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Abstract

In this paper we describe a type of auction mechanism where the
auctioneer A wants to auction an item ζ among a certain number of
bidders bi ∈ B (i = 1, . . . , n) that submit bids in the auction with the
aim of not getting ζ.
Owing to this feature we call this mechanism a negative auction.

The main motivation of this mechanism is that both the bidders and
the auctioneer give a negative value to the auctioned item (and so
they see it as a bad rather than a good).
The mechanism is presented in its basic simple version and with some
possible extensions that account for the payment of a fee for not at-
tending the auction, the interactions among the bidders and the pres-
ence of other supporting actors.

1 Introduction

In this paper we describe a type of auction mechanism1 where the auc-
tioneer A wants to auction an item ζ among a certain number of bidders2

bi ∈ B (i = 1, . . . , n) that submit bids in the auction with the aim of not
getting ζ .
Owing to this feature we call this mechanism a negative auction ([4]).
The main motivation of this mechanism is twofold ([7] and [8]):

1In this paper we are going to use the term mechanism in a rather informal sense as
a set of rules, strategies and procedures. For a more formal use of the term we refer, for
instance, to [7] and [9].

2In what follows we identify a bidder bj ∈ B also by the index j ∈ N = {1, . . . , n}.
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- both the bidders and the auctioneer give a negative value to the auc-
tioned item (and so they see it as a bad rather than a good),

- the auctioneer has an imperfect knowledge of the bidders and so cannot
contact any of them directly.

The mechanism3, at least in its basic version, is simple and will be described
in detail in section 5 whereas the needed details will be presented in the
sections 3 and 4.

Algorithm 1.1 The basic mechanism is based on the following steps.

- A selects the bidders bi according to some private criteria that depend
on the nature of ζ;

- the bi submit their bids in a sealed bid auction;

- once the bids have been submitted they are revealed so that:

- the bidder who made the lowest bid is the losing bidder and gets4

ζ;

- the other bidders are termed winning bidders and get the benefit
of having avoided the allocation of ζ;

- the losing bidder5 b1 gets ζ and, as a compensation, a sum equal to his
bid x1;

- each winning bidder bi pays to the losing bidder a properly defined frac-
tion of x1.

This simple mechanism will be described in some detail in the following
sections together with the possible strategies of the bidders and some possible
extensions.
The extensions include a pre auction phase, where some of the bidders pay a
fee for not attending the auction, and a post auction phase that can assume
three forms and that aims at the reallocation of ζ depending on criteria that
are different from those that drove the auction phase itself.

3The proposed mechanism is loosely inspired by the Contract Net Protocol ([6, 14]).
4Possible ties among two or more losing bidders are resolved through a properly de-

signed random device.
5We assume that after the bids have been revealed we renumber the bidders so that the

losing bidder is the bidder b1 whereas all the other bidder bi (with i 6= 1) are the winning
bidders.
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2 Pre auction and post auction phases

In the pre auction phase the bidders are allowed to pay to A a fee
f (that A fixed and made common knowledge among the bidders) for not
attending the auction. In this case, depending on the amount of the fee, we
can have that:

- m bidders prefer to pay the fee in order to not attend the auction;

- k = n − m bidders prefer to attend the auction.

In this case, at the end of the auction phase, A has collected an extra com-
pensation equal to ec = mf that is awarded to the losing bidder.
The value ec (see also section 8) may be either a public knowledge among
the bidders that therefore know m but not necessarily k (since the value n is
not necessarily a common knowledge among the bidders) before the auction
phase or it may be a private knowledge of A to be revealed only after the
execution of the auction phase.
As to the last point we note how this feature may be guaranteed or at least
enforced through the design of the structure of the pre auction phase that
can be designed so to make the communication among the bidders either too
difficult or too costly. The easiest solution is to have the bidders, at least
in this phase, to be unaware one of the others so to make any inter bidders
communication impossible.
In the present paper we consider only the private knowledge case so that the
value ec has no influence on the behavior of the k attending bidders that do
not have such information when they submit their bids (see section 8).
We note indeed how even the m bidders who paid the fee can attend the
possible post auction phase. This requires that in that phase the full set of
bidders is revealed and becomes a common knowledge.
In the post auction phase we introduce some mechanisms that try to cor-
rect a simplifying assumption that we have made in the basic mechanism.
The basic mechanism is, indeed, based on the assumption that the various
bi are independent one from the others (in the sense that the allocation of ζ
to one of the bidders has effect only on that bidder) and, similarly, do not
influence any other actor6.
The mechanisms of the post auction phase aim, indeed, at accounting for the
following facts:

6With the term actor we denote a figure that is distinct from both A and the Bs but
that wants to attend the auction since he thinks to be damaged from the allocation of ζ

to one of the bidders. Such actors are termed supporters and form the set S.
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(pa1) the bidders bi are interdependent and so they may influence each other
so that, for any pair of bidders (bi, bj), we can define as di,j the damage
caused to bi from the allocation of ζ to bj ;

(pa2) the bidders bi may influence the actors of the set S (see footnote 6) so
that, for any actor si ∈ S, we can define as Di,j the damage caused to
si from the allocation of ζ to bj .

