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Abstract

In this paper we present two types of models of barter that may
be seen as an extension of the models we presented in Cioni (2008a)
and Cioni (2008b) and that we term as iterative since they are based
on iterative algorithms through which either one or both reveal the
composition of the sets of items they are willing to barter.
Both models involve indeed a pair of actors/players A and B that aim
at bartering a pair of items.
In the first model neither actor reveals to the other the set of items
he is willing to barter but such a revelation occurs incrementally dur-
ing the process since by exchanging proposals and counter proposals
the two players reveal each other the composition of such sets. The
bargaining process goes on until an agreement is reached and a bar-
gaining occurs or both players agree that no bargaining is possible so
that the process ends with a failure.
In the second model, on the other hand, we have an asymmetric situ-
ation where one of the players, be it A, shows to B his set of items,
be it I’, on which the bargaining process starts with a proposal from
B. Also in this case the process goes on with a series of proposals and
counter proposals from both players until one of the foregoing cases
occurs. In this case player B reveals the composition of his set of
items during the course of the process.
Keywords: bargaining, costs/benefits sharing, barter, iterative barter,
fairness, fairness criteria

1 Introduction

In this paper we present two types of models of barter that may be seen as
an extension of the models we presented in Cioni (2008a) and Cioni (2008b)



and that we term as iterative since they are based on iterative algorithms
through which either one or both reveal the composition of the sets of items
they are willing to barter.

Both models involve indeed a pair of actors/players A and B that aim at
bartering a pair of items.

In the former model (the so called pure model) neither actor reveals to the
other the set of items he is willing to barter but such a revelation occurs
incrementally during the process since by exchanging proposals and counter
proposals the two players reveal each other the composition of such sets. The
bargaining process goes on until an agreement is reached and a bargaining
occurs or both players agree that no bargaining is possible so that the process
ends with a failure.

In the latter or mixed model, on the other hand, we have an asymmetric
situation where one of the players, be it A, shows to B his set of items, be
it I’, on which the bargaining process may start with a proposal from B.
Also in this case the process goes on with a series of proposals and counter
proposals from both players until one of the foregoing cases occurs. In this
case player B reveals the composition of his set of items during the course of
the process.

We note that, in both cases, each player can be said to know which are the
items he is willing to bargain in the barter process.

This knowledge may be verified in advance by asking to each player if a given
proposal would be or not in his bargaining set (or the set of the acceptable
proposals).

From this perspective we can say that each player is characterized by a
bargaining set, [4 for A and Jp for B, whose structures and whose preference
orderings are private knowledge of each player and can be only partly revealed
during the barter process. The main difference between the two models that
we propose is that in the latter model the set 1,4 is, at least partly, a common
knowledge of the two players under the form of the set I'.

The paper is structured as follows.

It opens with some comments on the concept of barter as we use it in this
paper then we present in sequence the criteria we plan to use to evaluate the
proposed models and make some comments on the incremental construction
or revelation of sets. Then we present the two models (and some of their
possible applications) and discuss both the degree at which they satisfy our
criteria. At this level we disclose the metaphor and discuss the utility of
System Dynamics as a tool for the devising of a proposal and the evaluation
of a counter proposal. The paper closes with a discussion of the possible
extensions and a section devoted to partial conclusions and plans for future
research.



2 Some notes about the barter

In this paper with the term barter we denote a process through which
two players A and B can exchange a pair of items® (7, 5) where both items
are evaluated according to each player’s private evaluation system that de-
termines either his rejection or his acceptance of the proposed items.

The exchange, if it occurs, is in kind so that the items (7, ) are the only
involved items and there is no parallel or compensatory exchange of money
or any other numerary good between the players (see section 3).

In any generic pair (i,7) the identifier ¢ identifies what passes from A to B
either under the form of a good or a bad or a service in exchange of the item
identified by j, of the same types, from B to A.

In Table 1 we show the possible ownership of the items of each pair depend-
ing on their types.

The admissible types are:

(a) good (or g) or an item that has a positive value for both players;
(b) bad (or b) or an item that has a negative value for both players;

(c) service (or s) or an item that has a instrumental value for one or both
players and may represent a task that a player carries out for the other.

Each ownership is provided under the form of a pair (p;,p2) (p; for i and
po for j) where both identifier may be A or B. In this way we identify the
provider or owner of an item so that, for instance, in correspondence of g, g
we have (A, B) to mean that the former good is owned by A and provided to
B whereas the latter is owned by B and provided to A so that, as receivers,
we have (B, A) We now examine the entries of Table 1:

- in the case g, g we have A, B since A gives to B a good in exchange for
another good of B;

- in the case g,b we have B, B since B gives to A both a good and a bad;

- in the case g, s we have A, B since A gives to B a good in exchange for
a service from B;

- in the case b, g we have A, A since A gives to B both a bad and a good
as a compensation;

In what follows we sometimes refer to the former element of each pair (i,5) as the
i—item and to the latter as the j—item.



