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Abstract

This paper presents one possible way in which a set of decision
makers can perform the choice of a project from a set P of m compet-
ing projects. The choice is performed through the use of an iterative
procedure that makes use, as internal procedures, of a refinement pro-
cedure, that allows the deciders to assign to certain projects finer
rankings, and a tie-breaking procedure that allows the deciders to se-
lect one project among a set of tied competing projects.
The paper also discusses some possible ways of ranking the projects
and presents a filtering procedure that uses the concepts of Pareto
optimality/efficiency and Pareto dominance.

1 Introduction

This paper refers to one of the topics I dealt with in my PhD thesis ([5])
and presents one possible way in which a set of decision makers or deciders
can perform the choice of a project from a set P of m = |P | competing
projects.
The choice is performed through the use of an iterative procedure that is
similar to the ones we presented in [4] and in [5]. Such a procedure has the
high level structure that we present in section 2 and makes use, as internal
procedures, of the following procedures:

- an evaluation procedure through which the deciders assign to each
project of P a set of n numerical values that represent the associated
benefits and costs;
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- a procedure for the identification of the Pareto optimal projects within
the current set of projects;

- a refinement procedure that allows the deciders to assign to certain
projects finer rankings;

- a tie-breaking procedure that allows the deciders to select one project
among a set of tied competing projects.

In this paper we assume a static setting so that:

- the set D of the deciders is fixed and does not vary during the process;

- the set of the criteria (and so of the benefits and the costs) is fixed by
the deciders from the start of the procedure and cannot be changed in
the course of the process;

- the set P of the competing projects is seen as an exogenous parameter
and can only be reduced during the process up to the point when
possibly only one project is left so that it can be chosen as the best
project, at least among the projects of the set P .

The overall process is based on the following assumptions:

- in oder to rank the projects we1 use a set of n criteria that represents the
various types of benefits and costs that are associated to each project;

- each criterion is described through a numeric quantity but we assume
that the corresponding quantities must be seen as dimensions that are
orthogonal among themselves so they cannot be added or averaged or
compared in any way;

- in this way each project pi ∈ P is associated to a vector xi ∈ Rn and
so to a point in an n− dimensional space;

- the positions of the various points allow us to identify the Pareto domi-
nant projects, the Pareto equivalent projects and the Pareto dominated
projects;

- for each project pi ∈ P we have that the vector xi = (xj
i )j=1,...,n contains

the values that describe that project according to a common set of n1

benefits and a common set of n2 costs where n = n1 + n2;

1In many cases we use the term “we” for simplicity but it should be read as meaning
“the deciders”.

2



- for each project pi ∈ P we denote with bhi the various benefits or the
corresponding values, depending on the context, and with cki the various
costs or the corresponding values, again depending on the context.

As a shorthand we may use the notation xi = (bi, ci) where bi is the sub-
vector of the values bhi and ci is the sub-vector of the values cki .
We remark how the hypothesis to use numeric quantities to describe the var-
ious criteria in many cases is not neutral and may require the quantification
of qualitative criteria in order to produce values on cardinal scales that, in
any case, are never compared or added or averaged among themselves ([14]).
The main reason why we make this assumption is that such numbers may
refer to qualitative evaluations turned into numerical quantities for practical
purposes so that they correspond to incommensurable quantities.

2 The proposed procedure

In this section we present the high level structure of the procedure that
can be used by the deciders of the set D to select the best project p̃ from
the initial set of m competing projects P . Further details will be presented
in the following sections of the paper and especially in the sections 7, 8 and
9.
The procedure essentially works as follows:

(1) it starts with a set P to which the deciders assign a matrix X of eval-
uations, one row vector xi ∈ Rn for each project pi ∈ P ;

(2) from the set P it derives the set P̂ of the Pareto optimal projects
through the use of the matrix X;

(3) it tries to reduce at the most the set P̂ through a certain number of
refinement steps;

(4) it produces ad irreducible set of Pareto optimal projects;

(5) it requires the selection of the best project from such irreducible set as
the outcome of the overall process.

Such steps require, in some way, the explicit intervention of the deciders that
use ancillary procedures that are designed for those purposes.
We note that at the end of the step (2) we can have the following cases:

(a) |P̂ | = 1;
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(b) |P̂ | > 1.