We may assume in general that di,j 6= dj,i so the cross damages between pairs
of bidders are not symmetrically distributed.
In the (pa1) case we assume that the bidders are interdependent but S = ∅.
In this case the bidders can try to negotiate an allocation to another bidder
that is more preferred by all the bidders depending on the values di,j (for
i 6= j) and not on the values mi = di,i that drive the auction phase.
In the (pa2) case, we assume that the bidders are independent but S 6= ∅. In
this case the members of S may try to obtain a reallocation depending on
the values Di,j.
Last but not least the two cases (pa1) and (pa2) can be merged in a single
case where we have both interdependent bidders and S 6= ∅.
In all the post auction cases the starting point is the allocation of ζ to one
of the bidders on the basis of the outcome of the auction phase where each
bidder is guided only by his self damage mi = di,i.
At the end of the auction phase we can have two cases:

- the resulting allocation is satisfactory7;

- the resulting allocation is unsatisfactory.

In the former case no reallocation is required whereas in the latter case either
the bidders of the set B or the supporters of the set S may try to renegotiate
it, within the proposed mechanisms in order to identify a new bidder as the
more preferred allocation.
We underline how such reallocation may require the raising of a further com-
pensation for the new bidder in order to have him accept the allocation of ζ .

3 The defining parameters

Both the auctioneer A and the bidders of the set B are characterized by
some parameters that depend heavily on the nature of the item ζ but also
on their individual characteristics.

7The concept of satisfaction will be defined for each post auction phase. For the moment
we say that an allocation is satisfactory if there are no incentives for its modification either
from the members of B or from the members of S or from both.
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Definition 3.1 For what concerns A we have only one parameter: the value
mA that A assigns to ζ as a measure of his utility since the only benefit that
A receives from the auction is the allocation of ζ.
With mA we denote:

- the damage or the negative utility that A will receive from ζ if the
auction is void so the allocation fails;

- the benefit or the positive utility that A receives from the allocation of
ζ to one of the bi ∈ B.

Observation 3.1 In the former case mA has a negative value whereas in
the latter it has a positive value.

Definition 3.2 Every bi ∈ B is characterized by the following parameters
(see also [7, 8]):

- a value mi that he assigns to ζ;

- the amount xi he is willing to bid;

- the random variables Xj that describe the bids of the other bidders;

- the interval of the values [0, Mi] to which the mi belong;

- the intervals of the values [0, Mj ] to which the Xj belong;

- the differentiable cumulative distributions Fj of the values Xj;

- the corresponding density functions fj = F ′
j of such values.

Observation 3.2 We note that:

(1) the parameter mi has a dual meaning in the sense that:

- it represents the damage that bi receives from the allocation of ζ;

- it represents the benefit that bi gets from the allocation of ζ to
some other bidder;

(2) the parameter xi has a dual meaning in the sense that:

- it represents the sum that bi asks as a compensation for the allo-
cation of ζ;

- it defines the fraction ci of the compensation that bi has to pay to
the losing bidder.

5



We can also define the following probabilities:

- the probability pi for bi of losing the auction;

- the dual probability qi = 1 − pi for bi of winning the auction.

We recall that the losing bidder is the bidder who gets ζ and a compensation
from the other bidders, the winning bidders.

4 The basic assumptions

In this section we introduce the basic assumptions that we make on the
parameters that characterize both the auctioneer and the bidders and that
will be maintained through the rest of the paper.

Assumptions 4.1 The only assumption we can make on A is that his value
mA is a private information of the auctioneer so that it is not known to the
bidders.
If we relax this assumption so that mA becomes a common knowledge among
the bidders we may assume that such a knowledge may influence the evalua-
tions of the bidders since they may derive form this knowledge hints on the
real nature of the auctioned item.

