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Abstract

The present Technical Report (TR) contains a short analysis of both
the Borda and the Condorcet methods. We start with a description of
both methods in their twofold roles:

- of methods for defining a winning alternative from a set of available
alternatives,

- of possible outranking methods over a set of alternatives.

We then discuss the properties of each method and analyze them with
regard to the conditions posed by the Arrow’s impossibility theorem.
The last step, that represents the core part of the TR, is represented by
the search of possible relations between the two methods.
The TR closes with the proposal of a composed outranking method based
on both the Borda and the Condorcet methods executed on the same
profiles of preferences.
As usual, reports of errors and inaccuracies are gratefully appreciated.
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1 Introduction

In this Technical report (TR) we present an analysis of two classical methods
such as the Borda method and the Condorcet method.
We start with a description of both methods in their twofold roles:

- as methods for defining a winning alternative from a set of available al-
ternatives,

- as possible outranking methods over a set of alternatives ([2], [3])

We then discuss the properties of each method and analyze them with regard
to the conditions posed by the Arrow’s impossibility theorem.
The last step, that represents the core part of the TR, is represented by the
search of possible relations (to be defined) between the two methods.
The TR closes with the proposal of a composed outranking method based on
both the Borda and the Condorcet methods executed on the same profiles of
preferences.

2 The search of the relations

The search of possible relations between the mentioned methods occurs
through a comparison that is made using the following parameters:

- the number n of the deciders1 of the set N ,

- the number m of the alternatives of the set A.

The two sets N and A are assumed to be independent one from the other so that
there is no relation between their cardinalities. At this level we note only that
if m! < n (or the number of the possible transitive orderings2 of the alternatives
is lower than the number of the deciders) at least two deciders must have the
same transitive ordering of the alternatives.
The set A contains the elements on which the deciders are going to act at two
levels:

- with individual decisions,

- with a collective decision.

1We use the term decider as a synonym of the term decision maker.
2An ordering on a set A is termed transitive if for any triple of elements a, b, c ∈ A we can

say that:

- if a precedes b in the ordering

- and b precedes c in the ordering

- then a precedes c in the ordering.

More on transitivity in section 3.
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The Borda and the Condorcet methods, as it will be evident from their de-
scriptions, are based on very different principles and, as it will be shown in this
TR, suffer from different drawbacks. Notwithstanding such differences, our aim
in writing the present TR is to find possible relations between them in order
to see if it is possible to derive certain consequences in one method if certain
conditions are verified in the other and vice versa.
The Borda method is indeed based essentially on the assignment of numerical
values and on the execution of sums on such values. On the other hand the
Condorcet method is based on the execution of pairwise comparisons.
Such pairwise comparisons may be performed:

- by assuming a strict preference relation �

or

- by assuming a weak preference relation �

between pairs of alternatives ([1]).
In the former case we suppose that the deciders, whenever they compare the
alternatives in pairs, consider one of the alternatives strictly better than the
other so that no tie is possible.
In the latter case, on the other hand, we suppose that the deciders, whenever
they compare the alternatives in pairs, may consider some of them as indifferent
since, given a pair of alternatives, the former is weakly better than the latter
and vice versa and so ties are possible.
More on relations in section 3.
At this level we note that in the former case a possible loss of transitivity
may be seen as a sign of an irrational behavior of the deciders ([5], [6], [1])
whereas in the latter case such a loss can be solved through the definition of an
indifference relation among the involved alternatives so to mean that they are
indistinguishable from the point of view of the deciders.
The search of relations between the two methods aims at establishing possible
relations between the following conditions:

(1) a condition of parity or of tie in the Borda method,

(2) a condition of parity or of tie in the Condorcet method,

(3) a condition of loss of transitivity in the Condorcet method with the pres-
ence of cycles involving subsets of the alternatives.

The condition (1) is assumed to be valid on the whole set A and expresses the
fact that the alternatives of the set have received the same number of points
from the execution of the method (to be defined shortly) and so can be seen as
equivalent. We call such a condition a full tie.
This condition may hold also on subsets of A and in this TR we comment a little
on this fact though we consider it less important than a parity on the whole
set. The presence of subsets of equally ranked alternatives allows us to define a
certain number of equivalence classes with the associated equivalence relation.
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We call such a condition a partial tie.
The condition (2) expresses the fact that the number of the voters that rank
two alternatives in a certain way coincides with the number of those who make
the opposite ranking. In this way we express a condition of indifference between
such alternatives.
The condition (3) is associated with the presence of cycles that involve either
all the members of the set A or some of its proper subsets.
As we have already argued, if we use a weak preference relation, we can imagine
to solve such problems by thinking the involved alternatives as equivalent. On
the other hand, in the case we use a strict preference relation, both the presence
of ties and the loss of transitivity are a problem that is generally said to derive
from an irrational behavior of the deciders.
To see what all this means in practice we can consider the following set
A = {a, b, c}.
If, in the Borda method, vx denotes the number of votes received (from all the de-
ciders) by alternative x the condition of full tie can be expressed as va = vb = vc
so that the three alternatives can be seen as equivalent. A partial tie, for in-
stance, can be expressed as va = vb > vc so that alternatives a and b can be
seen as equivalent and both preferred to alternative c.
In the case of the Condorcet method, the condition (2) can be understood if
we define, for instance, with vxy the number of the deciders that weakly prefer
alternative x to alternative y (more on preferences in the following sections) so
that we have a tie between the alternatives x and y if vxy = vyx. A condition
of parity in the Condorcet method involves all the possible pairs of alternatives
but can be even partial if it involves a subset of the alternatives. In the case of
A we have that if vab = vba, vac = vca and vcb = vbc the three alternatives can
be seen as equivalent. A partial condition can be easily derived.
If, on the other hand, we use the strict preference relation3 � we can have also
in this case vab = vba, vac = vca and vcb = vbc but the three alternatives cannot
be seen as equivalent. The condition (3) will be fully examined only after the
introduction of the preference relations.
For the moment we only note how, in the case of the set A = {a, b, c, d}, we can
have vab ≥ vba so that a is weakly preferred to b, vbc ≥ vcb so that b is weakly
preferred to c and vca ≥ vac so that c is weakly preferred to a. Together with
these preferences we may also have vad ≥ vda so that a is weakly preferred to d
and similar cases can occur for b and c with regard to d so we get a cycle among
a, b, c but all of them are weakly preferred to d.
It can be shown ([5]) that by choosing in a certain way the profiles of preferences
of the various deciders we can always produce cyclical global (i. e. involving all
the alternatives) rankings (see further on for details). This possibility cannot
be ruled out since, according to the property of universal or unrestricted
domain ([5], [6], [2]), all the possible profiles must be seen as legal profiles of
the deciders. According to this condition if we have m alternatives all the m!