- in the case b,b we have A, B since A gives to B a service and B gives
to A another service in exchange;

- in the case b, s we have A, A since A gives to B both a bad and a
service;

- in the case s, g we have A, B since A gives a service to B and receives
from B a good as a compensation;

- in the case s,b we have B, B since B gives to A both a bad and a
service;

- in the case s, s we have A, B since A gives to B a service and B gives
to A another service in exchange.

iandj| g b S
g AB|BB|AB
b AA|AB|AA
S AB|BB|AB

Table 1: Ownership of the elements of the pair (i)

By using the content of Table 1 we can define another Table that, for each
element of each pair (7, j), defines which player is the giver and which is the
receiver. In Table 2 for each pair of items (i, j) we define:

id | case | i giver | i receiver | j giver | j receiver
1] gg A B B A
2| gb B A B A
31 g8 A B B A
4 | bg A B A B
5| bb A B B A
6 | bys A B A B
7| s8¢ A B B A
8 | s,b B A B A
9 | ss A B B A

Table 2: Pairs (giver, receiver) for each item of each pair (i,j)

- who is the giver of the item ¢ and who is the corresponding receiver;
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- who is the giver of the item j and who is the corresponding receiver.

For instance in correspondence of the pair (7, j) = (g,9) we have A the giver
of 7 that is received by B and vice versa for the item j.

In this way we can identify the items each player gets or loses in a barter so
to assign a value to such acquisitions and losses. In section 3 we are going to
use such values in the definition of the evaluation criteria that we are going
to apply in section 7 to the models we are going to describe in section 5.
For player A this means that we imagine he uses two private values va(j)
and v4(7) to evaluate, on a private scale, what A gets from the barter and
what A loses from it int that order.

In this way A can evaluate the ratio:

as a dimensionless quantity.

For player B, in a similar way, this means that we imagine she uses two
private values vp(i) and vg(j) to evaluate, on a private scale, what B gets
from the barter and what B loses from it int that order.

In this way B can evaluate the ratio:

e ) )

as a dimensionless quantity.
As to the quantities that are involved in relations (1) and (2) we note that
they:

- represent private information of each player;

- are measured according to private scales that may not be common
knowledge between the players;

- include possibly independent discount factors for each player so to ac-
count for damages occurring to each of them from the passing of time.

Relations (1) and (2) are used respectively by player A and player B to accept
or refuse a proposed barter (see section 5).

Before going on we must fix in some way four problematic cases that are
contained in Table 2 and that we list again in Table 3.

We say that the case (i,7) = (b,g) (id = 2) is problematic? since it does not

2Similar arguments hold also for the other three cases.



id | case | i giver | i receiver | j giver | j receiver
2| gb B A B A
4| bg A B A B
6 | b,s A B A B
8 | sb B A B A

Table 3: Problematic cases

present a A, B, B, A structure (a bidirectional transfer) but a structure that
defines a transfer of both items from one player to the other (an unidirectional
transfer). We can solve this case by imagining that the transfer of a bad from
B to A is equivalent to the transfer of a good (of the proper compensating
value) from A to B. In this way this case is brought back to the case with
td = 1. In a similar way we can solve the case with id = 4.

For what concerns the case (i, j) = (b, s) (id = 6) we can solve it by imagining
that the transfer of a bad from B to A is equivalent to the transfer of a service
(of the proper compensating value) from B to A. In this way this case is
brought back to the case with id = 9.

In a similar way we can solve the case with id = 8.

3 The performance and evaluation criteria

For the evaluation of the proposed barter procedures we use both a set
of performance criteria and a set of evaluation criteria.
As to the performance criteria we use: guaranteed success, individual
rationality, simplicity and stability.
With guaranteed success we denote the fact that a procedure is guaranteed
to end with a success, with individual rationality we denote the fact that
it is in the best interest of the players to adopt it so that they both use a
procedure only if they wish to use it and can withdraw from it without any
harm nor penalty higher than the damage they can receive from carrying it
on.
Simplicity is a feature of the rules of a procedure that must be easy to
understand and implement for the players without being too demanding in
terms of rationality and computational capabilities.
Last but not least with stability we denote the availability to the players of
equilibrium strategies that they can follow to attain stable outcomes in the
sense that none of them has any interest in individually deviating from such
strategies (Myerson (1991), Patrone (2006)).



As to the evaluation criteria we use a set of classical criteria (Brams and
Taylor (1999), Brams and Taylor (1996)) that allow us to verify if a barter
can be termed fair or not.

Such criteria are:

envy-freeness;

proportionality;

equitability;

[Pareto] efficiency.

We say a barter is fair if they are all satisfied and is unfair if any of them is
violated.

In the case of two players (Brams and Taylor (1999), Brams and Taylor
(1996)) envy-freeness and proportionality are equivalent, as it will be shown
shortly.