In the case (a) the procedure ends and produces as its outcome a single
Pareto optimal project that is the natural best selection for all the deciders.
On the other hand, in the case (b) the projects of the set P̂ undergo a
certain number of refinement and filtering steps until either we fall in the (a)
case or the procedure produces an irreducible set of Pareto optimal projects.
In section 10 we are going to show how the deciders can perform the final
selection in this case so to determine the best project from the initial set P .
At this point we present the procedure. It uses the following data structures:

- the initial set of the projects P as an exogenous parameter;

- a counter i that indexes the various sets that are defined by the deciders;

- a boolean variable FP that signals the occurring of a fixed point con-
dition when the set of the Pareto optimal projects cannot be further
refined.

It also uses the following procedures:

- a procedure evaluate, see section 7, that assign a vector of numerical
evaluations to each project;

- a procedure PO, see section 8, that evaluates the new set of the Pareto
optimal projects from the current set through the use of the output of
the previous procedure;

- a procedure RPO, see section 9, that refine the evaluations of the
projects contained in the current set of the Pareto optimal projects;

- a procedure FS, see section 10, that is used by the deciders to perform
the final selection from an irreducible set.

The high level structure of the procedure follows.

procedure project selection(P)

begin

i=0;

FP = false;

X = evaluate(P );

P̂i = P ;
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ci = |P̂i|;
while ci > 1 and2 ¬FP do

begin

P̂i+1 = PO(P̂i, X);

X = prune(X, P̂i+1);

ci+1 = |P̂i+1|;
if ci+1 > 1 then

begin

X ′ = RPO(P̂i+1, X);

if X ′ == X then FP = true;

else X = X ′;

end

i = i + 1;

end

if ci == 1 then return P̂i;

if FP == true then return P̂i = FS(P̂i);

end

It is easy to see how the procedure has a simple structure that is essen-
tially based on a main while loop that is executed until one of the following
conditions holds:

(a) a single project has been identified so that we have ci = 1;

(b) a fixed point condition is verified so that we have FP = true.

We note that the condition X ′ = X (that causes FP = true) can be forced
by the deciders whenever they see that no real refinement through the RPO
procedure can be obtained. In this case we should get, of course, that the
set P̂ would not vary so the two conditions coincide.
In the (a) case the selected project is provided as the output of the procedure.
In the (b) case the deciders must execute the Further Selection or FS
procedure (see section 10) so to identify the best project among those of the
set P .
At each iteration of the while loop the deciders:

2With the notation ¬a we denote the complement of a that is false when a is true and
true when a is false.
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- define with the procedure PO the set of the currently Pareto optimal
projects;

- if they get a single project they are done otherwise they use the pro-
cedure RPO (see section 9) to “perturb” the set P̂ of the currently
Pareto optimal projects;

- if the “perturbation” defines a modified set of the evaluations of the
currently Pareto optimal projects they iterate the procedure on the
new set;

- otherwise they are in a fixed point condition so they proceed as we have
already seen.

3 The structure of the rest of the paper

The rest of the paper is structured as follows. It goes on with a brief ex-
amination of the concepts of Pareto optimality, Pareto efficiency and Pareto
dominance firstly in the classical case and then in presence of both benefits
and costs expressed as independent numerical quantities.
Then we examine the possibility to use two separate rankings:

- one based on the benefits only,

- one based on the costs only.

Under these assumptions we show the possible inconsistencies between the
two rankings and examine some way to solve them.
Then we examine the possible uses of lexicographic orderings on the criteria
(benefits and costs) according to which the projects are evaluated with the
aim of filtering out the set P and possibly produce an outcome containing
only one project.
The paper goes on with a description of the structure of the procedures
evaluate, PO and RPO (see also sections 1 and 2) then it examines how
the deciders can behave when they face an irreducible set of Pareto optimal
projects P̂ among which they have to choose one project to get it imple-
mented.
The paper closes with a short section devoted to the conclusions and to the
description of the future research plans.
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4 About Pareto optimality