3To appreciate the meaning of � we note that if we write a � b we mean that a is strictly
preferred to b.
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transitive orderings of such alternatives must be allowed as well as the intran-
sitive orderings though we tend to rule them out in order to avoid a “garbage
in, garbage out” effect.

3 The preference relations

The starting point is, therefore, a set of alternatives A = {a1, . . . , am} (with
m = |A|) as the set of the elements that each decider i ∈ N can order according
to his individual preferences.
On the set A each decider can apply a binary relation R ⊆ A × A that allows
him to define which is his preferred alternative of every possible pair of distinct
alternatives4. Such binary relation is termed also a preference relation since
it allows a decider to establish a preference order between any pair of alternatives
(see also section 4).
Over every R that we think suitable for this purpose we pose the constraint that
it is complete or total5 so that for any pair of alternatives a, b ∈ A at least
one of the following conditions holds for sure6:

(1) aRb

or

(2) bRa

We note that both such conditions may hold at the same time depending on the
nature of the relation R. This is true if R is � but cannot be true if R is �.

4We note that a binary relation can compare an alternative with itself. Though this
comparison may allow the definition of some properties of the binary relation itself (such
as reflexivity, irreflexivity and non reflexivity, [4]) it has no particular relevance and will be
considered only marginally in what follows. We note how the property of reflexivity allows
us to define equivalence relations with their equivalence classes. Also in this case we consider
only marginally such concepts since an equivalence relation does not define any ordering on
a set of alternatives but, on the contrary, allows to identify some alternative as equivalent
among themselves.

5In [4] we can find the following definitions:

- of a complete relation,

- of a strongly complete relation.

A binary relation on the set A is complete if ∀a, b ∈ A with a 6= b we have aRb or bRa.
A binary relation on the set A is strongly complete if ∀a, b ∈ A we have aRb or bRa. In
this case we admit also a = b.
To appreciate the difference we note that on the set R of the real numbers we have that the
relation > is complete but not strongly complete whereas the relation ≥ is both strongly
complete and complete.
We note that strong completeness implies completeness but the converse is not true. In this
TR we use essentially only the former definition since we are not really interested in comparing
an alternative with itself.

6We note that the set A if fixed in advance and then we define a relation R on it and
discover if it is complete or not. If R is complete, for any pair of distinct alternatives a and b,
we have that either aRb or bRa hold for sure. In this way if we discover that aRb if false then
it must be bRa for completeness to hold so that if also bRa fails then R cannot be complete.
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If we had a pair of alternatives a, b ∈ A such that neither of the two condition
hold we would term them as incomparable7.
In this case the relation R would be termed as incomplete or non total meaning
that the set A contains incomparable elements. Such possibility, however, is
ruled out by the very definition of R.
Other properties that we may wish R to satisfy include the following8 ([4]):

- transitivity,

- negative transitivity,

- antisymmetry,

- asymmetry,

- reflexivity.

Such properties on a binary relation ([4]) allow us to define (with a minimal set
of requirements for each ordering) the following orderings9 on the whole set A:

- a pre order if the relation R is reflexive and transitive;

- an order if it is an antisymmetric pre order;

- a strict simple order if the relation R is asymmetric and transitive;

- a strict weak order if it is asymmetric and negatively transitive.

The property of transitivity involves triples of alternatives a, b, c ∈ A in the
following relation10:

aRb& bRc ⇒ aRc (1)

If from the set A we derive that relation (1) holds for any triple of alternatives
we may say that R is a transitive relation (descriptive approach) whereas if we
suppose that R is a transitive relation from the validity of the antecedent of the
relation (1) we can derive the validity of its consequent (normative approach).

7Depending on A and R we can have a complete binary relation or not. If we choose the
relation | (or “divide”) we have that the relation is incomplete since we have a|b if and only
if we have b = ka where a, b, k ∈ A = N. In this case we have that (2, 3) 6∈ | and (3, 2) 6∈ | so
they are incomparable through |. The same holds also for the set inclusion ⊆ relation since,
in general, two sets cannot be compared through such relation if one is not a subset of the
other. If we have a set A and two subsets a and b we have that if ⊆ were complete then we
should have either a ⊆ b or b ⊆ a but since both may fail, and this can happen in many cases,
then ⊆ cannot be complete.

8We introduce only a small set of properties that we consider as essential within the current
framework.