Assumptions 4.2 The basic assumptions that involve the characteristic pa-
rameters of the bidders may be summarized as follows8:

- the bidders are assumed to be risk neutral so that their utility is lin-
early separable ([7]) and can be expressed as the difference between a
benefit and a damage and so as xi−mi if the bidder bi loses the auction
or as mi − ci if he wins it;

- the random variables Xj are assumed to belong to a common interval
[0, M ] for a suitable M > 0;

- the random variables Xj are assumed to be independent random vari-
ables;

- the valuations mi are assumed to be private values of the single bid-
ders;

- the bidders bj are assumed to be symmetric so they are characterized
by the same F and by the same corresponding f ;

8See [7, 8]
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- the random variables Xj are assumed to be uniformly distributed on the
interval [0, M ] so that we have, for x ∈ [0, M ]:

P (Xj ≤ x) = F (x) =
x

M
(1)

and, correspondingly:

f(x) =
1

M
(2)

From the foregoing assumptions we derive that the probability pi for each
bidder bi of losing the auction is the same for all the bidders so we can denote
it as p and use q = 1−p to denote the dual probability of winning the auction.

Observation 4.1 Possible relaxations of the foregoing assumptions involve:

- the possibility that the bidders are risk adverse9 so that his utility is no
more linearly separable but it is a convex function of xi;

- the possibility that the evaluations are either common or interdependent
among the bidders;

- the possibility that the bidders are asymmetric so that we can have
different intervals [0, Mj] and different functions Fj and fj for each
bidder bj as well as the possibility to have different distributions (such
as a Gaussian or a triangular distribution) also under the symmetry
assumption.

Such relaxations can be introduced either one at a time or in combinations.
Their treatment, that makes the analysis more complex, is out of the scope
of the present paper and is the subject of further research efforts (see section
8 for further details).

5 The basic mechanism and its strategies

The basic mechanism has only the auction phase among independent
bidders with S = ∅.

9We recall that, in classical terms, a player is risk neutral ([5]) if he is indifferent
between attending a lottery and receiving a sum equal to its expected monetary value
whereas he is risk averse if he prefers the expected value to attending the lottery. We
can also say that a player is risk neutral if his utility function is linearly separable in gain
and loss whereas, if he is risk averse, it can be seen as a concave function. In our context
we have to consider the opposite perspective and so we consider the utility function of risk
averse bidders as a convex function of its meaningful parameters.
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Algorithm 5.1 We can describe the basic mechanism with the following al-
gorithm10.

(ph1) A auctions ζ;

(ph2) the bi make their bids xi in a sealed bid one shot auction;

(ph3) the bids are revealed;

(ph4) the lowest bidding bidder11 b1 gets ζ and x1 as a compensation for this
allocation;

(ph5) each of the other bidders bi pays to b1 a fraction ci of x1 such that:

∑

i6=1

ci = x1 (3)

Observation 5.1 For what concerns the values ci we assume a propor-

tional repartition among the bidders so we have:

ci = x1

xi

X
(4)

where X =
∑

j 6=1
xj. In this way we account for the fact that the bidders

who receive a bigger advantage from the allocation of ζ to b1 pay the higher
fractions of the compensation.

At this point we state and prove the following proposition.

Proposition 5.1 (Weakly dominant strategy) From the assumptions
we made in section 4 we derive that it is a weakly dominant strategy

for each bidder to submit a bid xi equal to his evaluation mi of the auctioned
item ζ.
Proof

From what we have stated in sections 3 and 4 we derive easily that the ex-
pected utility from the auction for every bidder bi when he faces the phase
(ph2) can be expressed as:

E(bi) = p(xi − mi) + (1 − p)(mi − x1

xi

X
) (5)

10Also in this section we assume that, when the phase (ph3) is over we can renumber
the bidders so that b1 is the losing bidder whereas the bi (with i 6= 1) are the winning
bidders.

11Possible ties are resolved with the random selection of one of the tied bidders.
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as the sum of the utility if he loses the auction multiplied with the probability
of losing it and the utility if he wins it multiplied with the probability of
winning it.
Relation (5) can be rewritten as:

E(bi) = (1 −
xi

M
)n−1(xi − mi) + (1 − (1 −

xi

M
)n−1)(mi − x1

xi

X
) (6)

by using the following equalities:

p = (1 −
xi

M
)n−1 (7)

q = 1 − p = 1 − (1 −
xi

M
)n−1 (8)

that have been derived by using the hypotheses of independence and identical
and uniform distribution of the Xj and by imposing that the xi is lower than
any of the Xj for j 6= i.
Since in relations (5) and (6) we want to impose that in any case each bidder
bi has a non negative utility we get the following constraints12:

- y1 = xi − mi ≥ 0

- y2 = mi − x1
xi

X
= mi − x1

xi

xi+X′
≥ 0

where y1 is the utility for bi if he loses and y2 is his utility if he wins.
From the former constraint we derive:

xi ≥ mi (9)

For what concerns the latter constraint, from the definition of y2 and by
performing the derivations with respect to xi, we easily derive that:

- y′
2 < 0

- y′′
2 > 0

so y2 is concave decreasing with:

- a maximum value equal to y2(0) = mi for xi = 0,

- a minimum value equal to:

y2(M) = mi − x1

M

M + X ′
(10)

for xi = M .