Generally speaking, we say that an agreement turns into an allocation of the
items between the players that is envy-free if (Brams and Taylor (1996),
Brams and Taylor (1999) and Young (1994)) none of the actors involved in
that agreement would prefer somebody’s else portion, how it derives to him
from the agreement, to his own. If an agreement involves the sharing of ben-
efits it is considered envy-free if none of the participants believes his share
to be lower than somebody’s else share, whereas if it involves the share of
burdens or chores it is considered envy-free if none of the participants be-
lieves his share to be greater that somebody’s else share. In other words a
procedure is envy-free if every player thinks to have received a portion that
is at least tied for the biggest (goods or benefits) or for the lowest (burdens
or chores).

If an allocation is envy-free then (Brams and Taylor (1999)) it is propor-
tional (so that each of the n players thinks to have received at least 1/n of
the total value) but the converse is true only if n = 2 (as in our case). If
n = 2 proportionality means that each player thinks he has received at least
an half of the total value so he cannot envy the other. If n > 2 a player,
even if he thinks he has received at least 1/n—th of the value, may envy
some other player if he thinks that player got a bigger share at the expense
of some other player.

As to equitability in the case of two players (and therefore in our case) we
say (according to Brams and Taylor (1999)) that an allocation is equitable if
each player thinks he has received a portion that is worth the same in one’s
evaluation as the other’s portion in the other’s evaluation. It is easy to see



how equitability is generally hard to ascertain (Brams and Taylor (1996) and
Brams and Taylor (1999)) since it involves inter personal comparisons of util-
ities. In our context we tried to side step the problem by using a definition
that considers both utilities with respect to the same player.

Last but not least, as to [Pareto] efficiency, we say (according to Brams
and Taylor (1999)) that an allocation is efficient if there is no other alloca-
tion where one of the players is better off and none of them is worse off. In
general terms efficiency may be incompatible with envy-freeness but in the
case of two players where we have compatibility.

Such criteria, in order to be used in our context of two players without either
any common scale or any numerary good, must be adapted or must be rede-
fined someway so to be in agreement either with the essence of their classical
definitions or with intuition or with both.

We start with envy-freeness.

If we denote with v4(j) and v4(7) the values in A’s opinion and evaluation,
respectively, of what A obtains and loses from the barter (and with vg(i) and
vp(7) the same quantities for player B) we say that the allocation deriving
from a barter (or a barter tout court) is envy-free if we have for A:

PA= ) > 1 (3)
and for B: (0
pB = o5 G) > 1 (4)

Relation (3) means that the value that A assigns to what he gets from the
barter is at least equal to the value that A assigns to what he loses from the
barter. We assign a similar meaning to relation (4) with regard to B.
Since, in the case of two players, we want to maintain the equivalence between
proportionality and envy-freeness we must give a definition that mirrors the
classical definition of proportionality and reflects this equivalence.
For player A we may define a barter as proportional if it satisfies the following
condition: ‘ .

va(j) +vali) — va(j) + vali)
so that the fractional value of what A gets from the barter is at least equal
to that of what he loses from it. We remark that v4(j)+wva(i) represents the
value that A assigns to the bartered items.
A similar condition holds also for B:

vs (i) vs(J)
vp(i) + vg(j) - vg (i) +vg(j) (6)




We say that a barter is proportional if both (5) and (6) hold.

It is easy to see how from equation (5) it is possible to derive equation (3)
and vice versa. The same holds also for equations (6) and (4) so that the
equivalence of the two definitions has been maintained in the case of two
players.

We now pass to the criterion of equitability.

We must adapt its definition to our framework in the following way. We need
firstly some definitions. With respect to the occurrence of the barter of the
items (7, j) we define for player A:

- V4 a measure for A himself of his current welfare before the barter
occurs;

- V} a measure for A himself of his current welfare after the barter has
occurred;

and for player B:

- Vg a measure for B himself of his current welfare before the barter
occurs;

- V} a measure for A himself of his current welfare after the barter has
occurred.

With the term welfare we denote a personal and private evaluation from
each player of his global situation (under the hypothesis of either additivity
or superadditivity®) through a single value that is used to rank the items
that are entering the barter process.

We therefore define a barter of the items (7,j) as equitable for A if the
fractional value of what he gets is at least equal to the fractional value he
gives to what he loses from the barter or:

va(j) o vali)
), "

On the other hand the barter is equitable for B if, using the corresponding
quantities we used in equation (7) but referred to player B, we have:

vp(i) _ vs(j)
v > v (8)

3With reference to sets with the term additivity we denote the fact that the value of
a set is given by the sum of the values of its components whereas if this value is at least
equal to that sum we speak of superadditivity and of strict superadditivity if it is
strictly greater.



If both relations hold we say that the barter is equitable.

We note that if V); > V4 then relation (7) implies envy-freeness for A whereas
if Vi > Vp then relation (8) implies envy-freeness for B.