9We recall the requirement that the orderings we define are at least total or complete.
10In what follows with the symbol & we denote a logical binary and operator, with the

symbol + we denote a logical binary or operator whereas with the symbol ¬ we denote a
logical unary operator not. We recall that the relation a ⇒ b is true in all the cases but where
a is true and b is false when it is false.
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Also the property of negative transitivity involves triples of alternatives
a, b, c ∈ A in the following relation:

¬(aRb) & ¬(bRc) ⇒ ¬(aRc) (2)

that can be expressed also, in an equivalent way, as11:

aRc ⇒ aRb + bRc (3)

If as R we use � and consider completeness we have (see further on) that
¬(a � b) can be expressed as b � a so that relation (2) can be expressed as:

b � a& c � b ⇒ c � a (4)

In this way we can introduce a relation between negative transitivity and tran-
sitivity through the complementary relations � and �.
The following two properties, on the other hand, involve a generic pair of alter-
natives a, b ∈ A.
The property of antisymmetry can be expressed as follows:

aRb& bRa ⇒ a = b (5)

The property of asymmetry can be expressed as follows:

aRb ⇒ ¬(bRa) (6)

We note that ([4]) if a binary relation is asymmetric it is also antisymmetric12

whereas the converse is not true. As an example we have that on the set R the
binary relation ≥ is antisymmetric but not asymmetric.
The property of reflexivity, on the other hand, involves a single element and
can be expressed as follows:

∀a ∈ A aRa (7)

In what follows we consider reflexivity only as a property that distinguishes a
weak preference relation (for which such property holds) from a strict preference
relation (for which such property does not hold) since we usually have no interest
in comparing an alternative with itself.
In what follows we consider the following binary relations as implementations
of the relation R:

(r1) a weak preference relation �,

(r2) a strict preference relation �,

(r3) an indifference relation ∼.

11By using the fact that a ⇒ b is equivalent to ¬b ⇒ ¬a and that ¬(¬a&¬b) = a+ b.
12If a binary relation is asymmetric then the antecedent of the definition of antisymmetry

is alway false so that the condition of antisymmetry is always true independently from the
fact that we have a = b or a 6= b.
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We note that with the relation ∼ (that can be proved to be reflexive, transi-
tive and symmetric13) it is possible to define an equivalence relation with the
associated equivalence classes.
According to their basic definitions such relations are assumed to be transitive.
As to the other properties we have ([4]):

� is asymmetric and so defines a strict simple order;

� is reflexive and antisymmetric and so defines an order;

∼ is reflexive, transitive and symmetric and so defines an equivalence
relation but not an order.

The next step is to recognize that the three relations (�, � and ∼) are not
independent one from the others.
If we indeed take the relation � as primitive we can:

- use it to define relation �,

- use it to define relation ∼.

We can, indeed, state the following definitions:

a � b ⇔ a � b& ¬(b � a) (8)

a ∼ b ⇔ a � b& b � a (9)

If we consider the relation� as primitive we can state the following definitions14:

a � b ⇔ ¬(b � a) (10)

a ∼ b ⇔ ¬(a � b) & ¬(b � a) (11)

From relations (9) and (10) we derive:

a ∼ b ⇔ a � b& b � a ⇔ ¬(b � a)& ¬(a � b) (12)

and so relation (11).
It is easy to see, lastly, how it is impossible to define the other two relations by
taking the relation ∼ as primitive15. This fact confirms that ∼ cannot be used
to define an ordering on the set A.
In what follows we are going to use both relations � and � depending on the
context but with a slight preference for �. As a closing comment we underline
that:

13A binary relation R is said to be symmetric if for any a, b ∈ A we have aRb ⇒ bRa. We
note that from symmetry and strong completeness we derive reflexivity.

14For what concerns definition (10) we can justify it as follows. We start from a � b iff
(a � b) + (a ∼ b) then we replace (a ∼ b) with relation (11). We note that we use iff as
a shorthand for “if and only if”. At this point we perform a transformation and note that
(a � b)+¬(a � b) is a tautology so we can discard it. In this way with a chain of equivalences
we arrive at (a � b)&¬(b � a) whose truth value coincides with that of ¬(b � a) so that the
definition is justified.

15If we have a ∼ b and we evaluate ¬(a ∼ b) we have no information to define any further
relation between a and b
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- a � b ⇒ a � b but the converse is not true since we can have a ∼ b,

- the Borda method can be described with both relations � and � though
the former relation reflects better its real nature,

- the Condorcet method can be described both with � and � though the
former gives rise to a loss of transitivity that can be resolved by introducing
equivalences if we use the latter.

4 The ranking methods

Given the set of m alternatives A and the n deciders we have that each
decider can produce an ordering of the alternatives that we call local ranking
or local ordering16 ri, i = 1, . . . , n.
By the very definition of the Borda method (see section 5) its rankings never
suffer a loss of transitivity nor they contain ties. It can be said that such a
method imposes to the decider a rational behavior ([5], [6]).
On the other hand such condition cannot be enforced in the case of the Con-
dorcet method where a decider can have any ordering based on pairwise com-
parisons of alternatives. In order to avoid a “garbage in, garbage out” effect,
however, we impose also on the single Condorcet rankings such condition ([5],
[6]).
With this hypothesis we impose that the each of the deciders we deal with has a
total ordering of the alternatives without ties since things cannot be different (if
the each decider uses the Borda method) and things can only worsen (owing to
the known “garbage in, garbage out” effect) if such constraint is relaxed and we
allow each decider to have an arbitrary ordering (in the case of the Condorcet
method).
Such local rankings ri are then to be merged in a single global ranking rX (with
X = B for the Borda method and X = C for the Condorcet method) that the
deciders can use to produce a global ordering of the alternatives.
From what we have said so far it should be clear that all the local rankings we
take as the input of a merging method are total and without ties so there is no
alternative that cannot be compared with some of the others.
With this we mean that any binary relation R on the set A allows us to state
either aRb or bRa or both for any pair of alternatives a, b ∈ A and that relation
is a good relation that act on the individual preference profiles.
Any method that can be used to perform a global merging of the local rankings
can be seen as an outranking method though the global ranking rX may fail to
satisfy the property of transitivity and so may contain one or more cycles among
the alternatives and may also contain full or partial ties among the alternatives.
With this we mean that even if we start from good data (the local rankings) we
have no guarantee that the global ranking can be good as well.
If this occurs and so if the outcome contains some garbage that it produced

