 9.5 where graphical cooperation structures
are introduced and used.

As a last extension we mention the relaxing of additivity. Additivity is
undoubtedly a simplifying assumption and is based on the hypothesis of the
relative independence of the goods that the actors want to barter among
themselves. This hypothesis in many cases is not justified since functional
links, for instance, make the goods acquire a value when and only when they
are properly combined. In such cases the goods must be bartered as dynam-
ically chosen subsets and cannot enter properly in a one-to-one barter. The
issue is very complex (so complex that Brams and Taylor (1996) and Brams
and Taylor (1999) deal with it only marginally) and here we only make some
basic comments and considerations and present a toy example.

We recall that player A choses among the goods of B and vice versa. What
A loses, owing to the choice performed by B, belongs to the set I and is
evaluated according to the values of v4 and what he gets belongs to J and
is evaluated according to the values of s4. Similar considerations hold also
for player B.

Up to now we have supposed that A evaluates subsets of the goods involved
in the barter with additive rules and that the same holds also for B. From
this point on we are going to consider both subadditivity and superadditivity
for player A but similar considerations hold also for player B.

We note that as to s4 subadditivity (or the case where the value of the set is
lower than the sum of the values of its composing elements) is meaningless
since in this case A would be better off by simply asking for a single good
from B. On the other hand subadditivity on v, is highly implausible since
there is no reason to believe that A would bring to the barter goods that
taken as sets are worth less than the single goods.

From these considerations we derive that (1) A sees J in a superadditive way
by hypothesis and (2) I in a superadditive way as his worst case and similar
considerations hold also for the player B.

As to (1) this means that VK C J:

sa(K) =Y salin) (35)

JrEK

A is of course more interested in subsets K C J such that:

sa(K) > Y salje) (36)

JEK
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We call the subsets for which relation (35) holds the superadditive subsets
of J and those for which relation (36) holds the strictly superadditive
subsets of J.

As to (2) we recall that I contains the goods that A loses in the barter so

that the condition:
vA(H) 2 3 ualin) (37)
ineH
(for H C I) represents a worst condition for A with regard to the additive
case in the evaluation of his utility in the one-to-many and many-to-many
barter cases. At this point we have the cases of Table 1 where we show the

A wvs. B additive superadditive
additive one-to-one one-to-many
superadditive | many-to-one | many-to-many

Table 1: Possible types for the ways in which each player evaluates their
requested goods

possible typologies of the players with regard to the values ss for A and spg
for B.

From this perspective, the fact that A is superadditive means that at least
relation (35) holds and the same is true for B if she is superadditive.

From that Table we se that if both players are superadditive they are more
willing to agree on a many-to-many barter, if they are both additive they
may prefer a one-to-one barter whereas if one is superadditive and the other
is additive they may agree on either a many-to-one or a one-to-many barter
depending on which is the superadditive player.

In the closing part of this section we are going to deal only with the many-
to-many barter case with simultaneous requests where A asks for the
goods of the set Jy C J and loses the goods of the set Iy C I whereas B asks
for the goods of the set Iy C I and loses the goods of the set Jy C J.

Also in this case the core of the algorithms (see sections 8.3 and 8.6) is
composed by the four cases that may occur at each pass:

(a) both A and B accepts the proposed barter so that the process ends
with a success;

(b) A accepts but B refuses;
(c) A refuses whereas B accepts;

(d) both A and B refuse.
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In the symmetric cases (b) and (c) the accepting player keeps his request
fixed while the refusing player has two possible mutually exclusive strategies:

- can repeat his choice;

- can partition (on the first refusal) or rearrange a partitioning (on suc-
cessive refusals) his set of goods so that another round may occur.

In the case (d) each player has both the repeater and the modifier strategies
at his disposal.

The fact that a player rearranges in some way his goods through the definition
of variable partitions interfere with the superadditive evaluations of the other
player and this may cause both players agree that there is no possibility
for the process to go on (see the step (2)(a) of the simultaneous requests
algorithm of section 8.3).

9 Some remarks about the iterative barter
models

9.1 Introduction

In this section we present two types of models of barter that may be seen
as an extension of the models we presented in Cioni (2008a) and Cioni (2008b)
and that we term as iterative since they are based on iterative algorithms
through which either one or both reveal the composition of the sets of items
they are willing to barter.

Both models involve indeed a pair of actors/players A and B that aim at
bartering a pair of items.