To make inequalities (7) and (8) of more practical use we may rewrite them,
for instance for player A, as follows (for every turn after the first one):

UA(j) > UA(i) (9)

where:

1 4 is the minimum value of all the j—items that A has bargained before
the current turn of bargaining;

T 4 is the maximum value of all the :—items that A has bargained before
the current turn of bargaining.

We say that (9) is easier to use than relation (7) because keeping track of
both a maximum and a minimum value in a multi step process is easier than
evaluating at each step the new value of the welfare under the hypothesis
that the proposed barter occurs.

A similar relation holds also for player B:

vp(i) > va(j)
Is ¥
Last but not least we examine the criterion of [Pareto] efficiency.
A barter of the items (i, 7) is [Pareto] efficient if there is not another pair of
items (7', j) that gives at least to one player a better result without hurting

the other, under the hypothesis that at least one of the following inequalities
hold:

i
2. ' #J

For players A and B this means that there is no barter (', ;') that satisfies
the following inequalities:

(10)

va(j) _ valy’)
va(7) = va(i) (11)
vp(i) _ wvp(¥)
0s) = v8(7) 12

with at least one of them satisfied with the < relation.
In such relations the pairs v4(7), va(j) and and va(i'), va(j’) are related to
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A and are associated respectively to (7,7) and to (¢/,j"). Similar quantities
are defined also for player B.
We note that if the barter is such that both players attain:

UAmaI :

J 13
and s
J
we are sure to have an efficient barter whereas if both attain:
vAmin -
J 15
UAmaati ( )
and s
mini 16

we are sure that the barter is surely inefficient. In (13), (14), (15) and (16)
we have:

VA oz, 15 the best j—item that A can get from the barter;

VA < VA is the worst j—item that A can get from the barter;

J

mazj
UB,n,s, 18 the best i—item that B can get from the barter;

UByin, < UBpa,, 18 the worst i—item that B can get from the barter.

We remark how conditions (13), (14), (15) and (16) are sufficient conditions
of efficiency but may also be hints for either good or bad strategies for both
players.

Last but not least, we note, from the equations (11) and (12), how efficiency
of a barter cannot be always guaranteed and must be verified case by case.

4 Incremental construction/revelation

One of the key point of the proposed models is the fact that either one or
both players reveal incrementally the set of pairs of items (i, 7) each of them
is willing to barter with the other. Each pair is seen as a single element of
the set and from two pairs (7, j) and (h, k) we can obtain one of the following
pairs:

- (iv h)
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- (ka)
- (huj)
- (kaj)

and all their possible convex combinations, depending on the nature of the
involved items.

It is therefore necessary to understand the ways through which a set is incre-
mentally enlarged from the initial empty set to a maximal set, the so called
bargaining set, that include all the possible elements that a player is willing
to barter.

The first way we can use is the following (in what follows we consider the
case of A, the case of B is analogous and will not be explicitly considered).
A may start with Iy = () and add one element at a time according to some
insertion criteria until a criterion of stop is met so that the process is in-
terrupted and the final set I, is constructed. In this way A builds up the
following succession of sets:

IyclCc---Cly (17)

where the set I, may, at least in theory, contain infinitely many elements.
In this way A proceeds bottom up since he starts from the empty set and
eventually ends with the whole set of the items I, that may coincide or not
with I4 (since it contains also elements from the [counter| proposals of B).
This process gives to A the greatest flexibility since it allows him to build
up new elements by mixing and or merging the existing ones so that the
construction process can adapt better to the course of the barter process.
The main problem with this approach is that the barter may prove a very time
consuming process since the number of the possible combinations increase
exponentially with the increase of the number of the available elements.
Another way that A can use is the following that we may call top down.
A starts with his fixed and predefined set 4 of n elements. Each item is
initially set as invisible (so that again A starts with a publicly known set
Iy = ) and during the process one element at a time is set visible. In this
way A builds up the following succession of sets:

hchc---Cl, (18)

with:
I, =14 (19)

This incremental disclosure may be obtained by using a set of n flags initially
set at tnvisible and by setting at each step one flag at a time at wvisible so to
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reveal the associated element.

The process ends when a barter occurs or when all the elements of the set I,
are revealed without any barter occurring.

In this case we get the lowest flexibility since the elements are fixed from the
start but we are sure the process has a fixed bound that must occur when
all the elements have been revealed without any barter occurring.

A this point we have to define:

- in the bottom up approach, which criterion can be used by player A
(and similarly by player B) to add a new element to the current set I;;

- in the top down approach, which criterion can be used by player A (and
similarly by player B) to set as visible a new element to the current set
I;.

In both cases the simplest criterion is the following: a player either adds or
sets visible an element that is expected to give him an advantage greater
than the one deriving him from the current proposal.

We recall that such an element represents the new [counter| proposal and so
an advantageous elements for the proposing player (otherwise he would not
propose it).