16In many cases we can consider the two terms, ranking and ordering, as synonyms.
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autonomously (since it does not belong to the input data) we have to devise a
solution of some kind if we want to be able to produce a method that allows
the selection of one of the available alternatives.
Once again we remark that in this TR we present both the Borda method
and the Condorcet method and see if and how they can be used as outranking
methods.

5 The Borda method

The main idea on which the Borda method is based is that of assigning a
distinct numeric17 value to each alternative. This value is related to the posi-
tioning of an alternative in a local ranking ri. Such values are summed for each
alternative over all the available local rankings so that each alternative receives
a single global value. All these global values are then ordered so to produce a
global ranking of the alternatives.
The method is really simple and allows us to define a global ranking of the
alternatives with possible ties among them. It is possible to show how by us-
ing the Borda method we can have all the alternatives getting the same global
value so that they can be seen as tied or equivalent or as belonging to the same
equivalence class. In this case the alternatives are related through the ∼ binary
relation (see section 3).
More formally we define the method as follows.
We suppose to have m alternatives so that each decider has a range of integer
values from m (his most preferred alternative) to 1 (his less preferred alterna-
tive). The procedure is based on the following steps:

(1) each decider assigns a distinct numeric value to every alternative so to
define a local profile of preferences without ties among the alternatives;

(2) the n profiles are merged in a global preference profile or ranking.

The merging is obtained simply by summing the various numbers assigned to
each alternative so that at the end we have that every alternative is associated
to a numeric quantifier.
We note that though the single profiles of preferences are strict and so without
ties there is no guarantee (see further on) that this property holds also for the
global preference profile.
The method has possible variants18 but the essence is the same: the various

17In the case of the Borda method the values assigned to the alternatives are always numeric,
as integer values from a well defined range, and distinct. Such features will not be always
specified but must be implicitly assumed whenever we deal with this method.

18Among the possible variants we cite the following two variants:

- we can assign the values in the opposite way and so from 1 (the most preferred alter-
native) to m (the less preferred alternative) so that the lower the better;

- we can have the range of the values as running from 0 to m−1 so that, in the descending
order case, every value counts the number of the alternatives less preferred to the current
one.
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numbers assigned to each alternative are summed up so that the alternatives
can be compared among themselves within a global ranking.
The method is easy to understand and implement but has some drawbacks that
we are going to examine in section 8.
In order to understand those drawbacks we note how the Borda method mixes
qualitative and quantitative features.
If we have m alternatives every value i ∈ [1,m] can be seen indeed as defining:

- a position within a profile (qualitative feature);

- a weight for each alternative (quantitative feature) to be summed with the
other weights for the same alternative in order to obtain a global weight
for that alternative.

According to the former feature the relative position of two alternatives does
not vary qualitatively as a function of the number of the in between alternatives.
From this we derive that if a occupies a given position i and b is in a position in
the interval [i−1, 1] then we have a � b. With this we therefore mean that their
ordinal ordering does not vary as a function of the number of the in between
alternatives.
On the other hand, according to the latter feature, the relative importance of
two alternatives depends on such number so that if a ∈ A has a weight equal
to k another less preferred alternative b ∈ A has a weight equal to k − 1− h if
between a and b we have h alternatives.
This twofold feature has the following side effects:

(1) if an alternative is removed from the set A after the global ranking rB has
been determined the removal may modify the ranking of the remaining
alternatives;

(2) if some deciders modify the ordering of a pair of alternatives in some
rankings ri this may affect the ranking of the other alternatives in the
global ranking rB though the relative positions of such alternatives in
every local ranking ri are unchanged.

If one alternative is removed from the set A after the global ranking has been
evaluated all the alternatives that follow it are upgraded so that their global
ranking may be modified.
To show such side effects in practice we are going to present in section 7 two
toy examples. Before doing so we note that:

- the first side effect depends on the fact that the removal leaves untouched
the qualitative feature but modifies the quantitative feature,

- the second side effect is usually seen as a violation of the principle of
independence of irrelevant alternatives ([5], [6], [2]).

In order to deal with the first side effect we could keep the rankings ri fixed but
for the empty holes of the removed alternatives. In this way both the qualitative
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feature and the quantitative feature would be unaffected by the removals.
In this way it is as if we use m holes numbered from 1 to m and each hole can
contain 0 or 1 alternative. In order to get the global ranking of an alternative
we sum the numbers corresponding to the holes occupied by that alternative.
Empty holes correspond to removed alternatives.
The second side effect is an expression of strategic voting and depends on the
definition of the concept of irrelevant alternative in the Borda method possibly
to be compared with the same definition in the Condorcet method. Some more
comments will be made in section 8. At this level we only note what follows.
If we consider the alternatives a, b ∈ A we may have that19:

- some of the deciders rank a � b,

- the rest of the n deciders rank b � a

so that, for instance, in the global ranking we may get b � a.
If there is some knowledge of this fact before the global ranking is calculated
the deciders of the first group may worsen the ranking of b (by assigning it less
points and so by putting some alternatives between a and b or by exchanging
the rankings of b with respect to some other distinct alternative) so that in
the global ranking we now have a � b. This rank reversal occurs without any
change in the relative ordering of the alternatives a and b but simply worsening
the ranking of b relatively to a.
This fact is, in our opinion, a direct consequence of the twofold qualita-
tive/quantitative nature of the Borda rankings.
To understand this fact we note that if we have a � b in our version of the Borda
method a gets more points than b but how many more points it gets depends on
how many alternatives are comprised between a and b. From this perspective
such in between alternatives cannot be seen as irrelevant. If a gets k points b
may get k−1−h points where h is the number of the in between alternatives so
that if h is high enough it can determine a rank reversal between a and b even
if the relative ordering between a and b is unchanged for all the deciders.
It is therefore evident how such h alternatives are really not irrelevant with
respect to a and b.

6 The Condorcet method

Given the set A of alternatives this method is based on the execution of
pairwise comparisons among the m alternatives of the set A.
In this way we have to perform, in general, m(m − 1)/2 comparisons for each
decider so that we can evaluate his preferences for any alternative. In this way
we have a profile of preferences for a decider.
Then we have to repeat such evaluation for all the n deciders in order to un-
derstand how many deciders [weakly] prefer one alternative to another, be it m,

19We recall that by its very definition in the Borda method the single rankings ri cannot
contain ties so we could use as R even the strict preference relation �.
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in a given pair so to derive how many of them have the opposite preference as
n−m.
In this way we start from the local rankings ri for the single deciders (that we
assume to be rational and so to have a total preferences without ties nor cycles)
and derive the global ranking rC .
As we have already seen the assumption on the local rankings derives from the
will to avoid any “garbage in, garbage out” effect and to make easier a compari-
son with the Borda method that enforces such condition from its very definition.
If we have n deciders, for a pair (a, b) we can have20:

- n1 deciders have the a � b ranking,

- n2 deciders have the b � a ranking,

with n = n1 + n2. We can therefore have the following cases:

- if n1 = n2 we can say that a ∼ b is the social choice of the n deciders,

- if n1 > n2 we can say that a � b is the social choice of the n deciders,

- if n1 < n2 we can say that b � a is the social choice of the n deciders.

Of course the condition n1 = n2, from the constraint n = n1 + n2, is possible
iff21 n is even.
By using such method we can get the definition of ([2]):

- the Condorcet winner,

- the Condorcet loser.

A related concept is that of Condorcet score ([7]) that allows the assignment
of a numerical value to each of the possible transitive orderings of the alterna-
tives.
Given a transitive global ordering among the alternatives we consider all the
relations between the possible pairs of alternatives (that respect the ordering).
For each pair we count the number of deciders that have the corresponding or-
dering in their own ordering. By summing all such values we get the Condorcet
score of an ordering.
If we have two distinct global ordering the one to be preferred is therefore the
one with the highest Condorcet score.
The Condorcet score, therefore, refers to global rankings of the alternatives and
allows their ordering according to easy to compute numerical values. On the
other hand both the Condorcet winner and the Condorcet loser involve the sin-
gle alternatives in comparison with all the others.
The Condorcet winner is an alternative that defeats, by a majority, every
other alternative in pairwise comparisons. We can show ([2]) that if the Con-
dorcet winner exists it is unique though we have no guarantee of its existence.

20In this case we use as R the weak preference relation � but similar considerations hold
also if we consider a strict preference relation �.

21We note that we use iff as a shorthand for “if and only if”.
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On the other hand, a Condorcet loser is an alternative that is defeated by a
majority by every other alternative in pairwise comparisons.
Summing up we can say that the Condorcet method works as follows22 ([2]):

- given an alternative ai ∈ A we compare it with all the remaining m − 1
alternatives aj of A with i 6= j;

- we count the number n1 of times where ai is weakly preferred to aj;

- we count the number n2 of times where aj is weakly preferred to ai;

- alternative ai is preferred to alternative aj if n1 > n2 , alternative aj
is preferred to alternative ai if n2 > n1 otherwise (if n1 = n2) the two
alternatives are indifferent.

The method can be used also to define a global ranking of the alternatives of
the set A though such global ranking may suffer both the presence of ties and
a loss of transitivity and so may contain cycles that involve either the whole set
A or some of its subsets.
The method is based on qualitative comparisons of pair of alternatives and this
lack of connection among larger sets of alternatives causes the arising of the loss
of transitivity even if the single preference orderings of the deciders satisfy such
a property ([5], [6]).
As a final remarks on both methods we recall that the Borda method imposes
the rationality on the deciders as transitive individual rankings so, in order to
make a comparison easier, we assume also for the Condorcet method rational in-
dividual rankings. Notwithstanding this both methods can introduce violations
of rationality through ties and cycles.

7 Borda and Condorcet, some toy examples

We now give some toy examples of the two methods in order to show their
working. The examples we present here can be used, in other dedicated sections,
to understand their possible relations.