Whenever we have to rank or to order two or more numerical unidimen-
sional quantities xi ∈ R we can use the ordering over R through relations
such as > or < or the like. Things are undoubtedly more difficult if we
have to rank or to order two or more numerical multidimensional quantities
xi ∈ Rn. In this case we can safely imagine the values xi as points in an
n−dimensional space and use the concepts of Pareto efficiency that, accord-
ing to [1] and [2], coincides with the Pareto optimality. In this way we define
the so called Pareto efficient solutions that, see [18] and [13], are on the so
called Pareto frontier.
For instance, we may have points (x, y) ∈ R2 that represent the shares of
two players3 so that each player prefers to get more than less under some
constraints. In this case we may have a region of that plane defined by the
following relations:

x + y ≤ k

x ≥ 0

y ≥ 0

The points on the Pareto frontier x+y = k are the Pareto efficient or optimal
solutions wheres those in the region x+y < k are said to be Pareto inefficient
since both players can be better off without damaging each other. This does
not occur for the points on the Pareto frontier since a switch from one point
(x1, y1) on the frontier to another (x2, y2), again on the frontier, is such that
if one player is better off the other is obligatorily worse off.
We underline the fact that the concept of Pareto efficiency rules out consid-
eration of equity or fairness ([1], [2], [18]). According to such definitions all
the points (x1, x2) ∈ R2 such that x1 + x2 = k are Pareto efficient solutions
and so even the extreme points (k, 0) and (0, k).
In addition to these definitions we can introduce the concepts of Pareto dom-
inant and Pareto dominated solutions.
In we consider the preceding example and we take a point (x, y) we have
that:

- every point (x′, y′) such that x′ ≥ x and y′ ≥ y, with at least one strict
inequality, is Pareto dominant;

3We use the term player with the classical meaning it has in Game Theory ([11], [8],
[10]).
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- every point (x′, y′) such that x′ ≤ x and y′ ≤ y, with at least one strict
inequality, is Pareto dominated.

We have, therefore, that a solution may be Pareto dominant and inefficient
The concept of Pareto efficiency ([11], [8], [10]), therefore, can be used to
characterize the allocation of the quantities xi to the n playersp1, i = 1, . . . , n.
In this case we say that an allocation is Pareto efficient if and only if there
is not another allocation where at least one of the player may be better off
(and so may obtain a higher quantity) without any other player being worse
off (so obtaining a lower quantity).
From this definition it is easy to see how we can have any number of Pareto
efficient solutions.
If, for instance, two players have to share a quantity a any solution x =
(x1, x2) such that x1 + x2 = a is Pareto efficient whereas any solution such
that x1+x2 < a is Pareto inefficient since, from the current perspective, both
players can be better off by sharing in some way the surplus a− x1 + x2.
If an allocation is not Pareto efficient we can, therefore, obtain at least one
allocation where one ore more players are better off without damaging any
of the remaining players. If all the players can be better off we say that
the original allocation is Pareto dominated by the new allocation that is
termed Pareto dominant.
Last but not least we note how, if the switch from an allocation x =
(x1, . . . , xn) to another allocation x′ = (x′1, . . . , x

′
n) requires that it exists

some i such that we have xi > x′i and some j such that we have xj < x′j,
we say that x and x′ are Pareto equivalent. A set of Pareto equivalent
allocations is termed an irreducible set.
We remark how, if we switch from R2 to Rn for a generic n > 2, the above
definitions continue to hold though (especially for n > 3) we lose any visual-
ization aid.
In this paper we want to use such concepts in the case of the evaluation of
competing projects that are characterized by both benefits and costs so we
need to adapt them a little bit to this new context. We recall how, accord-
ing the static setting approach (see section 1), all the projects of the set P
are described through the same categories of benefits and costs though each
project has its own vector of values.
As a preliminary remark we underline that:

- the benefits are put in an increasing order since the higher a benefit is
the better it is;

- the costs are put in an decreasing order since the lower a cost is the
better it is;
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- a cost is not seen as a negative benefit since, in many cases, this change
of sign has no meaning.

In this case (see also section 1) we have that each project pi is described by
an n−valued vector xi ∈ Rn where each xj

i represents a numeric quantity
that describe, on a proper cardinal scale, either a benefit or a cost associated
with that project.
In order to make things more concrete we assume to have one benefit b
and one cost c. According to our approach we consider the two values as
incommensurable so we cannot evaluate ratios or other numerical quantities
involving such values.
In this case if we have a project p1 with the associated vector (b1, c1) we have
that:

- every other project pj with values (bj, cj) is Pareto dominated if
bj ≤ b1 and cj ≥ c1 with at least one strict inequality;

- every other project pk with values (bk, ck) is Pareto dominant if bk ≥
b1 and ck ≤ c1 with at least one strict inequality;

- all the projects ph with values (bh, ch) such that bh ≥ b1 and ch ≥ c1 or
bh ≤ b1 and ch ≤ c1 are termed Pareto equivalent.