The other point is to clarify how player A (but the same is true also for
player B) can derive at step ¢ the element (h, k) such that:

I =1, U (h k) (20)

In the bottom up approach such an element can be either an element of 4
or an element composed by using elements from J;_; or a mixture of both
cases.

In the top down approach such an element is simply one of the elements of
I4.

5 The proposed barter models

In this paper we propose two iterative barter models. In the former model,

that we call pure model, neither A nor B shows each other the sets of the
items they wish to barter.
In the latter model, that we call mixed model, we suppose that one player,
be it A, shows the items he is willing to barter from the offset of the process
whereas the other, in this case B, keeps her items hidden but reveal them
during the process by making either proposals or counter proposals aiming
at the reaching of an agreement and therefore a barter.
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5.1 General remarks

Both models are described by using simple algorithms of which we present
the general structure and the various options that the each of two players
has at each step. In order to keep the structure of each algorithm simple
and readable we may use strings to describe sub procedures that we verbally
describe separately.

Since both models are based on a succession of proposals and counter pro-
posals we firstly need to define what do we mean with the terms proposal
and counter proposal. We also list which are the moves that each player can
use during the process.

A proposal is a pair of item identifiers (7, j) that a player proposes to the
other as the object of the barter and whose ownership is defined as we have
seen in Table 1.

On the other hand, given a proposal (i,j) a counter proposal is a pair
(', 4") such that either i’ # i or j' # j is true since:

- if i =7 and j' = j we have an implicit acceptance so that the process
ends with a success;

- if i/ #£i and j' # j we define it as a new proposal.

It is obvious that a proposal in reply to a counter proposal is termed a
counter proposal and not a counter counter proposal so to avoid the chaining
of counter prefixes.

Within our perspective we have that:

- a counter proposal may follow only a proposal;

- a new proposal may follow either a pass move or a reject move (see
further on).

Both a proposal and a counter proposal can be followed by one of the follow-
ing moves from the listening player:

- pass,

give up,

accept,

reject.

14



A pass move is a way through which a player may signal to to the other that
it is necessary that he shows some more goodwill in order for the process to
go on.

A give up move is a way for one player to signal to the other that he thinks
the process is not worth being carried on any more.

We note that two successive give up moves (one from each player) cause the
process termination with a failure.

An accept move closes the barter with a success since it signals that a player
accepts the last [counter| proposal made by the other player.

A reject move means that the received [counter| proposal made by the other
player cannot be accepted.

Both an accept move and a reject move can follow any [counter| proposal
but if the answer is a reject move the turn remains to the rejecting player
that can make his counter proposal.

A pass move gives the turn to the other player and may be answered by
either a new proposal, by a pass move or by a give up move. We note that
there cannot be more than two consecutive pass move so that a natural suc-
cession for a closure with a failure may be: passa, passg, giveupa, giveupg.
Last but not least a give up move may be followed either by a new proposal
or by another give up move from the other player: in the former case the
process goes on whereas in the latter it is interrupted with a failure and in a
way that does not necessarily involve the use of pass moves.

5.2 The pure model

In the case of the pure model the situation we are interested in can be
described in the following terms.
We have one player that wants to exchange an item with another player but
none of them has a knowledge of the items the other is willing to barter.
The only way to proceed is through an iterative process. At each step of
the process a pair of items (7, 5) is proposed and such a pair may be either
accepted or refused in some way:.
In the former case the process ends with a success so that the barter occurs.
In the latter case we may have:

- a pass move so the next move is up to the other player,
- a reject move so the next move is up to the same player;
- a counter proposal.

At the beginning of the barter we have:
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the set of pairs-of-items-to-be-bartered of A is Iy;

the set of pairs-of-items-to-be-bartered of B is .Jy.

We therefore have an initialization phase where we put:
-ly=0,Jy=0,i=1and j = 1;

- we select at random who moves first, be it A. The other case being
fully symmetrical will not be examined here.

In the description of the algorithm we use the notation propose s to summa-
rize the execution of the following steps:

1. A presents a [counter| proposal pa = (4, j);
2. I; =I;_1 Upa;
3.1 =14+1;

and symmetrically we use the notation proposep to summarize the execution
of the following steps:

1. B presents a [counter] proposal pg = (7', 7);
2. Jj=J;_1Uppg;
3. 7=7+1L
The main structure of the algorithm in this case is the following:
(0) initialization phase;
(1) propose;
(2) B may:

(24) accept; go to (4);

)
(2p) reject; proposeg; go to (3);
(2.) proposeg; go to (3);
(24) give up; go to (5);
(2.) pass; go to (6);
(3) A may:

(34) accept; go to (4);
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(3y) reject; proposea; go to (2);
(3.) proposea; go to (2);

(34) give up; go to (5);

(3¢) pass; go to (6);

(4) end,;

If we denote with the player i either A or B and with j either B or A we
can define the moves that can follow either a pass or a give up move in the
following ways:

(5) a give up; move may be followed by:

(5a) proposej; go to (3) if j = B else go to (2);
(58) give up;; go to (4);
(6) a pass; move may be followed by:
(64) proposej; go to (3) if j = B else go to (2);
(6p) passj; give up;; give up;; go to (4);
(6c) give up;; go to (5);
The execution of either an accept or a reject move on a proposal (i, j) from

player A (the case of player B is fully symmetrical and will not be analyzed) is
based on the consideration of the values v4(j) and v4(i) through a function:

eval(i,§) = fa(va(j),va(i)) (21)

where the function f4 synthesizes the procedure of comparison from A be-
tween the values v4(j) and va(i). In its simplest form we can express it
as:

fa(wa(y),va(@)) = va(j) — va(i) (22)

Such function can be used in rules such as the following*:
if(evala(i, j) > 0) then accept 4 else re fuse, (23)

so to establish a strict preference ordering > on the proposals. We can indeed
say”:
(Z7]> A (ilvj/) <~ evalA(i,j) > 6UalA<i/7j/> (24)

and the same holds also for B.

4We could have eval(i,j) > e with ¢ > 0 if a minimum gain is required or ¢ < 0 if a
maximum loss is acceptable.
5Tt is obvious that with -4 we denote the strict preference relation of player A.
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5.3 The mixed model

In the mixed model we have an asymmetric situation where one of the
players, be it A, shows to the other, B, his set of items I’ whereas the first
move is up to the other player, B in this case.

The algorithm in this case has the following structure that is very similar to
the one we have seen in section 5.2 but for the initialization phase and the
starting move.

(0) initialization phase;
(1) proposeg;
(2) A may:

2,) accept; go to (4);

2y) reject; proposeq; go to (3);

(24)
(25)
(2.) proposea; go to (3);
(24) give up; go to (5);
(Ze)

2.) pass; go to (6);
(3) B may:

3a) accept; go to (4);
3p) reject; proposeg; go to (2);

(3a)
(30)
(3c) proposep; go to (2);
(34) give up; go to (5);
(3¢)

3c) pass; go to (6);
(4) end;

For the points (5) and (6) and for the description of the proposes and
proposeg moves we refer to the same points and the same description we
gave in section 5.2.
The initialization phase is unchanged for B (so that again we have Jy = ()
and j = 1) but for A we must account for the presence of the set I’ whose
content is defined by A freely and completely at his will for what concerns
both the type and the number of the contained items.
From this we have:

Lhcl'el (25)
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where:

I'er ={(ij)]i.j eI buti+ ) (26)
so that [ is rather fuzzily defined for B so reducing his seemingly initial
advantage over A.

6 Possible strategies

We now present and analyze the possible strategies of the two players in
either the pure model or the mixed model.
In the pure model both players act without any knowledge of the other’s
player set of elements but with each player only knowing his bargaining set,
I, if A and Jp if B.
In this case the player who moves first, be it A, can do no better than choosing
an element (4, 7) from his bargaining set I4 so to maximize the value:

evala(i,j) = fa(va(j),va(i)) (27)

This is possible for A if he chooses one of the two cases id = 4 or id = 6 of
Table 2 where he has full control of both the items of the proposed element
I = {(i,))}.

In his turn B may use both Jp and I; to devise his [counter| proposal to A
so defining his set J; after his first step.

At the generic step ¢ > 1 for A and j > 1 for B we have that each player:

- knows the current proposal (i,7) and is able to evaluate it using the
function® evaly;

- can possibly devise a [counter| proposal (7', j’) and propose it if it is
preferred by the player to the current one according to the preference
ordering we introduced with relation (24) or if:

(7', 4") =n (1,7) & evaly(i',7") > evaly(i, 5) (28)

- can frame the new [counter| proposal on the knowledge of both I; and
J; so to favor at the best also the other player (therefore increasing the
probability of an acceptance) by using the common knowledge between
them;

6With the subscript h we denote either the player A or the player B depending on the
case.
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- if the [counter| proposal of the foregoing steps cannot be devised the
player can either accept the current proposal, press the other for a
change of route (with a pass move) or signal the will to stop the process
(with a give up move).

As the last step we note how each player can use also his bargaining set for
framing a new [counter| proposal but with a lower probability of if being
accepted by the other player.

In the mixed model the presence of an asymmetry does not modify very
much what we have seen before since the initial knowledge of B of the items
of A is rather fuzzy and, moreover, she is the player who must move first.
We can, therefore, state that the strategies we have seen for the pure model
case can be profitably used also in the n the mixed model case.