12We note how we can write X = xi +X ′ where X ′ accounts for the bids of the bidders
distinct from b1 and bi.
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It is easy to verify that we have y2(mi) > 0 whereas we cannot exclude that
y2(M) may assume negative values though this is a rather unlikely event.
From relations (7) and (8) we can easily see how:

- p has a maximum value of 1 for xi = 0, decreases for xi increasing and
attains a null value for xi = M ;

- q has dual behavior since it has a minimum value of 0 for xi = 0,
increases for xi increasing and attains the maximum value of 1 for
xi = M ;

At this point we want to find the value x̄i where we have

p = q (11)

so that for xi < x̄i we have that p dominates q whereas we have the opposite
for xi > x̄i. From relation (11) and relations (7) and (8) we get:

(1 −
xi

M
)n−1 = 1 − (1 −

xi

M
)n−1 (12)

From relation (12), with some easy algebra, we derive:

x̄i = (1 − (
1

2
)

1

n−1 )M (13)

We note that x̄i → 0 as n → ∞ so that q tends to dominate p for any xi.
According to all this we have that bi should maximize y2 so to bid no less
than mi and so (given the constraint we have imposed on y1) he should bid a
sum equal to mi.

Observation 5.2 We note that we have:
p

p′
→ 0 as n → ∞ (14)

where p′ is the derivative of p as a function of xi whereas:

q

q′
→ ∞ as n → ∞ (15)

where q′ is the derivative of q as a function of xi.

Observation 5.3 It is obvious that at phase (ph3) each bi knows if he is the
loser or one of the winners.
In the former case he has a utility:

x1 − m1 (16)

whereas in the latter he has a utility:

mi − x1

xi

X
(17)
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Observation 5.4 We have in this way verified how the truthful bidding is
a weakly dominant strategy for each bidder in the basic mechanism of the
negative auction.

Observation 5.5 The proposed mechanism has a strong analogy with a First
Price Sealed Bid auction ([7]). In the auctions of this type the winning bidder
is the highest offering bidder who pays his bid. Under hypotheses similar to
the ones we made in sections 3 and 4 we have that in a First Price Sealed
Bid auction the best strategy for each bidder is to bid a little less than one’s
own evaluation or to bid xi = mi − δ with δ → 0 for n → ∞.
If we suppose to use negative prices our mechanism is analogous to a First
Price Sealed Bid auction so, in our case, the best strategy for each bidder is
to bid a little more than one’s own evaluation or to bid xi = mi + δ with
δ → 0 for n → ∞.

6 The use of the fee

In this section we present the pre auction phase where:

- m bidders pay the fee f in order to not attend the auction;

- k = n − m bidders prefer to attend the auction.

We make the hypothesis that the sum ec = mf is a private information of
A so it is unknown to the other k bidders that neither know n. For the k
attending bidders we can repeat what we have said in section 5.
In this case the losing bidder, at the end of the auction phase, gets the
following final compensation:

fc = x1 + ec = x1 + mf (18)

If the mechanism has a post auction phase then all the initial n bidders can
attend to it, as we will show in the following sections.
At this point we define the following profiles:

(ne1) all the n bidders pay the fee f ,

(ne2) none of the n bidders pays the fee f .

We want to see if such profiles are Nash Equilibria13 (NE) or not.
In the case (ne1) we have that if the bidders collude among themselves and
decide that they all pay the fee f they collect the sum ec = nf . In this case,
every bidder would have a utility equal to14 mi − f . If only one bidder bj

13A Nash Equilibrium is a profile of strategies for the bidders where none of them has
a gain from an individual deviation ([1, 2, 9, 10]).

14This requires f < mi for every bi. We comment on this assumption shortly.
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individually violates the collusive agreement he gets a utility equal to:

(n − 1)f − mj (19)

since no further compensation from the auction phase is possible. The indi-
vidual deviation is profitable (so that (ne1) is not a NE) if we have:

(n − 1)f − mj > mj − f (20)

or if:
mj < f

n

2
(21)

So if the fee f is such that the constraint (21) is satisfied for at least one bj

the collusive agreement is not a NE and the auction cannot be void since A
is able to find a bidder to which to allocate ζ with a compensation paid by
the other bidders.
We note that if A fixes f as:

f >
2M

n
(22)

we have:
n

2
f > M ≥ mi ∀bi (23)

and so relation (21) is surely verified.
In the case (ne2) the individual deviation depends on the possible policies of
the single bidders since we have that ec = 0 so from this condition we cannot
derive any incentive for the bidders to deviate.
In order to understand under which conditions the case (ne2) can occur we
therefore examine a more general case and so under which conditions a bidder
is better off if he pays the fee than if he attends the auction.
A bidder bi has indeed the following possibilities15:

(1) he pays the fee f and has an utility16 up
i = mi − f ;

(2) he does not pay and attend the auction and so:

(2a) he has an utility ul
i = xi − mi if he loses the auction,

(2b) he has an utility uw
i = mi − x1

xi

xi+X′
if he wins the auction.