In the former model (the so called implicit or pure model) neither actor
reveals to the other the set of items he is willing to barter but such a revelation
occurs incrementally during the process since by exchanging proposals and
counter proposals the two players reveal each other the composition of such
sets. The bargaining process goes on until an agreement is reached and a
bargaining occurs or both players agree that no bargaining is possible so that
the process ends with a failure.

In the latter or mixed model, on the other hand, we have an asymmetric
situation where one of the players, be it A, shows to B his set of items, be it
I’ on which the bargaining process starts with a proposal from B. Also in
this case the process goes on with a series of proposals and counter proposals
from both players until one of the foregoing cases occurs. In this case player
B reveals the composition of his set of items during the course of the process.
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We note that in both cases each player can be said to know which are the
items he is willing to bargain in the barter process.

This knowledge may be verified in advance by asking to each player if a given
proposal would be or not in his bargaining set (or the set of the acceptable
proposals).

From this perspective we can say that each player is characterized by a
bargaining set, I, for A and Jg for B, whose structures and whose preference
orderings are private knowledge of each player and can be only partly revealed
during the barter process. The main difference between the two models that
we propose is that in the latter model the set [4 is, at least partly, a common
knowledge of the two players under the form of the set I’.

9.2 Some notes about the barter

In this section with the term barter we denote a process through which
two players A and B can exchange a pair of items® (7, 5) where both items
are evaluated according to each player’s private evaluation system that de-
termines either his rejection or his acceptance of the proposed items.

The exchange, if it occurs, is in kind so that the items (7, j) are the only
involved items and there is no parallel or compensatory exchange of money
or any other numerary good between the players.

In any generic pair (i,j) the identifier ¢ identifies what passes from A to B
either under the form of a good or a bad or a service in exchange of the
item identified by j, of the same types, from B to A. Both items 7 and j
are characterized by their ownership (in the sense of who is the provider and
who is the receiver) and by their type as (a) a good or an item that has
a positive value for both players; (b) a bad or an item that has a negative
value for both players; (¢) a service or an item that has a instrumental value
for one or both players and represents a task that a player carries out for the
other.

Each ownership is provided under the form of a pair (py, pa) where both iden-
tifier may be A or B and identify the direction of transfer from a provider to
a receiver. The basic idea is to have a transfer from A to B of ¢ and from B
to A of j. In order to obtain this it is necessary in some cases to manipulate
the transfer so to replace a bad in one direction with a good or with a service
in the opposite direction.

When things have been arranged so to have two unidirectional transfers (from
A to B and vice versa) we may quantify the transfers so to evaluate them.

9In what follows we sometimes refer to the former element of each pair (i,j) as the
i—item and to the latter as the j—item.
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For player A this means that we imagine he uses two private values v4(j)
and v4 (i) to evaluate, on a private scale, what A gets from the barter and
what A loses from it int that order.

In this way A can evaluate the ratio:

(38)

as a dimensionless quantity.

For player B, in a similar way, this means that we imagine she uses two
private values vp(i) and vg(j) to evaluate, on a private scale, what B gets
from the barter and what B loses from it int that order.

In this way B can evaluate the ratio:

(39)

as a dimensionless quantity.

As to the quantities that are involved in relations (38) and (39) we note that
they represent private information of each player, are measured according to
private scales that may not be common knowledge between the players and
include possibly independent discount factors for each player so to account
for damages occurring to each of them from the passing of time.

Relations (38) and (39) are used respectively by player A and player B to
accept or refuse a proposed barter (see section 10).

9.3 The performance and evaluation criteria

For the evaluation of the proposed barter procedures we use the perfor-
mance criteria and the evaluation criteria we introduced in section 4.
Also in this case such criteria must be adapted or must be redefined someway
so to be in agreement either with the essence of their classical definitions or
with intuition or with both.

We start with envy-freeness.

If we denote with v4(j) and v4(7) the values in A’s opinion and evaluation,
respectively, of what A obtains and loses from the barter (and with vg(i) and
vp(7) the same quantities for player B) we say that the allocation deriving
from a barter (or a barter tout court) is envy-free if we have for A:

mzxgzl (40)
and for B: .
ps = ;f((;)) > 1 (41)



Relation (40) means that the value that A assigns to what he gets from the
barter is at least equal to the value that A assigns to what he loses from the
barter. We assign a similar meaning to relation (41) with regard to B.
Since, in our case of two players, we want to maintain the equivalence between
proportionality and envy-freeness we must give a definition that mirrors the
classical definition of proportionality and reflects this equivalence.
For player A we may define a barter as proportional if it satisfies the following
condition:

va(j) +va(i) — va(j) +va(i)
so that the fractional value of what A gets from the barter is at least equal
to that of what he loses from it. We remark that v4(j)+wva(i) represents the
value that A assigns to the bartered items.
A similar condition holds also for B:

u(0) v5(j)
05 + s () ~ v5(0) + ()

(43)

We say that a barter is proportional if both (42) and (43) hold.