7 Satisfaction of the criteria and applications

We now examine if the proposed models satisfy or not the performance
and evaluation criteria we have introduced in section 3.
For what concerns the performance criteria we have that:

- guaranteed success is not always satisfied since a process of barter
may end without any effective barter and without any penalty for the
player who withdraws from the process;

- individual rationality is guaranteed to each player that feels he en-
gaged himself in an unfavorable process from the availability of pass
and give up moves;

- simplicity is assured by the fact that the frame of both algorithms
is a sequence of proposals and counter proposals until an agreement is
reached either to have a barter or to give up since no barter is effectively
possible;

- stability is satisfied since both players have easy to follow and imple-
ment strategies (see section 6).

We recall that the acceptance or not of a proposed barter is governed by the
relations (21), (22) and (23) of section 5.2.

For what concerns the evaluation criteria we have that if a barter occurs,
according to the previously recalled relations, then it is envy-free (see re-
lations (3) and (4)) for both players and therefore it is also proportional,
from the equivalence of the two concepts in the case of two players.
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It is easy to verify, by the same relations, that if a barter is fair then it oc-
curs.

The check of the equitability requires the check of the relations (7) (or
of the corresponding relation (9)) and (8) (or of the corresponding relation
(10)).

Such a check may be performed by both players at every step of the barter
so that, in the best case:

- one player may propose a barter that for him is envy-free and equitable;

- the other may verify such a proposal and accept if he too thinks that
for him it is envy-free and equitable.

As to the [Pareto] efficiency we need to verify the the existence or not of a
pair (i, ') of items that satisfy the relations (11) and (12)). As we have al-
ready seen both players have sufficient conditions to attain an efficient barter
even if such conditions require a co-operative attitude between the players
and such an attitude is not self-enforcing (Myerson (1991)) so that both play-
ers may have (more or less plausible reasons) for individually deviating from
it. Such conditions, moreover, may be conflicting so that they cannot drive
effectively a strategy. Moreover the check of the relations (11) and (12)) may
be impossible since not all the possible elements (i, j) are known during the
barter so that the inefficiency of a barter may be discovered only when both
players have accepted it.

Summing up, we can say that:

- envy-freeness is guaranteed every time a barter occurs,

proportionality is guaranteed every time a barter occurs,

equitability may be guaranteed at every barter,

efficiency may be attained, since the players have sufficient conditions
for attaining it, but may also be easily missed.

From these considerations we have that the fairness of a barter is a by-
product of the barter process itself and is not a-priori guaranteed by its
structure.

From all this we derive that each of the two players may judge an occurred
barter as either inequitable or inefficient or both and therefore unfair, since
not all the fairness criteria are verified.

Last but not least we comment a little on the possible applications of the
proposed models.

The pure model can be applied in all the cases where two players meet
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to perform a barter but none of them has a knowledge of the items that
the other may be willing to barter so that this knowledge must be acquired
during the barter process itself through a try-and-error process.

In the current version of the pure model we imagined the two players as peers
in the barter, this fact being represented by the random move for the choice
of the first time mover. It is easy to remove this feature by giving, for some
reason, the right to make the first move to one of the two players. For the
range of the possible applications we refer to the tables we provided in this
paper, mainly table 2, from where it is possible to understand the nature of
the items that the two players may wish to exchange.

On the other hand, the mixed model can be used in all the cases where one
of the two players cannot conceal or is forced to show the initial set of his
items so that the other has some information about the possible advantageous
(for him) proposals that he can make without even revealing any of the items
of his private set.

Also in this case we refer to the tables we provided in this paper, mainly
table 2, from where it is possible to understand the nature of the items that
the two players may wish to exchange.

8 Possible extensions

Up to now we have seen the basic models involving a pair of players in a
one shot barter for the exchange of a pair of items.
In this section we briefly present the following planned extensions:

(e1) the possibility of having more than two players i.e. a plurality of play-
ers;

(e2) the possibility of performing repeated barters;

(e3) the possibility of performing multi-pairs barter.

In the following subsections we examine the various extensions singularly
and one independently from the others though it is obvious that they could
be combined together in various ways. The treatment is at an introductory
level since such extensions represent the core of a future research stream.

8.1 A plurality of players

Instead of a pair of players A and B we may define a set & of n > 4 players
(with n even”) that can form n/2 pairs (so to have n/2 contemporaneous

"In abstract term we might have two cases:
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barters) in the following ways:
- by a random selection,
- by raising up of hands,
- by mutual selection.
In the case of random selection we may imagine a procedure that:
(0) starts with i = n;

(1) at the i—th step it chooses at random one of the i(i — 1)/2 values so to
match a pair of players;

(2) if i =2 go to (3) else i =i — 2 go to (1);
(3) end,;

At step (1) we may imagine to have a dice with i faces so that the outcome
of j € [1,4] corresponds to one of the possible i(i — 1)/2 pairings. We have
to see how to assign the possible pairings to the faces of the dice. To do so
we can set up a n x n matrix V with all the elements at 0 but those above
the main diagonal that assume (row by row form left to right) the increasing
integer values from 1 (for the element v(1,2)) to n(n —1)/2 (for the element
v(n — 1,n)) so that v(i,7) # 0 for j > i.