Example 7.1 As a first example we consider the set A = {a, b, c} and three
deciders with the following profiles:

r1: a � c � b

r2: b � a � c

r3: c � a � b

If we use our version of the Borda method we assign to a 7 = 3 + 2 + 2 points,
to b 5 = 1+3+ 1 points and to c 6 = 2+ 1+3 points so that the global ranking
is:

22In this case we adopt a weak preference relation.
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rB: a � c � b

If we use the Condorcet method we get:

a versus b wins a,

a versus c wins a,

c versus b wins c,

so we get the same global ranking as before23:

rC : a � c � b

In this case we have rB = rC . This event can occur quite often and is the basis
of the method we propose in section 14.
Such result continues to hold, for instance, if we have n > 3 deciders split in
three groups of cardinalities n1, n2 and n3 such that n1 ≥ n2 ≥ n3.
We note that since n is odd we cannot have direct ties in the Condorcet method
so we can have, at the most, a loss of transitivity. This happens if we have, for
instance, the following profiles:

r1: a � b � c

r2: c � a � b

r3: b � c � a

In this case it is easy to see how we have (if we use �):

rC : a � b � c � a

and:

rB: a ∼ b ∼ c

If, however, we have 3 deciders with a r1 type profile, 2 deciders with a r2
type profile and 2 deciders with a r3 type profile we again have a cycle with the
Condorcet method since we get:

a versus b wins a,

a versus c wins c,

c versus b wins b,

and so we get a � b � c � a.
On the other hand we have not a tie, neither full nor partial, with the Borda
method where we get24 {a, b, c} = {15, 14, 13}.

23We use � but similar considerations hold also if we use �.
24The notation {a, b, c} = {15, 14, 13} represents a concise way to say that a gets 15 points,

b gets 14 point and c gets 13 points.
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Example 7.2 If we consider the following set A = {a, b, c} with four deciders
we can have the following preference profiles:

r1: a � b � c

r2: c � b � a

r3: a � c � b

r4: b � c � a

If we use the Borda method in this case we have:

rB: a ∼ b ∼ c

since every alternative gets 8 points. In the case of the Condorcet method we
have three direct ties among the alternatives and so:

a ∼ b since we have vab = vba = 2,

a ∼ c since we have vac = vca = 2,

b ∼ c since we have vbc = vcb = 2.

This can occur since n is even. On the same set we can have:

- 3 deciders with a profile r1,

- 3 deciders with a profile r2,

- 2 deciders with a profile r3,

- 2 deciders with a profile r4.

In this way we have again:

rC : a ∼ b ∼ c

owing to direct ties among the alternatives. If we use the Borda method we get:

rB: a ∼ b ∼ c

since every alternative gets 20 points. In this case we note that:

- r1 and r4 are easily obtained one from the other with a shift operation25,

- r2 and r3 are easily obtained one from the other with a shift operation.

If we have:

- 3 deciders with a profile r1,

- 2 deciders with a profile r2,

25With this term we denote the shifting of one alternative in the preference profile. This
term will be defined more formally shortly.
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- 3 deciders with a profile r3,

- 2 deciders with a profile r4.

we get:

rB: a � b ∼ c

and:

rC : a � b ∼ c

As a last case we consider to have:

- 3 deciders with a profile r1,

- 1 deciders with a profile r2,

- 1 deciders with a profile r3,

- 3 deciders with a profile r4.

so that we get:

rB: b � b � c

but:

rC : a ∼ b ∼ c

From these examples it seems possible to derive that:

- a full tie in the Borda method is associated to a cyclical ranking in the
Condorcet method with possible direct ties if n is even;

- a cyclical ranking in the Condorcet method or direct ties are not necessarily
associated to a full tie in the Borda method;

- partial ties can relate each other in the two methods.

Example 7.3 In another case we can have the set A = {a, b, c, d} with three
deciders with the following profiles:

r1: a � b � c � d

r2: d � a � b � c

r3: c � d � a � b

If we use the Borda method in this case we have:

rB: a � d � c � b

whereas if we use the Condorcet method we get:
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rC : d � a � b � c � d

ad so a cycle that in his case we can resolve with indifference conditions between
pair of alternatives but not with direct ties since n is odd.

Example 7.4 As another example we consider the set A = {a, b, c, d} with three
deciders with the following profiles:

r1: a � d � c � b

r2: b � a � c � d

r3: b � c � a � d

If we use the Borda method in this case we have:

rB: a ∼ b � c � d

whereas if we use the Condorcet method we get:

rC : b � a � c � d

so partial ties in the Borda method do not have necessarily an equivalent condi-
tion in the Condorcet method.

Example 7.5 Another example is the following. We can consider the set A =
{a, b, c} with five deciders and with the corresponding Borda rankings that form
the following matrix26:

R =













3 2 1
3 2 1
2 3 1
1 2 3
2 1 3













(13)

From R we can derive the following preference profiles:

r1: a � b � c

r2: a � b � c

r3: b � a � c

r4: c � b � a

r5: c � a � b

If we use the Borda method in this case we have:

rB: a � b � c

26The matrix R will be defined more precisely in section 11. For the moment we note that
we have a row for each decider and a column for each alternative of the set A in the order in
which they are listed in the set A. Every row defines the Borda scores for each decider and
so the preference profile for that decider.

19



since we have {a, b, c} = {11, 10, 9}. If we use the Condorcet method we get:

rC : a � b � c

In this case we have rB = rC . If we modify the matrix R in a way that leaves
unchanged the Borda scores we may get the following matrix:

R =













3 1 2
3 1 2
1 2 3
2 3 1
2 3 1













(14)

Such modified matrix has been obtained through operations that are in contrast
with those we are going to define as correct in section 11.
The new matrix defines the following preference profiles:

r1: a � c � b

r2: a � c � b

r3: c � b � a

r4: b � a � c

r5: b � a � c

In this case the Borda ranking rB is unchanged but for the Condorcet ranking
we get:

rC : c � b � a � c

and so a cycle involving all the alternatives or a full indirect tie (see further on).
A full indirect tie among the alternatives can be resolved, by using the definitions
of the relations � and ∼ and the transitivity of the former, assuming that the
alternatives are equivalent. In this way we reduce an indirect tie to a direct tie.
We note that this example shows how a cycle in the Condorcet method has no
necessary consequence on the Borda method in the sense that it does not impose
a particular ordering (such as a full tie) on the alternatives according to that
method.