15We use the decorations p, l and w as exponents to denote, in the order, a payment, a
loss and a win.

16In this case we evaluate the utility under the hypothesis of risk neutrality and so as
the difference between the benefit, as represented by the missed allocation of ζ, and the
payment as represented by the fee f .
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From the case (1) we derive the first constraint since we have that if up
i < 0

then bi does not pay the fee and attends the auction. This requires that:

up
i = mi − f ≥ 0 (24)

or:
f ≤ mi (25)

If condition (25) is violated for every bi so that we have:

f > mi (26)

for every bi we have that no bidder pays the fee. In this way we have that
if f > max{mi} or if f is very high no bidder pays the fee and so they all
attend the auction phase. If f is assigned a lower value some of the bidders
prefer to pay it whereas others prefer to attend the auction. Lastly, if f gets
a very low value we have that all the bidders may prefer to pay it so that
the auction phase is void, without any discordance with what we have seen
with regard to (ne1).
Once we have established that relation (24) is satisfied we want to make a
comparison with the cases (2a) and (2b) so to understand if a bidder is better
off by paying the fee or by attending the auction. We can make the following
comparisons:

mi − f ≥ xi − mi (27)

and:
mi − f ≥ mi − x1

xi

xi + X ′
(28)

If such relations are satisfied then bi is better off by paying the fee and so by
not attending the auction.
From relation (27) we derive:

f ≤ 2mi − xi ≤ mi (29)

(since we have assumed xi ≥ mi) and so not really a new constraint since it
coincides with relation (25).
On the other hand from relation (28) we get:

f ≤ x1

xi

xi + X ′
≤ x1

xi

(n − 1)x1

≤
M

n − 1
(30)

since, by the definition of x1 and xi, we get X = xi + X ′ ≥ (n − 1)x1 and
x1 ≤ xi ≤ M for every bi. From relation (30) we derive that if the fee f is
small enough then the bidders have incentive to pay it otherwise they have
incentives to attend the auction. From this we may derive that if A fixes
f high enough (for instance f = M/2) he can be sure to have a non void
auction even if some bidders may prefer to pay the fee f .
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7 The post auction phase

7.1 Introductory remarks

In the simplest case, when the auction phase is over, the allocation is
performed by the bidders on the basis of the values mi = di,i only. This way
of proceeding is based on the assumption that the bidders are independent
and so that the allocation damages only each individual bidder and neither
other bidders nor any other of the actors of the set S (the supporters).
In section 7.2 we see how we can account for the interdependence of the
bidders and so for the damages among the bidders. We therefore present
an algorithm based on a succession of push operations by which a bidder
can push ζ towards another more preferred bidder (according to the values
attributed to the cross damages di,j). In this case we have no supporters so
that S = ∅.
In section 7.3 we assume that the bidders are independent but S 6= ∅ and we
examine if the supporters can push ζ towards another more preferred bidder
(according to the values attributed to the cross damages Di,j by the si ∈ S).
Last but not least in section 7.4 we present an attempt to merge the two
approaches since we assume to have both interdependent bidders and S 6= ∅.

7.2 The interaction among the bidders

Definition 7.1 (The added parameters) In addition to the parameters
we have seen in section 3 and the assumptions we have made in section 4 we
introduce the following parameters for every bidder bi:

- di,j ≥ 0 is the damage that bi receives if ζ is allocated to bj;

- ci,j ≥ 0 is the contribution that bi is willing to pay to bj to have him
accept the allocation of ζ.

Observation 7.1 It is obvious that mi = di,i and ci,i = 0.

Before going on we recall that the auction phase ends with the allocation of
ζ to b1 who receives a compensation equal to x1.
We can define the due payment that b1 receives from every bidder bi 6= b1 as:

σi,1 = x1

xi

X
(31)

(with X =
∑

j 6=1
xj) so that we have:

Σ1 =
∑

i6=1

σi,1 = x1 (32)
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We can also define:
Σj = Σ1 − σj,1 (33)

to be used shortly.

Mechanism 7.1 In this case the mechanism has the following structure:

- possible pre auction phase,

- auction phase,

- allocation and compensation phase,

- reallocation phase.