It is easy to see how from equation (42) it is possible to derive equation (40)
and vice versa. The same holds also for equations (43) and (41) so that the
equivalence of the two definitions has been maintained in the case of two
players.

We now pass to the criterion of equitability.

We must adapt its definition to our framework in the following way. We need
firstly some definitions. With respect to the occurrence of the barter of the
items (i, j) we define for player A:

- V4 a measure for A himself of his current welfare before the barter
occurs;

- V4 a measure for A himself of his current welfare after the barter has
occurred;

and for player B:

- Vp a measure for B himself of his current welfare before the barter
occurs;

-V} a measure for A himself of his current welfare after the barter has
occurred.
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With the term welfare we denote a personal and private evaluation from
each player of his global situation (either under the hypothesis of additivity
or subadditivity!?) through a single value that is used to rank the items that
are entering the barter process.

We therefore define a barter of the items (i,j) as equitable for A if the
fractional value of what he gets is at least equal to the fractional value he
gives to what he loses from the barter or:

oall) - vali)
VA = Vyu

(44)

On the other hand the barter is equitable for B if, using the corresponding
quantities we used in equation (44) but referred to player B, we have:

vp(i) o vB(j)

45
Ve = Vs (45)

If both relations hold we say that the barter is equitable.
We note that if V} > V4 then relation (44) implies envy-freeness for A
whereas if V, > Vp then relation (45) implies envy-freeness for B.
To make inequalities (44) and (45) of more practical use we may rewrite
them, for instance for player A, as follows:

la Ta

where, for each turn following the first one:

1 4 is the minimum value of all the j—items that A has bargained before
the current turn of bargaining;

T 4 is the maximum value of all the :—items that A has bargained before
the current turn of bargaining.

We say that (46) is easier to use than relation (44) because keeping track of
both a maximum and a minimum value in a multi step process is easier than
evaluating at each step the new value of the welfare under the hypothesis
that the proposed barter occurs.
A similar relation holds also for player B:

I B

10With reference to sets with the term additivity we denote the fact that the value of
a set is given by the sum of the values of its components whereas if this value is at least
equal to that sum we speak of superadditivity and of strict superadditivity if it is
strictly greater.
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Last but not least we examine the criterion of [Pareto] efficiency.

A barter of the items (i, 7) is [Pareto] efficient if there is not another pair of
items (7', j') that gives at least to one player a better result without hurting
the other, under the hypothesis that at least one of the following inequalities
hold:

1. i
2. ' #

For players A and B this means that there is no barter (', ;') that satisfies
the following inequalities:

va(j) _ va(j’)
(i) = va(?) (48)
UB(i.) < UB(Z'/) (49)

with at least one of them satisfied with the < relation.
In such relations the pairs v(7), va(j) and and va(i'), va(j’) are related to
A and are associated respectively to (7,7) and to (¢/,7’). Similar quantities
are defined also for player B.
We note that if the barter is such that both players attain:

VAmaz

; (50)

and vp

we are sure to have an efficient barter whereas if both attain:

: (52)

UATI’LG,:I),L'

and
’UBmini

(53)

Bmazj

we are sure that the barter is surely inefficient. In (50), (51), (52) and (53)
we have:

VAo, 1S the best j—item that A can get from the barter;

VApin; < VApas, 18 the worst j—item that A can get from the barter;
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UB,n,s, 18 the best i—item that B can get from the barter;

UBypin, < UBpa,, 18 the worst i—item that B can get from the barter.

We remark how conditions (50), (51), (52) and (53) are sufficient conditions
of efficiency but may also be hints for either good or bad strategies for both
players.

Last but not least, we note, from the equations (48) and (49), how efficiency
of a barter cannot be always guaranteed and must be verified case by case.

9.4 Incremental construction/revelation

One of the key point of the proposed models is the fact that either one or
both players reveal incrementally the set of pairs of items (i, 7) each of them
is willing to barter with the other. Each pair is seen as a single element of
the set and from two pairs (7, j) and (h, k) we can obtain one of the following
pairs: (i, h), (i,k), (h,j) and (k,j) depending on the nature of the involved
items.

It is therefore necessary to understand the ways through which a set is incre-
mentally enlarged from the initial empty set to a maximal set, the so called
bargaining set, that include all the possible elements that a player is willing
to barter.