After each step we remove the two matched players, renumber the remaining
players, reduce accordingly the matrix V', reassign the values v(i, j) with the
same rule and repeat the procedure.

In the case of raising hands we can imagine that one player raises up one
of his hands. If more that one player raises then each of them lowers his
hand, waits for some random amount of time and then raises again his hand.
This goes on until there is only one hand up at a time. At this point one
or more of the others may join him to form a pair for a barter. If more
than one player express the wish to join there is a random selection of one
of them. The process goes on until n/2 pairs have been formed, at each step
the number of waiting players being decremented by 2.

(1) nis even so n/2 pairs of players form and no player is left out;
(2) n is odd so n/2 pairs form but one player is left out.

In this section we assume that n is even since the case n odd has no sense but in cases
of repeated barters (see section 8.2) where the player who is left out at one stage gains
some precedence at the next stage according to a form of balanced alternation (Brams and
Taylor (1999)).
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In the case of mutual selection the players are divided, through the use of
any suitable random device®, in two subsets of n/2 elements each: the former
P, contains the choosers and the latter P the choices.

Each player of P; chooses at his will a player from Ps: if the latter accepts
the pair forms otherwise the two players switch from one set to the other.
If there are multiple selections the choice is up to the player of P, that is
forced to select one of his choosers. The matched players are removed from
the respective sets.

When, according one of the foregoing ways, the n/2 pairs are formed each of
them may use one of the algorithms we have seen in section 5 to perform a
barter.

The basic idea is that the n players are willing to engage each other in a
barter so the n/2 pairs form even if there is no guarantee that this turns out
in n/2 effective barters.

8.2 Repeated barters

In this case we may use some concepts from Game Theory (Myerson
(1991)) and consider each barter as a single stage of the potentially endless
process of repeated barters between two players A and B.

To get this chaining effective we need to make some changes to the models
of section 5. Such changes include:

- the addition of moves to implement the chaining;

- the introduction of state variables through which each player records
the attitude of the confronting player during the previous stages (Ax-
elrod (1985), Axelrod (1997));

- the definition of a barter as either with memory or memoryless.
As to the moves we need:

- to modify the accept move in a accept and stop move so to signal a
lack of will to go on with the barter;

- to add the accept and repeat move so to signal to the other player
the willingness to the execution of one more stage;

- to add the repeat? move so to allow a player to request to the other
the execution of one more stage;

8We can imagine a urn containing n balls, n/2 red and n/2 blue, and n selections
without replacement for the assignment of each extracting player to one of the two subsets
according the color of the extracted ball.
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- to add a repeat move so to answer affirmatively to an explicit or
implicit request for one more stage;

- to add a refuse move so to answer negatively to an explicit or implicit
request for one more stage.

so to allow the players to link two stages together in a repeated barter.

The state variables represent private information of each player through
which he may record, from one stage to another, if the attitude of the other
player at the previous stages has been more cooperative or more exploitative.
In this way each player may implement long run strategies of retaliation so
to punish spiteful attitudes.

Last but not least we define a barter as with memory if at the end of
each stage the composition of the revealed set is a valid common knowledge
(Myerson (1991)) between the players whereas it is defined as memoryless
if it is lost and has no common knowledge value since each player is free to
modify at his will the composition of his set without any notice to the other.
This feature of a repeated barter must be agreed upon by both players at
the very offset of the process, may be changed only after a new mutual
agreement after each stage is over and forms a common knowledge between
the two players.

8.3 Multi pairs barter

In this case every player at each step may propose more than one pair of
items to be bartered. For instance, A may propose:

(25,.90) (ins i) (29)

and B can reply with a counter proposal with even more or less elements or
can even accept. The acceptance might be:

- partial if the agreement can involve only a subset of a [counter| pro-
posal;

- global if the agreement involves a [counter| proposal as a whole.

Partial agreements are fully meaningful only within a repeated barter setting
whereas in a one shot barter we usually speak of global multi pairs agreement
whenever the two players agree on bartering all the items contained in one
proposal.
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9 Concluding remarks

In the present paper we have introduced two algorithms that can be used
in the case of one shot barter between a pair of players.
In the former algorithm we have a symmetric situation where the two players
try to conclude a barter through an incremental revelation of the sets of items
each of them is willing to barter.
In the latter algorithm, on the other hand, the situation is asymmetrical
since one of the player either does not want to or cannot hide or conceal the
set of his items to the other player that therefore has an initial advantage
and the right to make the starting offer.
The paper presented both a description of the algorithms and their evaluation
according to well defined classical performance and evaluation criteria.
In the closing part of the paper we also presented some possible extensions
whose analysis and formalization are still to be completed. Similarly we
need to complete the analysis of the possible applications of the proposed
models to real world cases where exchanges of items occur between players
that aim at attaining their objectives without sharing any common scales of
qualitative or quantitative values.
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