From the allocation and compensation phase b1 would get, from the members
of N−1 = N \ {1}, the commitments of payment σi,1 that form the compen-
satory sum Σ1 whereas the reallocation phase depends on the values di,j.
When the allocation phase is over, b1 orders the d1,j ∀j 6= 1 with regard to
d1,1 = m1. We can have two cases:

- d1,1 < d1,j ∀j 6= 1 so b1 is satisfied and no reallocation is required;

- ∃J1 ⊆ N−1 such that ∀j ∈ J1 d1,j < d1,1.

In the former case the mechanism ends and b1 receives the commitments at
payment as effective compensations from the other bidders.
In the latter case b1 may negotiate a reallocation with the members of J1

that he orders in increasing order of the damages di,j. We note that for any
bj with j ∈ J1 we define as c̄1,j = d1,1 − d1,j the maximum contribution that
b1 is willing to pay to bj to have him accept ζ whereas with c1,j < c̄1,j we
denote the current value of this contribution.

Algorithm 7.1 The attempt of reallocation may proceed along the following
steps:

(1) b1 defines J1;

(2) we have two cases:

(2a) J1 = ∅ so go to (5);

(2b) J1 6= ∅ so go to (3);

(3) b1 contacts (in the order) a bj with j ∈ J1 and offers him a further
compensation c1,j < c̄1,j so that bj would get Σ = Σj + c1,j ;
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(4) at this point we have two cases:

(4a) bj accepts and so becomes the new b1 with Σ1 = Σj + c1,j; go to
(1);

(4b) bj refuses so we have two cases:

(4b1) there is one more bj that can be contacted so go to (3);

(4b2) there is no bj to contact so the procedure ends with a failure;
go to (5);

(5) end;

The operation at step (3) is a push operation through which the current b1

tries to allocate ζ to some other bidder bj having a benefit equal to d1,1 −
d1,j − c1,j . Such procedure may either succeed or fail. For it to succeed the
current bj must accept the proposal of b1. It is easy to see that bj accepts if
the following conditions are verified:

(ac1) Σ ≥ mj

(ac2) dj,1 ≥ dj,j

If condition (ac1) is violated bj surely refuses the push proposal whereas if
the condition (ac2) is violated bj can accept ζ , with a risky decision, if he is
sure he can push it to some other bidder bh such that dj,h < dj,1 < dj,j.
The procedure has the following termination conditions:

- when no bider accepts a push proposal from the current b1;

- when for a bidder b1 we have J1 = ∅ so the currently losing bidder is
satisfied with the allocation;

- when there would be a cycle.

The last case deserves some more comments. If we have, avoiding to rename
the successive losing bidders, the following succession of exchanges:

b1 → bj → bh → · · · → bk → b1 (34)

we have a cycle that could even give rise to a money pump for the initial b1.
To prevent this from occurring we impose a cut on the cycle so that the final
accepting bidder must be bk. This fact requires the recording of the various
passages so to detect any cycle and to apply the correcting action.
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7.3 The presence of the supporters

In this case we make the following assumptions:

- the bidders are independent so we have di,j = 0 ∀i 6= j;

- we have s supporters si ∈ S so that for each si we have the damages
Di,j that he receives from the allocation of ζ to each bidder bj .

Mechanism 7.2 Also in this case (see section 7.2) the mechanism has the
following structure:

- possible pre auction phase,

- auction phase,

- allocation and compensation phase,

- reallocation phase.

The reallocation is driven, in this case, by the members of S with their values
Di,j .
We can consider S as partitioned17:

S = A ∪ D (35)

where:

- A is the set of the si that agree with the allocation of ζ to b1 so that
si ∈ A if and only if Di,1 < Di,j for every bj 6= b1;

- D is the set of the si that disagree with the allocation of ζ to b1 so
that si ∈ D if and only if18 exists at least a bidder ji 6= 1 such that
Di,ji

< Di,1.

We can have the following cases:

(1) A = S and D = ∅ so no reallocation is required;

(2) A = ∅ and D = S so every si has at least a more preferred allocation;

(3) A 6= ∅ and D 6= ∅.

17In a classic way we have S = A ∪ D and A ∩ D = ∅.
18We note that every si ∈ D may have his own ji.
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In the case (1) the procedure is obviously over.
In the case (2) for every si ∈ D we can partition N as N = Li ∪ {b1} ∪ Ui

where:

- Li identifies the bidders that cause to si a lower damage than b1 or the
more preferred bidders;

- Ui identifies the bidders that cause to si a greater damage than b1 or
the less preferred bidders.