The first way we can use is the following (in what follows we consider the
case of A, the case of B is analogous and will not be explicitly considered).
A may start with Iy = () and add one element at a time according to some
insertion criteria until a criterion of stop is met so that the process is in-
terrupted and the final set I, is constructed. In this way A builds up the
following succession of sets Iy C I} C --- C I, where the set I, may, at
least in theory, contain infinitely many elements.

In this way A proceeds bottom up since he starts from the empty set and
eventually ends with the whole set of the items I, that may coincide or not
with I4.

This process gives to A the greatest flexibility since it allows him to build
up new elements by mixing and or merging the existing ones so that the
construction process can adapt better to the course of the barter process.
The main problem with this approach is that the barter may prove a very
time consuming process since the number of the possible combinations in-
crease with the increase of the number of the available elements.

Another way that A can use is the following that we may call top down.
A starts with his fixed and predefined set I4 of n elements. Each item is
initially set as invisible (so that again A starts with a publicly known set
Iy = 0) and during the process one element at a time is set visible. In this

42



way A builds up the following succession of sets Iy C [} C --- C [, with
I, = 14.

This incremental disclosure may be obtained by using a set of n flags initially
set at tnvisible and by setting at each step one flag at a time at wvisible so to
reveal the associated element.

The process ends when a barter occurs or when all the elements of the set I,
are revealed without any barter occurring.

In this case we get the lowest flexibility since the elements are fixed from the
start but we are sure the process has a fixed bound that must occur when
all the elements have been revealed without any barter occurring.

A this point we have to define, in the bottom up approach, which criterion
can be used by player A (and similarly by player B) to add a new element
to the current set I; and, in the top down approach, which criterion can be
used by player A (and similarly by player B) to set as visible a new element
to the current set I;.

In both cases the simplest criterion is the following: a player either adds or
sets visible an element that is expected to give him an advantage greater
than the one deriving him from the current proposal.

We recall that such an element represents the new [counter| proposal and so
an advantageous elements for the proposing player.

The other point is to clarify how player A (but the same is true also for
player B) can derive at step i the element (h, k) such that I; = I,_; U (h, k).
In the bottom up approach such an element can be either an element of 4
or an element composed by using elements from J;_; or a mixture of both
cases.

In the top down approach such an element is simply one of the elements of
Iy

10 The implicit and the mixed barter models

10.1 Introduction

In this section we propose two iterative barter models. In the former

model, that we call implicit model or pure model, neither A nor B shows
each other the sets of the items they wish to barter.
In the latter model, that we call mixed model, we suppose that one player,
be it A, shows the items he is willing to barter from the offset of the process
whereas the other, in this case B, keeps her items hidden but reveal them
during the process by making either proposals or counter proposals aiming
at the reaching of an agreement and therefore a barter.
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10.2 General remarks

Both models are described by using simple algorithms of which we present
the general structure and the various options that the each of two players
has at each step. In order to keep the structure of each algorithm simple
and readable we may use strings to describe sub procedures that we verbally
describe separately.

Since both models are based on a succession of proposals and counter pro-
posals we firstly need to define what do we mean with the terms proposal
and counter proposal. We also list which are the moves that each player can
use during the process.

A proposal is a pair of item identifiers (7, j) that a player proposes to the
other as the object of the barter where each item is characterized by an own-
ership.

On the other hand, given a proposal (i,j) a counter proposal is a pair
(', 4") such that either i’ # i or j' # j is true since:

- if i =7 and j' = j we have an implicit acceptance so that the process
ends with a success;

- if i/ #£i and j' # j we define it as a new proposal.

It is obvious that a proposal in reply to a counter proposal is termed a
counter proposal and not a counter counter proposal so to avoid the chaining
of counter prefixes.

Within our perspective we have that a counter proposal may follow only a
proposal and a new proposal may follow either a pass move or a reject move
(see further on).

Both a proposal and a counter proposal can be followed by one of the follow-
ing moves from the listening player: pass, give up, accept and reject.

A pass move is a way through which a player may signal to to the other that
it is necessary that he shows some more goodwill in order for the process to
go on.

A give up move is a way for one player to signal to the other that he thinks
the process is not worth being carried on any more.

We note that two successive give up moves (one from each player) cause the
process termination with a failure.

An accept move closes the barter with a success since it signals that a player
accepts the last [counter| proposal made by the other player.

A reject move means that the received [counter| proposal made by the other
player cannot be accepted.

Both an accept move and a reject move can follow any [counter| proposal
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but if the answer is a reject move the turn remains to the rejecting player
that can make his counter proposal.