Before closing this section we make two examples to illustrate some problematic
features of the Borda method.

Example 7.6 We start with a set A = {a, b, c, d} with seven deciders and with
the Borda rankings that form the following matrix:

R =





















4 3 2 1
1 4 3 2
2 1 4 3
4 3 2 1
1 4 3 2
2 1 4 3
4 3 2 1





















(15)
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If we use the Borda method in this case we have:

rB: c � b � a � d

since we have {a, b, c, d} = {18, 19, 20, 13}. If we use the Condorcet method we
have:

rC : c � d � a � b � c

If, after the rankings have been defined, the alternative d is discarded for some
reason, we get:

R =





















3 2 1
1 3 2
2 1 3
3 2 1
1 3 2
2 1 3
3 2 1





















(16)

If we use the Borda method in this case we have:

rB: a � b � c

since we have {a, b, c} = {15, 14, 13}. In this case the cancellation of an alter-
native has caused a cascaded modification of the rankings with a rank reversal of
the alternatives. If we use the Condorcet method, on the other hand, we have:

rC : a � b � c � a

so that the Condorcet method proves immune from the cancellation of one al-
ternative.

Example 7.7 As another example of the difficulties of the Borda method we
can use the following case.
We can consider the set A = {a, b, c} with n = 11 deciders where five deciders
have the following preference profile:

r1: a � b � c

whereas the other six deciders have the following preference profile:

r2: b � a � c

If we use the Borda method we get:

rB: b � a � c

since we have {a, b, c} = {27, 28, 11}. If we use the Condorcet method we have:

rC : b � a � c
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so that we have rC = rB.
If the five deciders reverse their ranking of b and c in an attempt to favor their
preferred choice “a” they succeed if they use the Borda method since with that
method we get:

rB: a � b � c

since we have {a, b, c} = {27, 23, 16}.
If, on the other hand, we use the Condorcet method we see that the ranking of
the alternatives is unchanged since also in this case we have:

rC : b � a � c

so that we have rC 6= rB . In this case we had a rank reversal of the alternatives
“a” and “b” in the Borda method though their relative orderings did not change
from one set of preference profiles to the other.
In this case the five deciders that modify their preference profiles are said to
behave or vote strategically. Their move may be unsuccessful if also the other
six deciders strategically modify their preference profile so we get, respectively:

r1: a � c � b

and:

r2: b � c � a

It is easy to see that in this case we get:

rC : b � c � a

and:

rB: b � c � a

and so again rB = rC .
We underline:

- the obvious improvement of the ranking of the alternative “c” as a conse-
quence of the actions of the deciders;

- that also in the modified profiles the relative ordering of the alternatives
“a” and “b” is the same that we had in the original profiles.

Further details will be given in the following sections.

8 The Arrow’s theorem and our methods

In this section we firstly introduce some basic properties we wish are satisfied
by our methods then we state that they are incompatible so that they cannot be
all satisfied at the same time by any method. The next step is to see which of
the introduced properties is violated by the Borda or by the Condorcet method.
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One of the key points is the definition of irrelevant alternatives that comes
naturally for the Condorcet method (where we can say that any alternative
that is outside the current pair under examination is irrelevant) but must be
reconsidered for the Borda method though such reconsideration is usually not
carried out in the literature (see [5] and [6]).
The properties we introduce are a minimal set of properties so it is easy to see
that things can only worsen if we take a wider set.
Such properties are the following ([5], [6], [2], [3]):

(1) transitivity,

(2) universal domain,

(3) Pareto condition,

(4) binary independence.

We say that a profile and a social welfare function satisfy transitivity if for
any triple of alternatives a, b, c we have that from a � b and b � c we can derive
a � c.
We say that a social welfare function satisfy universal domain if all the profiles
of preferences of the deciders are legal profiles for the function so we do not
impose any restriction on the preference profiles. We note that imposing a
transitivity is a consequence of the first requirement.
The Pareto condition says that if, for a pair of alternatives a and b, the all the
deciders prefer a to b then the social welfare function must produce a ranking
where a is preferred to b.
A social welfare function satisfies binary independence if, given a pair of
alternatives a and b, the ranking of such alternatives in the global ranking
depends only on that alternatives and not on any of the remaining alternatives.
In order to understand the theorem 8.1 we need to define:

- what we mean as a social welfare function,

- what is a dictator.

A social welfare function is a function that from a set of preference profiles
of the members of a set of deciders on a set of alternatives defines a ranking of
the alternatives.
A dictator, on the other hand, is a particular decider. We say that a social
welfare function is equivalent to a dictator if there is a decider whose profile of
preferences always coincides with the outcome of that function independently
from the profiles of preferences of the other deciders. In this way we say that in
any way we modify the profiles of n− 1 deciders the outcome is defined by the
profile of the remaining decider.
We now present the Arrow’s impossibility theorem in the formulation of [5]
and then we use it to check the goodness of both the Borda method and the
Condorcet method.
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Theorem 8.1 (Arrow’s impossibility theorem) A social welfare function
with:

- three or more alternatives,

- two or more deciders,

where the profiles of preferences:

- satisfy transitivity,

- satisfy the universal domain condition,

- satisfy binary independence,

- satisfy the Pareto condition,

is equivalent to a dictator.