For what concerns the Pareto equivalent projects we can follow three alter-
native approaches:

- we can consider them as forming an irreducible set of projects;

- we can rank them by assigning different weights to the various benefits
and costs (see section 6);

- we can rank them through the use of separate rankings (see section 5).

All such approaches will be briefly described and implicitly compared in
section 8.

5 Use of separate rankings

In section 4 we have seen how to represent the various projects of a set
P in an n−dimensional space. In this case to each project pi ∈ P we assign
a point xi ∈ Rn and so we define the various categories of projects that we
have described in section 4.
Another possibility is to consider separately the n1 benefits and the n2 costs.
In this case we can proceed in two ways:
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(a) in a punctual way;

(b) in an cumulative way.

In the (a) case we represent each project of the set P in two spaces:

- an n1−dimensional space of the benefits;

- an n2−dimensional space of the costs.

Once we have done this we can evaluate the set P̂ = P̂1 ∩ P̂2 where the set
P̂1 contains the Pareto optimal projects according to the n1 benefits whereas
the set P̂2 contains the Pareto optimal projects according to the n2 benefits.
The main problem in this case is that the set P̂ may be empty so that we
have no project that is Pareto efficient for both the benefits and the costs.
If, for instance, we have two projects p1 and p2 and four criteria, two benefits
and two costs, we may have that:

- p1 dominates p2 according to the benefits;

- p2 dominates p1 according to the costs.

In this case we have P̂ = ∅. The same may occur, of course, in presence of
more than two projects and of a higher number of criteria, both benefits and
costs.
In the (b) case4 we consider again benefits and costs separately but we proceed
as follows in the case of the benefits, for the costs we proceed in a similar
way:

- we map the benefits on a scale from 0 to 100 so to uniform their range
of values and represent them as percentages;

- we assign different weights wi to the benefits;

- we evaluate the weighted sum of the benefits so that to each project pi
we assign a single cumulative benefit bi.

We note how we have:

- wi ∈ [0, 1] for each i;

-
∑

i wi = 1.

4We note how this case may represent a solution to the difficulties we have seen may
occur in the previous case.
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In a similar way for the project pi we may evaluate a single cumulative cost
ci. In this way we are in a bidimensional case where we assign a pair of
values (bi, ci) to each project pi. Once we have defined a pair of values for
each project we represent the projects as points in R2 in order to define the
set P̂ of the Pareto efficient projects.
In this case we have evaluated the weighted sums of both benefits and cots
since we assume that the benefits, once they have been expressed according
to numerical values, can be considered as commensurable among themselves
and we assume that the same holds also for the costs.
The critical step in this case is represented by the evaluation of the values of
the weights for the benefits and for the costs so that, in absence of any strong
indication, the best solution is to assume for the weights identical values. In
this case the weighted averages turn into arithmetic averages. With this we
mean that, in the case of the benefits, we have:

wi =
1

n1

(1)

so that:

bi =

∑
j b

j
i

n1

(2)

where bji is the value for the project pi according to the j−th benefit type.
The same holds for the costs.

6 Possible use of lexicographic orderings

Up to now we have either used the criteria (or the benefits and the costs)
as forming a single set or as forming two separate sets, one of the benefits
and the other of the costs. In the latter case (see section 5) we have examined
the possibility to use two separate rankings (one based on the benefits and
the other based on the costs) but also the possibility to merge the benefits
and the costs in two distinct values to be used in a bidimensional space.
In this section we examine the possibility to assign to the various criteria
different weights so to define a total strict ordering of the criteria and to use
such ordering to perform a lexicographic ordering of the projects.
We recall that we assume to have n1 benefits and n2 costs. If we assign
different weights to the various benefit types we can order them in a strict
decreasing order as:

b1 � b2 · · · � bn1−1 � bn1 (3)

by possibly renumbering such criteria and where � denotes a strict preference
relation endowed with classical properties.
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In a similar way we may proceed with the costs so to get:

c1 � c2 · · · � cn2−1 � cn2 (4)

At this point we consider the two criteria b1 and c1 and define the set of the
Pareto optimal projects P̂ from the set P according to these criteria. If we
have |P̂ | = 1 we are over otherwise we consider the two criteria b2 and c2 and
repeat the procedure on the set P̂ . This procedure goes on until:

- we find a set P̂ such that |P̂ | = 1 so that it ends with success;

- we find a set P̂ that cannot be further reduced through the use of
other criteria (that may have been even used up) so that the procedure
produces a set that requires a further selection to be performed (see
section 10).