A pass move gives the turn to the other player and may be answered by
either a new proposal, by a pass move or by a give up move. We note that
there cannot be more than two consecutive pass move so that a natural suc-
cession for a closure with a failure may be: passa, passg, giveupa, giveuppg.
Last but not least a give up move may be followed either by a new proposal
or by another give up move from the other player: in the former case the
process goes on whereas in the latter it is interrupted with a failure and in a
way that does not necessarily involve the use of pass moves.

10.3 The implicit model

In the case of the implicit/pure model the situation we are interested
in can be described in the following terms.
We have one player that wants to exchange an item with another player but
none of them has a knowledge of the items the other is willing to barter.
The only way to proceed is through an iterative process. At each step of
the process a pair of items (7, j) is proposed and such a pair may be either
accepted or refused in some way.
In the former case the process ends with a success so that the barter occurs.
In the latter case we may have a pass move so the next move is up to the
other player, a reject move so the next move is up to the same player or a
counter proposal.
At the beginning of the barter we have the set of pairs-of-items-to-be-bartered
of A is Iy and the set of pairs-of-items-to-be-bartered of B is J,.
We therefore have an initialization phase where we pu Ip =0, Jo =0,i =1
and 7 = 1 and where we select at random who moves first, be it A. The
other case being fully symmetrical will not be examined here.
In the description of the algorithm we use the notation proposes to summa-
rize the execution of the following steps:

1. A presents a [counter| proposal pa = (4, j);
2. I = I;_1 Upy;
3. 1=1+4+1;

and symmetrically we use the notation proposeg to summarize the execution
of the following steps:

1. B presents a [counter] proposal pg = (7', 7');
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2. Jj = Jj—1 Upg;
3.7=7+1;
The main structure of the algorithm in this case is the following:
(0) initialization phase;
(1) propose;
(2) B may:
(2

(2

) accept; go to (4);

)
(2.) proposeg; go to (3);
)

)

reject; proposeg; go to (3);

(24) give up; go to (5);
(2¢) pass; go to (6);
(3) A may:
(34) accept; go to (4);
(3y) reject; proposea; go to (2);
(3c> proposea; go to (2)7
(34) give up; go to (5);
(3¢) pass; go to (6);
(4) end;

If we denote with the player ¢ either A or B and with j either B or A we
can define the moves that can follow either a pass or a give up move in the
following ways:

(5) a give up; move may be followed by:
54) propose;; go to (3) if j = B else go to (2);
J
(56) give up;; go to (4);
(6) a pass; move may be followed by:
6,) propose;; go to (3) if j = B else go to (2);
J
(6p) pass;; give up;; give upj; go to (4);
(6c) give up;; go to (5);
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The execution of either an accept or a reject move on a proposal (i, j) from
player A (the case of player B is fully symmetrical and will not be analyzed) is
based on the consideration of the values v4(j) and v4(i) through a function:

evala(i, j) = fa(va(j), va(i)) (54)

where the function f, synthesizes the working of comparison from A between
the values v4(j) and v(7). In its simplest form we can express it as:

fa(va(j),va(i)) = va(j) — vali) (55)
Such function can be used in rules such as the following!!:
if(evala(i, j) > 0) then accept 4 else re fusea (56)

so to establish a strict preference ordering > on the proposals. We can indeed
say!'?:
(1,7) =a (i',7") © evala(i, j) > evala(7', j") (57)

and the same holds also for B.

10.4 The mixed model

In the mixed model we have an asymmetric situation where one of the
players, be it A, shows to the other, B, his set of items I’ whereas the first
move is up to the other player, B in this case.

The algorithm in this case has the following structure that is very similar to
the one we have seen in section 10.3 but for the initialization phase and the
starting move.

(0) initialization phase;
(1) proposep;
(2) A may:
(2,) accept; go to (4);
(2y) reject; proposea; go to (3);
(2:) proposea; go to (3);
(24) give up; go to (5);

1We could have evala(i,j) > ¢ with € > 0 if a minimum gain is required or ¢ < 0 if a
maximum loss is acceptable.
121t is obvious that with =4 we denote the strict preference relation of player A.
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(2¢) pass; go to (6);

3a) accept; go to (4);

3p) reject; proposeg; go to (2);

(34)
(30)
(3c) proposep; go to (2);
(34) give up; go to (5);
(3¢)

3c) pass; go to (6);
(4) end;

For the points (5) and (6) and for the description of the proposes and
proposeg moves we refer to the same points and the same description we
gave in section 10.3.