We can have two cases:

- ∩si
Li = ∅,

- ∩si
Li 6= ∅

In the former case no compromise is possible among the members of D so
the allocation of ζ at the current b1 is unchanged.
In the latter case we can have two sub cases.
In the former sub case we have ∩si

Li = bj so the members of D offer to bj

both Σj(see section 7.2) and γj = xj −Σj to be shared proportionally among
the members of D as:

γi,j = γj

Di,1 − Di,j∑
si
(Di,1 − Di,j)

(36)

We note that a proposal to bj is feasible only if, for each supporter si, the
following feasibility condition holds:

γi,j ≤ Di,1 − Di,j (37)

If condition (37) is violated for at least one supporter then no proposal can
be made so the Ss must consider another of the available bidders, if they
have one, otherwise the procedure ends with a failure.
If bj accepts we have a new allocation otherwise the procedure ends with
a failure and the allocation is unchanged. For the conditions of acceptance
for bj we refer to section 7.2. In this case bj accepts if the offered total
compensation is enough to cover the damage mj from the allocation of ζ
since the bidders are assumed to be independent.
In the latter sub case we have L = ∩si

Li ⊂ N so we identify a set of
l = |L| elements. In this case the members of D can use the Borda method19

19Given n alternatives the method is based on the fact that each voter assigns n − 1
points to the top ranked alternative, n − 2 to the second top ranked alternative up to 0
point to the lowest ranked alternative. The points are added together and the alternatives
ordered in a weakly descending order (ties are indeed possible) so that the alternative that
receives the highest number of points, in absence of ties, is the Borda winner. If we have
ties on the top ranked alternatives we can choose one of them at random as the Borda
winner.
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([12, 13]) on such elements so to define the Borda winner (be it bj) and apply
to it what we have seen for the single outcome sub case. In the case of a tie
on the Borda winners one of such winners can be selected at random since
they can be seen as equivalent alternatives.
If the new allocation is feasible and the Borda winner accepts the procedure
is over otherwise the members of D discard him and repeat the procedure on
the reduced set L \ {bj} until one of the bidders accepts (so the procedure
ends with success) or there is no more Borda winners to be contacted so that
the procedure ends with a failure.
In the case (3) we have:

- ∀si ∈ A b1 is the best choice;

- ∀si ∈ D there are preferred choices to b1.

If, for each si ∈ D, we define the set Li = {j ∈ N |Di,j < Di,1} we can define
the set L = ∩si∈DLi so that we have three cases:

(a) |L| = 0,

(b) |L| = 1,

(c) |L| > 1.

In the case (a) no reallocation is possible since there is no possible compromise
among the members of D that are not able to agree on a feasible alternative
to b1.
In the case (b) we have a bj (with j ∈ N) that is better than b1 for the
members of D. The members of D can proceed as follows:

- each si ∈ D evaluates his individual gain Di,1 − Di,j;

- they evaluate the collective gain Γi =
∑

si∈D(Di,1 − Di,j);

- they ask to the member of A how much they (as a whole) want to be
paid to switch from b1 to bj , be it ρ1,j .

If the total of ρ1,j and the sum that the D have to pay to bj (that accounts
also of the payments of the other bidders but b1) to have him to accept ζ
is lower than Γi the reallocation is feasible and the procedure may end with
success otherwise it surely ends with a failure.
We note that:

- the reallocation actually succeeds if bj accepts so if the proposed total
compensation cannot be lower than mj ;
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- the sum ρ1,j is defined by the members of the set A through a negotia-
tion and is proportionally shared among the members of A so that each
can compensate the major damages deriving from the new allocation.

In the case (c) we have L ⊂ N such that bj is a better choice than b1 for
any j ∈ L. In this case the members of D can use the Borda method to
select the best choice from the set Land use it as in the case (b) . If they
succeed the procedure is over otherwise they discard that bidder from the set
L, choose another bidder from the reduced L (if there is at least one bidder
available) and repeat the procedure. If all the attempts fail the procedure of
reallocation ends with a failure.

7.4 Interaction and support

In this section we sketch a possible algorithm that can be used in the case
where:

- the bidders are interdependent so that we have, in general, di,j ≥ 0 for
any i 6= j ∈ N ;

- S 6= ∅ so that we have, in general, Di,j 6= 0 for any si ∈ S and j ∈ N .

Mechanism 7.3 Also in this case (see section 7.2) the mechanism has the
following structure:

- possible pre auction phase,

- auction phase,

- allocation and compensation phase,

- reallocation phase.

The reallocation depends on both the values di,j (where i and j identify the
bidders) and the values Di,j (where i identify the supporters and j identify
the bidders). In the current version of the proposed algorithm we assume
that the sets B and S can act independently one from the other.