We note that at each step we use two criteria bi and ci so that we are guaran-
teed to get a non empty subset P̂ . If we have |P̂ | > 1 we disregard such pair
of criteria as non discriminating so to switch to the following pair. If this
occurs for all the possible pairs of criteria and we have n1 = n2 then we must
conclude that this method is non deciding on the current set of projects. If,
on the other hand, we have n1 6= n2 we can proceed by ranking the left out
projects according either to the remaining benefits (if n1 > n2) or to the
remaining costs (if n1 < n2).
If, for instance, we have three projects p1, p2 and p3, two benefits b1 � b2
and three costs c1 � c2 � c3 we may proceed as follows.
We consider b1 and c1 and represent the three projects as points in R2. In
this way we get the set P̂ . If we have |P̂ | = 1 we are over so we do not need
to consider the other criteria. If we have |P̂ | > 1 we must switch to b2 and
c2 so to repeat the procedure, for instance, on the two remaining projects. If
we have |P̂ | = 1 we are over whereas if we have |P̂ | > 1 we must use the last
criterion c3. Also in this case we have no guarantee that there will not be
a tie as it can occur if, for instance, the two remaining projects have equal
values according to c3. In this case the procedure ends with a set P̂ such
that |P̂ | > 1. In section 10 we are going to show how we can deal with these
cases.
The main problem with this approach is that we may have a project that
wins5 according, for instance, to the criteria b1 and c1 but that would lose6

5With this we mean that it will be the only project in the set P̂ as it has been defined
by the selected criteria.

6With this we mean that it would be a dominated project according to all the other
pairs of criteria or single criterion rankings.
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according to all the other criteria. This is a limiting case, of course, but is
enough to state that this method should be applied only in particular cases
and with a warning to consider how a selected project would behave with
the remaining criteria. In this paper we do not deal with this feature of this
ranking method any further.

7 The use of the evaluate procedure

In the present static setting the deciders of the set D receive the set of m
projects P that they must evaluate and from which they have to extract the
best project. Their very first step is, therefore, represented by the definition
of a set of n criteria, benefits types and costs types, through which they can
evaluate each project pj ∈ P by assigning to it n numerical values.
Once such criteria have been defined they form a set of n elements, part of
which (n1) are benefits bi and part of which (n2) are costs ci.
At this point the deciders:

- examine one project pj ∈ P at a time;

- assign to each project a vector xi ∈ Rn.

Such steps require the deciders to both take individual decisions ([13], [7])
and to negotiate ([12], [15]) since ([4], [5]) for each project they must:

- individually asses the values to be associated to the benefits and to the
costs for the current project (decision step);

- negotiate with the others so to assign an agreed on value to every
benefit and to every cost for the current project.

If the negotiation step fails the deciders can enter in a new decision step
having gained some, possibly strategic, knowledge of the evaluations of the
others. The procedure goes on until a compromise is reached so that each
criterion gets associated a single value. If the deciders are able to define only
intervals of values we assume that the procedure produces the corresponding
mean values as a sort of decision through an arbitration ([12]).
The outcome of the procedure evaluate is therefore the matrix X ∈ Rm×n of
m rows, one for each project, and n columns, one for each criterion.
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8 The structure of the PO and the prune pro-

cedures

What we have seen in the sections 4 and 5 gets a meaning in the imple-
mentation of the PO procedure.
If we follow what we have seen in section 4 we have that each project pi is
represented as a vector xi ∈ Rn of benefits and costs with xi = (bi, ci). In
this case the deciders start from the project p1 and:

- try to find all the projects that are dominated by p1 (and so that
have not higher benefits and not lower costs with at least one strict
inequality);

- discard such dominated projects;

- if they find a dominant project pi (that has not lower benefits and not
higher costs with at least one strict inequality) they discard p1 (since
it is dominated) and repeat the procedure with pi.

When the deciders have removed all the dominated projects and are not able
to find any new dominant project they are left with the set P̂ of Pareto
equivalent projects that is the outcome of the procedure.
If we use what we have seen in section 5 we consider the benefits as separated
form the costs. In this way the procedure PO produces:

- a set P̂1 of Pareto optimal projects according to the n1 benefits,

- a set P̂2 of Pareto optimal projects according to the n2 costs,

- the global set P̂ = P̂1 ∩ P̂2 of the Pareto optimal projects.