The initialization phase is unchanged for B (so that again we have Jy = ()
and j = 1) but for A we must account for the presence of the set I’ whose
content is defined by A freely and completely at his will for what concerns
both the type and the number of the contained items.

From this we have Iy C I' @ I' where I' ® I' = {(4,7) | i,j € I' buti # j}
so that [y is rather fuzzily defined for B so reducing his seemingly initial
advantage over A.

10.5 Possible strategies

We now present and analyze the possible strategies of the two players in
either the pure model or the mixed model.
In the pure model both players act without any knowledge of the other’s
player set of elements but with each player only knowing his bargaining set,
I, if A and Jp if B.
In this case the player who moves first, be it A, can do no better than choosing
an element (i, 7) from his bargaining set 14 so to maximize the value:

evala(i, j) = fa(va(j), va(i)) (58)

This is possible for A if he chooses one of the cases where he has full control
of both the items of the proposed element I; = {(i,7)}.

In his turn B may use both Jg and I; to devise his [counter| proposal to A
so defining his set J; after his first step.

At the generic step ¢ > 1 for A and 57 > 1 for B we have that each player:
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- knows the current proposal (,7) and is able to evaluate it using the
function'® evaly;

- can possibly devise a [counter| proposal (i, j') and propose it if it is
preferred by the player to the current one according to the preference
ordering we introduced with relation (57) or if:

(', 7") =n (1,7) & evaly(i', 7') > evaly(i, j) (59)

- can frame the new [counter| proposal on the knowledge of both I; and
J; so to favor at the best also the other player (therefore increasing the
probability of an acceptance) by using the common knowledge between
them;

- if the [counter| proposal of the foregoing steps cannot be devised the
player can either accept the current proposal, press the other for a
change of route (with a pass move) or signal the will to stop the process
(with a give up move).

As the last step we note how each player can use also his bargaining set for
framing a new [counter| proposal but with a lower probability of if being
accepted by the other player.

In the mixed model the presence of an asymmetry does not modify very
much what we have seen before since the initial knowledge of B of the items
of A is rather fuzzy and, moreover, she is the player who must move first.
We can, therefore, state that the strategies we have seen for the pure model
case can be profitably used also in the n the mixed model case.

10.6 Satisfaction of the criteria and applications

We now examine if the proposed models satisfy or not the performance
and evaluation criteria we have introduced in section 9.3.
For what concerns the performance criteria we have that guaranteed
success is not always satisfied since a process of barter may end without
any effective barter and without any penalty for the player who withdraws
from the process. Individual rationality is guaranteed to each player that
feels he engaged himself in an unfavorable process from the availability of
pass and give up moves whereas simplicity is assured by the fact that the
frame of both algorithms is a sequence of proposals and counter proposals
until an agreement is reached either to have a barter or to give up since no

13With the subscript h we denote either the player A or the player B depending on the
case.
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barter is effectively possible. Last but not least stability is satisfied since
both players have easy to follow and implement strategies (see section 10.5).
We recall that the acceptance or not of a proposed barter is governed by the
relations (54), (55) and (56) of section 10.3.

For what concerns the evaluation criteria we have that if a barter occurs,
according to the previously recalled relations, then it is envy-free (see re-
lations (9) and (41)) for both players and therefore it is also proportional,
from the equivalence of the two concepts in the case of two players.

It is easy to verify, by the same relations, that if a barter is fair then it occurs.
The check of the equitability requires the check of the relations (44) (or of
the corresponding relation (46)) and (45) (or of the corresponding relation
(47))-

Such a check may be performed by both players at every step of the barter
so that, in the best case, one player may propose a barter that for him is
envy-free and equitable and the other may verify such a proposal and accept
if he too thinks that for him it is envy-free and equitable.

Up to this point we have left out [Pareto| efficiency.

As to the [Pareto] efficiency we need to verify that the relations (48) and
(49) cannot be satisfied and both players have sufficient conditions to attain
such condition. Such conditions, however, may be conflicting so that they
cannot drive effectively a strategy. Moreover the check of the relations (48)
and (49)) may be impossible since not all the possible elements (i, j) are
known during the barter so that the inefficiency of a barter may be discov-
ered only when both players have accepted it.

Summing up, we can say that envy-freeness is guaranteed every time a barter
occurs, proportionality is guaranteed every time a barter occurs, equitability
may be guaranteed at every barter and efficiency may be guaranteed since
the players have sufficient conditions for attaining it but may also be easily
missed.

From these considerations we have that the fairness of a barter is a by-
product of the barter process itself and is not a-priori guaranteed by its
structure.