Algorithm 7.2 In this case we can adopt a procedure based on the following
steps:

(1) the Bs define the set JB of suitable bidders as we have seen in section
7.2;
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(2) the Ss define the set JS of suitable bidders as we have seen in section
7.3;

(3) they evaluate the set J = JB ∩ JS;

(4) if J = ∅ go to 9;

(5) if J 6= ∅ order J ;

(6) select the best bj from J , J = J \ {bj};

(7) bj is contacted and he is offered a compensation;

(8) bj can:

(8a) accept so he gets ζ and the compensation; go to 9;

(8b) refuse so that if J 6= ∅ go to 6 else go to 9;

(9) end;

Observation 7.2 The steps (1) and (2) are simultaneous moves in the sense
of Game Theory ([9, 10, 11]).
The steps (4) and (8b) define the termination conditions with failure.
At the step (8b) the contacted bidder has refused so that, if J 6= ∅, the mem-
bers of B and S have another bidder to contact otherwise the procedure must
end with a failure. On the other hand, at step (4), if J = ∅ the procedure
neither effectively starts since the two sets B and S have no common bidder
to whom propose the allocation.
At the step (5) the bidders of the set J are ordered20 from the best to the
worst by applying the Borda method to the following preference profiles:

- the one produced by the members of B over the set J that derives from
the ordering on the set JB;

- the one produced by the members of S over the set J that derives from
the ordering on the set JS.

The use of the Borda method avoids the carrying out of direct comparisons
between the evaluations of the bidders through the use of scores that account
for the position of each bidder in the corresponding ordering.
If the resulting profile contains tied alternatives they can be contacted in any
order since they are seen as equivalent from both the members of B and the
members of S.

20If |J | = 1 the proposed ordering operation proves obviously useless since there is only
one bidder to be contacted.

21



Observation 7.3 At the step (7) it is necessary to collect a sum equal to Σ
so that the members of B must collect a sum cB and the members of S must
collect a sum cS such that:

- the offer Σ to bj is enough to compensate him for the allocation of ζ
and so together with what the bidders already committed to pay to b1 is
not lower than xj or Σ ≥ xj − Σj;

- the sum Σ is proportionally subdivided between the two sets B and S
as, respectively:

cB =
|B|

|B| + |S|
Σ (38)

and:

cS =
|S|

|B| + |S|
Σ (39)

- the sum cB is to be shared among the members of B proportionally
according to ratios:

di,1 − di,j∑
i6=j(di,1 − di,j)

(40)

- the sum cS is to be shared among the members of S proportionally
according to ratios:

Di,1 − Di,j∑
i6=j(Di,1 − Di,j)

(41)

8 Concluding remarks and future plans

In this paper we presented the structure of a negative auction mechanism
under the form of a basic mechanism together with some possible extensions.
The extensions include both a pre auction phase and a post auction phase:
the first aims at reinforcing the requirement of individual rationality21

whereas the latter aims at describing possible interactions among the bidders
and the supporters.
The proposed extensions are still under development so that the full formal
characterization is under way. One of the refinement we are planning to in-
troduce, in the case of the interactions among the bidders without supporters
(see section 7.2), is the use of pull operations (in addition to the push oper-
ations) through which a set of bidders distinct from the current losing bidder

21A mechanism satisfies the property of individual rationality ([3], [7], [9]) if the involved
players do not have a negative utility from attending to it and so have some incentives
from attending the mechanism.
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can try to pull the allocation of ζ towards other more preferred bidders by
sharing among themselves the cost of this switching between bidders.
A push operation can, indeed, be executed only by the currently losing bid-
der so that, if he is satisfied with the allocation, no reallocation is possible
though some other bidders may wish to pay him to have the item to be pulled
to another and more preferred bidder.
Other future plans include the relaxations we have listed in section 4 so that
we plan to examine what happens if we assume that:

- the bidders are risk adverse so that they prefer either to pay the fee
or to pay a fixed amount for not getting ζ for sure than attending the
auction with the risk of getting ζ though together with a compensatory
sum;

- the evaluations are either common or interdependent among the bidders
and in any way may vary either after the pre auction phase (if the
associated values are common knowledge) or after the auction phase
itself if a post auction phase is present;

- the bidders are asymmetric so we can have different intervals [0, Mi]
and different functions Fi and fi for each bidder bi.

Last but not least we are planning to see what changes we may have in the
auction phase if the sum ecis a common knowledge among the bidders before
they attend the auction phase.
As a first approximation we can expect that if the k attending bidders know
the value of m (and so the number of the bidders who paid the fee) they may
be willing to bid less than mi since each of them may consider to have a fixed
compensation equal to mf , in case of loss, and so he may wish to increase
the probability of losing the auction and such an increase may be obtained
by simply bidding less than mi.
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