We note that P̂ may be empty (see section 5). If, for instance, we have two
projects (p1 and p2), two benefits (b1 and b2) and two costs (c1 and c2) we
may have that:

- P̂1 = {p1},

- P̂2 = {p2},

- P̂ = P̂1 ∩ P̂2 = ∅.

We note how similar considerations hold in presence of more than two
projects and of a higher number of benefits and costs.
As we have seen in section 6 the deciders can also use a lexicographic order-
ing of the criteria in order to rank the projects of the current set. Since this
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approach seems to be flawed we do not deal with it any longer in this paper.
In this case we may consider the set P as coincident with the set P̂ so that
all the projects are seen as Pareto equivalent.
Last but not least, for what concerns the prune procedure we note that,
once the set P̂ has been derived from a set P through the use of the PO
procedure, it extracts from the matrix X the rows that correspond to the
discarded projects so to produce a reduced matrix X that contains only the
required rows.

9 The structure of the RPO procedure

The PO procedure has no guarantee to produce a single valued set. In
many cases it may produce a set P̂ of more than one Pareto optimal project.
In this case the deciders can only refine the analysis of such projects by using
the same set of criteria.
They cannot modify the set of the criteria (in a static setting) but even if
they could modify it (by adding new criteria) they should verify the effect
that the new criteria have on the previously discarded projects. In this paper
we do not deal with this issue, that contribute to the definition of a dynamic
setting (see section 11), any further.
The RPO procedure takes as input:

- the current set P̂ of the Pareto optimal projects,

- the corresponding matrix X of the evaluations of such projects.

It produces, as its output, a matrix X ′. If X ′ = X we are in a fixed point
condition so that the deciders must resort to the FS procedure. If, on the
other hand, we have X ′ 6= X the deciders can use again the PO and the
prune procedures.
The main aim of the deciders is therefore to revise the evaluations of each
project of the current set P̂ so to obtain more realistic, though agreed on by
them all, numeric values. They perform a refinement of such values, since the
criteria do not change, with the aim to have the representative points of some
projects to move out of the Pareto frontier either in the inside, so to become
possibly dominated, or on the outside so to become possibly dominant.
If, for instance, we consider two benefits and the projects as represented by
points in the R2 space we have that the points on the line x1 + x2 = k (with
x1 ≥ 0 and x2 ≥ 0) are on the Pareto frontier. If, through a refinement of the
values associated to the projects on the Pareto frontier, we move the points
representative of some projects inside the area x1 + x2 < k such projects
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may become dominated whereas if we move the point representative of one
project in the area x1 + x2 > k that project may become dominant.
To obtain this shift of the position of the representative points of the projects
the deciders must examine with care every project ([3], [5]) so to assess with
higher and higher precision the values associated to each criterion, be it a
benefit or a cost.

10 The selection among the Pareto optimal

projects

In this section we outline the structure of the procedure FS that is used
by the deciders whenever a condition of fixed point occurs. In this case the
deciders face a set P̂ of irreducible Pareto optimal projects but they are
requested to select one of them as the best project and so the project they
think to be worth of being implemented.
In order to make things more concrete let us assume to have two projects
left in the set P̂ and that the deciders have used five criteria, two benefits (b1
and b2) and three costs (c1, c2 and c3) but similar considerations hold also in
the general case of m projects and n1 benefits and n2 costs.
Once the deciders have defined the set P̂ of the two irreducible Pareto optimal
projects the two projects are seen as equivalent so the final selection must
be a political one though possibly based on some rules shared among the
deciders.
In the first approach that we propose the deciders evaluate the sum of the
benefits for each project so to get:

B1 = b11 + b21 (5)

for p1 and:
B2 = b12 + b22 (6)

for p2. In the above equations the subscripts stand for the project whereas
the superscripts stand for the benefit. In a similar way they evaluate C1 (as
the total cost for p1) and C2 (as the total cost for p2). So doing the deciders
assign to each project a point (Bi, Ci) in the plane R2 so that they can see if
either p1 dominates p2 or vice versa. Unfortunately we can have that neither
of such conditions hold since we may have that one of the following conditions
is instead satisfied:

(1) B1 > B2 and C1 > C2

(2) B1 < B2 and C1 < C2
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so that the two projects are seen as Pareto equivalent. A variant of this
approach could involve the use of arithmetic means instead of the sums but
this modification does not guarantee the dominance of one project over the
other. In any case both methods may represent a first attempt to find a
Pareto dominant project within a set of irreducible Pareto optimal projects.
Another approach could be for the decider to resort to procedures inspired
by voting methods such as the Borda or the Condorcet methods (see [6], [16],
[17], [9]).
We recall that the Borda method with h candidates and n voters is based
on the following procedure:

- each voter assign to each candidate a value from the interval [1, n]
without repetitions;

- the values are added for each candidate over all the voters so that each
candidate receives a single numerical value;

- the candidate who gets the highest score is the Borda winner;

- we can have tied candidates so we need a method to break ties among
the top ranked candidates, see further on within our context.

The main problem with the Borda method is that its outcome can be manipu-
lated by the voters through a strategic voting that requires the full knowledge
of the preferences of the voters. In our context we think that this feature is
a minor problem since the various projects (the candidates in our world) are
evaluated according to the various criteria (the voters in our world) through
rankings (with possible ties) over R.
The Condorcet method, on the other hand, is based on the execution of
pairwise rankings of the candidates for all the voters according to their pref-
erences. In this case for a pair of candidates (a, b) we count the number of
times where a beats b and those where b beats a. We say that a beats b (and
we write a � b) for the whole set of the candidates if the former number is
higher than the latter whereas b beats a for the whole set of the candidates
if the former number is lower than the latter and that the two candidates
are tied if the two numbers are equal. Also in this case we may have tied
candidates and, moreover, we may have a loss of transitivity since, in the
case of three candidates (a, b, c) we may have a � b � c � a. In this case
we are not able to identify the so called Condorcet winner (or a candidate
that defeats all the others in the pairwise comparisons) neither its dual, or
the Condorcet loser.
To use approaches inspired by these methods we therefore consider:
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- the h remaining projects p1, . . . , ph as the candidates,

- the n criteria c1, . . . , cn as the voters.

If we devise a method inspired by the Borda method we may define a
matrix B with:

- n rows, one for each voter/criterion ci;

- h columns, one for each candidate/project pj.

Every cell bi,j of the matrix contains a value such that the sum of the values
on each row is equal to:

h∑
j=1

bi,j =
(h + 1)h

2
∀i = 1, . . . , n (7)

We have no unicity constraint on such values since we want to be able to ac-
count for tied projects. Once the values bi,j have been assigned to the various
entries of the matrix we may evaluate, for each project pj, the quantity:

Bj =
n∑

i=1

bi,j (8)

At this point we use such values to order the various projects. We have two
cases:

- no ties among the projects;

- there are tied projects.

In the former easy case we have that the project with the highest value is
the selected project or the winning candidate.
In the latter case we have that if the ties do not involve top ranked candidates
they can be discarded so we are in the previous case. If the ties involve the
top ranked candidates so that, for instance, we have:

p1 ∼ p2 ∼ p3 � p4 � . . . (9)

we have that the projects p1, p2 and p3 are equivalent so that the deciders
can select one of them at random.
We have now to see how each voter can assign the values bi,j to the various
project so to satisfy the constraint imposed by relation (7).
If he has no ties among the projects he proceeds as in the classical Borda
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method. If there are ties among the projects the method must be adapted
through the use of fractional values. We illustrate the basic ideas in the case
of four projects. In this case we have:

(h + 1)h

2
= 10 (10)

since h = 4. If one voter has7:

p1 ∼ p2 ∼ p3 ∼ p4 (11)

then it must assign a value of 2.5 to each project. Some other cases are the
following:

p1 ∼ p2 � p3 � p4 with values equal to, respectively, 3.5, 3.5, 2 and 1;

p1 � p2 � p3 ∼ p4 with values equal to, respectively, 4, 3, 1.5 and 1.5;

p1 � p2 ∼ p3 ∼ p4 with values equal to, respectively, 4, 2, 2 and 2.