From all this we derive that each of the two players may judge an occurred
barter as either inequitable or inefficient or both and therefore unfair, since
not all the fairness criteria are verified.

Last but not least we comment a little on the possible applications of the
proposed models.

The implicit model can be applied in all the cases where two players meet
to perform a barter but none of them has a knowledge of the items that
the other may be willing to barter so that this knowledge must be acquired
during the barter process itself through a try-and-error process.
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In the current version of the pure model we imagined the two players as peers
in the barter, this fact being represented by the random move for the choice
of the first time mover. It is easy to remove this feature by giving, for some
reason, the right to make the first move to one of the two players. For the
range of the possible applications we mention: the exchange of two goods;
the exchange of a pair (good, bad) or (bad, good); the exchange of a pair
(good, service) or (service, good); the exchange of a pair (service, bad) or
(bad, service) and the exchange of two services.

On the other hand the mixed model can be used in all the cases where
one of the two players cannot conceal or is forced to show the initial set of
his items so that the other has some information about the possible advan-
tageous (for him) proposals that he can make without even revealing any of
the items of his private set.

Also in this case we refer to the foregoing list, from where it is possible to un-
derstand the nature of the items that the two players may wish to exchange.

10.7 Possible extensions

Up to now we have seen the basic models involving a pair of players
in a one shot barter for the exchange of a pair of items. In this section
we briefly present the planned extensions and examine them singularly and
one independently from the others though it is obvious that they could be
combined together in various ways. This treatment is an introductory level
since such extensions represent the core of a future research stream.

10.7.1 A plurality of players

Instead of a pair of players A and B we may define a set &2 of n > 4 players
(with n even'¥) that can form n/2 pairs (so to have n/2 contemporaneous
barters) in the following ways:

- by a random selection,

- by raising up of hands,

14In abstract term we might have two cases:
(1) n is even so n/2 pairs of players form and no player is left out;
(2) nis odd so n/2 pairs form but one player is left out.

In this section we assume that n is even since the case n odd has no sense but in cases of
repeated barters (see section 10.7.2) where the player who is left out at one stage gains
some precedence at the next stage according to a form of balanced alternation (Brams and
Taylor (1999)).

o1



- by mutual selection.
In the case of random selection we may imagine a procedure that:
(0) starts with i = n;

(1) at the i—th step it chooses at random one of the i(i — 1) /2 values so to
match a pair of players;

(2) ifi=2goto (3)elsei=1i—2goto (1);
(3) end;

At step (1) we may imagine to have a dice with i faces so that the outcome
of j € [1,4] corresponds to one of the possible i(i — 1)/2 pairings. We have
to see how to assign the possible pairings to the faces of the dice. To do so
we can set up a n x n matrix V with all the elements at 0 but those above
the main diagonal that assume (row by row form left to right) the increasing
integer values from 1 (for the element v(1,2)) to n(n —1)/2 (for the element
v(n —1,n)) so that v(i,j) # 0 for j > 4.

After each step we remove the two matched players, renumber the remaining
players, reduce accordingly the matrix V', reassign the values v(i, j) with the
same rule and repeat the procedure.

In the case of raising hands we can imagine that one player raises up one
of his hands. If more that one player raises then each of them lowers his
hand, waits for some random amount of time and then raises again his hand.
This goes on until there is only one hand up at a time. At this point one
or more of the others may join him to form a pair for a barter. If more
than one player express the wish to join there is a random selection of one
of them. The process goes on until n/2 pairs have been formed, at each step
the number of waiting players being decremented by 2.

In the case of mutual selection the players are divided, through the use
of any suitable random device!®, in two subsets of n/2 elements each: the
former P, contains the choosers and the latter P, the choices.

Each player of P; chooses at his will a player from Ps: if the latter accepts
the pair forms otherwise the two players switch from one set to the other.
If there are multiple selections the choice is up to the player of P, that is
forced to select one of his choosers. The matched players are removed from
the respective sets.

When, according one of the foregoing ways, the n/2 pairs are formed each of

15We can imagine a urn containing n balls, n/2 red and n/2 blue, and n selections
without replacement for the assignment of each extracting player to one of the two subsets
according the color of the extracted ball.
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them may use one of the algorithms we have seen in section 10 to perform a
barter.

The basic idea is that the n players are willing to engage each other in a
barter so the n/2 pairs form even if there is no guarantee that this turns out
in n/2 effective barters.

10.7.2 Repeated barters

In this case we may use some concepts from Game Theory (Myerson
(1991)) and consider each barter as a single stage of the potentially endless
process of repeated barters between two players A and B.

To get this chaining effective we need to make some changes to the models
of sections 10.3 and 10.4. Such changes include:

- the addition of moves to implement the chaining;

- the introduction of state variables through which each player records
the attitude of the confronting player during the previous stages (Ax-
elrod (1985), Axelrod (1997));

- the definition of a barter as either with memory or memoryless.

As to the moves we need to modify the accept move in a accept and
stop move so to signal a lack of will to go on with the barter; to add the
accept and repeat move so to signal to the other player the availability
to the execution of one more stage; to add the repeat? move so to allow
a player to request to the other the execution of one more stage; to add a
repeat move so to answer affirmatively to an explicit or implicit request for
one more stage and to add a refuse move so to answer negatively to an
explicit or implicit request for one more stage so to allow the players to link
two stages together in a repeated barter.

The state variables represent private information of each player through
which he may record from one stage to another if the attitude of the other
player at the previous stages has been more cooperative or more exploitative.
In this way each player may implement long run strategies of retaliation so
to punish spiteful attitudes.

Last but not least we define a barter as with memory if at the end of
each stage the composition of the revealed set is a valid common knowledge
(Myerson (1991)) between the players whereas it is defined as memoryless
if it is lost and has no common knowledge value since each player is free to
modify at his will the composition of his set without any notice to the other.
This feature of a repeated barter must be agreed upon by both players at
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the very offset of the process, may be changed only after a new mutual
agreement after each stage is over and forms a common knowledge between
the two players.

10.7.3 Multi pairs barter

In this case every player at each step may propose more than one pair of
items to be bartered. For instance, A may propose:

(i3 50) (ins ) (60)

and B can reply with a counter proposal with even more or less elements or
can even accept. The acceptance might be either partial if the agreement
can involve only a subset of a proposal or global if the agreement involves a
[counter] proposal as a whole.

Partial agreements are fully meaningful only within a repeated barter setting
whereas in a one shot barter we usually speak of global multi pairs agreement
whenever the two players agree on bartering all the items contained in one
proposal.

11 Concluding remarks and future plans

This section presents for the members of both the family F7 and the fam-
ily F5 some concluding remarks and hints of future research plans.
In sections 5 and 6 we presented some auctions mechanisms of two distinct
types. Those of the former type are termed positive auctions and resem-
bles classical mechanisms but for the fact that they aim at the allocation of
chores rather than goods.
The one of the latter type faces the problem of the allocation through an
auction from a negative perspective since the chore is allocated to the bid-
der who proves less capable of avoiding it but that is compensated for this
incapability.
Both types of mechanisms need a deeper and more formal analysis of their
structure, their properties, the possibility of collusions and, most important,
their practical applications in the area of environmental problem solving.
In section 8 we have introduced a family of barter models between two ac-
tors that execute a one shot barter through which they exchange, according
to one among various mechanisms, the goods of two separate and privately
owned pools. The various models have been introduced under the hypothesis
of additivity according to which the value of a set is given by the sum of the
values of its composing elements.
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In that section we presented the basic algorithms for the one-to-one barter,
we showed the possible uses of the proposed models, we verified if some cri-
teria of fairness are satisfied by the proposed models or not and we also
introduced some extensions.

The main extension we presented is the relaxing of the additivity hypothesis
with the adoption of superadditive sets where the value of a set is at least
equal to the sum of the values of its elements. In this way we model func-
tional relations among the goods that increase their joint values.

The presentation we made in section 8 is at an introductory level and a lot of
formalization is still to be done for what concerns both the presented models,
their extensions and the possible uses in concrete cases .

We need indeed to examine more formally the basic models of one shot barter;
to improve the proposed algorithms; to examine the properties of such algo-
rithms and their plausibility and, last but not least, to analyze and formalize
the extensions we essentially only listed in section 8.9.

In section 10 we have introduced two algorithms that can be used in the case
of one shot barter between a pair of players.

In the former algorithm we have asymmetric situation where the two play-
ers try to conclude a barter through an incremental revelation of the sets of
items each of them is willing to barter.

In the latter algorithm, on the other hand, the situation is asymmetrical since
one of the player either does not want to or cannot hide the set of his items
to the other player that therefore has an initial advantage and the right to
make the starting offer.

The section presented both a description of the algorithms and their evalu-
ation according to well defined classical performance criteria.

In the closing part of that section we also presented some possible exten-
sions whose analysis and formalization are still to be completed. Similarly
we need to complete the analysis of the possible applications of the proposed
models to real world cases where exchanges of items occur between players
that aim at attaining their objectives without sharing any common scales of
qualitative or quantitative values.
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