From these cases it should be easy to derive the general rule. The basic
idea, anyway, is that the values must be assigned so to account for both
the ties and the strict orderings between the projects. We underline how
the manipulability of the Borda method has no consequence for us since in
this case we have that the projects are ranked, according to each criterion,
through their associated values and so according to a natural ordering over
R and, moreover, since the values bi,j are assigned by the deciders to the
various projects and criteria according to common agreed on (or objective)
rules and not according to individual and privately known preferences.
If we devise a method inspired by the Condorcet method we may proceed
as follows in order to identify the Condorcet winners. We remark that we
use the plural form since we must admit ties among projects.
In this case before we can describe the method we have to define what we
mean when we say that, given a pair of projects (pi, pj) we have that either
pi wins or loses or is tied with pj.
To state such definitions we consider a pair (pi, pj) of projects and all the
criteria ch and evaluate:

- the number x of times where pi is better than pj since it gives either a
higher benefit or a lower cost;

7We use ∼ to denote a tie and � to denote a strict preference between two projects.
Such relations are endowed with classical properties.
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- the number y of times where pi is worse than pj since it gives either a
lower benefit or a higher cost;

- the number z of times where pi is tied with pj since it gives either the
same benefit or the same cost.

Such evaluations depend, of course, on the nature of each criterion. If we
have x − y > 0 we have that pi wins over pj, if we have x − y < 0 we have
that pi loses with pj and if we have x − y = 0 we have that pi is tied with
pj. At this point we can give a description of the high level structure of the
procedure:

(1) we start with p1 and put pc = p1 as the current project;

(2) we compare pc with pi with i ∈ [2, h];

(3) until pc wins with pi it is the current Condorcet winner;

(4) if pc loses with pi we discard the current pc, replace it with the current
pi (so we put pc = pi) as the current Condorcet winner and register
both the old pc (only if i > 2) and the new pi as Condorcet winners in
an array called Winners;

(5) if pc ties with pi we keep on considering pc as the current Condorcet
winner but we register both pc and pi in an array called Ties.

At the end of the procedure we have:

- a project as a possible Condorcet winner pc;

- an array Winners;

- an array Ties.

The array Winners contains the identifiers of those projects that have won
pairwise comparisons with other projects. If it contains less than three
elements we cannot have cycles. If it contains three or more elements
we may have cycles among the projects that have the following structure:
pi ≺ pj ≺ pk ≺ pi. In this case the method has failed. We note how this is a
reason of failure also in the case of the classical Condorcet method.
If we have no cycles among such projects we consider pc and, by an inspec-
tion of the content of the Ties array, all the projects that are tied with pc. If
such projects exist they form a set of equivalent projects among which the
deciders can choose one project at random as the best project among those
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of the initial set P . In this case we have indeed a situation like the following
(where the three projects on the right are the content of the array Ties):

pc = pi ∼ pj ∼ pl ∼ pk (12)

In this case, if we consider all the criteria as having the same weight or the
same importance, we cannot but consider such projects as equivalent so that
a random selection is the easiest way to get a final selection otherwise we
could resort to the methods we have seen in section 6.

11 Conclusions and future plans

In the present paper we have presented an iterative procedure through
which a set D of deciders can select the best project out of a set P of compet-
ing projects. The procedure has been sketched and described together with
all its ancillary procedures but not up to the minimal details since many of
them are based on decision and negotiation phases that depend on the nature
of the deciders and on the nature of the involved projects. Such phases can-
not be fully characterized if we take the descriptive approach that we have
used in the present paper ([13]).
The only principle we have adopted in this paper if the principle of Pareto
dominance though which we have defined either dominated or dominant
projects though we have suggested also the use of methods inspired by the
Borda and the Condorcet methods of voting. In this way we have completely
disregarded issues such as fairness ([1], [2]) and equity ([18]) since we believe
that such criteria can be used only when the deciders have to decide how to
share among themselves the benefits and costs associated to a given project
([5]) rather than in the ranking of a set of projects with the aim of choosing
the best project.
Future plans involve the adoption of a dynamic setting and the evaluation
of the introduction of issues of fairness and equity in the process especially
in the phase where the deciders evaluate the matrix X.
At this level the deciders may indeed decide to penalize those projects whose
benefits and costs can be hardly shared among themselves so to satisfy shared
criteria either of fairness or of equity.
For what concerns the dynamic setting we note how in that case:

- the set D of the deciders could vary during the process;

- the set of the criteria could be modified by the deciders during the
process;

21



- the set P of the competing projects could be seen only in part as an
exogenous parameter so that new projects can could be either proposed
or devised by the deciders during the process.

Future plans include, therefore, an analysis of the possibility that other de-
ciders join the ranking and selection process as well as the analysis of the
possibility that new criteria are added by the deciders whereas others are
possibly discarded, again by the deciders, since they prove to be non dis-
criminating for the current set of projects.
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