We note that the theorem is in the following form:

if ∩i Pi then Q (17)

where the Pi are its premises and Q is the dictatorial conclusion.
Such formulation is equivalent to the following one:

if ¬Q then ∪i ¬Pi (18)

From this alternative formulation we derive that if we know that a given function
is not equivalent to a dictator (so the premise ¬Q in the alternative formulation
is true) then one of its premises Pi must be false (since we require that also the
consequence is true). We underline how we do not consider the number of the
alternatives and the number of the deciders in this analysis. The reason is that
if we have two alternatives only there is no problem at all and the same is true
in presence of a single decider.
We apply this approach to the evaluation of our two methods to see, for each of
them, which premise must be violated. We can use this approach since we know
that neither the Borda method nor the Condorcet method (as social welfare
functions) are equivalent to a dictator.
We start with the Borda method ([5] and [6]).
This method:

- satisfies transitivity from the association between each alternative and the
corresponding Borda score so that a transitivity on the alternatives derives
from a the transitivity of such scores;

- satisfies unrestricted domain since it can be used for any preference profile
that is transitive from the definition of the method itself;

- satisfies the Pareto condition since if every decider prefers a to b then
a gets more points than b and so is better ranked than b in the overall
ranking;
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- we underline how this method is not dictatorial since it satisfies anonymity
so there is no way to identify a particular voter as the dictator.

From all this we derive that it must fail binary independence as it can be easily
shown by providing simple examples (see section 7).
We have therefore seen how the Borda method satisfies all the required prop-
erties but the binary independence or independence from irrelevant al-
ternatives.
An illustration of this fact has been given both in example 7.6 and in example
7.7.
The fact that the Borda method violates this property is usually seen as an
expression of strategic voting from the deciders and as an expression of the
manipulability of the method. With this we mean that its outcome may be
altered through the introduction of straw alternatives (to understand what this
means it is sufficient to consider the example 7.6 in the opposite direction or
from the narrow set to the wider set with d as the straw alternative) or by the
modification of the relative rankings of pair of alternatives (see example 7.7).
We note how the last feature, to be effective, requires the full knowledge of the
preference profiles of all the deciders and is vulnerable to counter strategical
behaviors, how it is shown by the example 7.7.
We now switch to the Condorcet method.
This method:

- satisfies binary independence from its definition since the alternatives are
pairwise compared so that any other alternative has no influence in the
ranking of a pair;

- satisfies unrestricted domain since it can be used for any preference profile
of the deciders;

- satisfies the Pareto condition since if every decider prefers a to b then a is
better ranked than b in the overall ranking;

- also in this case we underline how the method is not dictatorial since it
satisfies anonymity so there is no way to identify a particular voter as the
dictator.

From all this we derive that it must fail transitivity as it can be easily shown
by providing simple examples (see section 7).
We have so shown how the Condorcet method satisfies all such properties
but transitivity.
The method is said to fail transitivity since, as we have seen, it can give rise to
cycles among the alternatives.
Examples of this fact can be found in section 7. As we have already seen the
presence of cycles can be either local or global.
In the former case a cycle involves only a subset of the alternatives whereas in
the latter it involves all the alternatives. In both case a cycle can be seen as
a loss of transitivity, if we use the � preference relation, or as a tie among the
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involved alternatives, if we use the � preference relation.
The presence of cycles cannot be avoided in the Condorcet method where we
can have also direct ties between pairs of alternatives if n (the number of the
deciders) is even. This feature of the method ([5], [6]) depends on the fact
that the alternatives are pairwise compared so that in this way we lose any
information concerning the relations among all the alternatives and this can
give rise to cycles.
We note that for any pair x, y ∈ A all the other alternatives in A are naturally
irrelevant in the comparison.
On th other hand the problems with the Borda method arise since it has a
twofold qualitative and quantitative nature and since what is irrelevant for the
Condorcet method is not irrelevant, at least from a quantitative point of view,
for the Borda method.
We comment here a little on these features in order to clarify the method we
are going to propose in section 14.
In the Borda method when we compare two alternatives ai and aj we say:

- if ai is more preferred to aj ;

- how much it is more preferred.

In this case we consider the quantitative feature to evaluate the ranking so that
if we have ai � aj (qualitative feature) we can assign (where h is the number of
in between alternatives):

- k ∈ [1,m] points to ai,

- k − h− 1 ∈ [1,m] points to aj .

In this way the h in between alternatives cannot be said to be irrelevant since
they cause a modification of the ratio of the evaluations between the two alter-
natives from:

k

k − 1
(19)

(when h = 0) to:
k

k −m+ 1
(20)

(when h = m− 2). We note that in the general case the ratio is:

k

k − h− 1
(21)

and that, if h = m− 2, we get k − h− 1 = k − (m− 2)− 1 = k −m+ 1.
We can analyze the interaction between qualitative and quantitative features
(that can be said to be coincident in the Condorcet method) if we consider the
following approaches: descriptive and normative.
If we take a normative approach we state that in the comparison between ai and
aj any other alternative should be irrelevant whereas if we take a descriptive ap-
proach we state that in the comparison between ai and aj any other alternative
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is irrelevant. In the Condorcet method the two approaches coincide whereas in
the Borda method they diverge.
In order to have them converge also in the case of the Borda method we can
define only the alternatives but the in between alternatives as irrelevant for the
Borda method.
If we define as Aij the set of the alternatives between ai and aj in the ordering
we have that the irrelevant alternatives are those of the set:

AI = A \ (Aij ∪ {ai, ai}) (22)

In the Condorcet method we can define, from the definition of the method itself,
Aij = ∅ for any ai and aj so that we have:

AI = A \ {ai, ai} (23)

The problem with the Borda method is that AI depends on both ai and aj
since there is no way to set permanently Aij = ∅. In order to see why is this
we note how a strategic behavior has the effect to widen or shrink the set Aij

(depending on how many alternatives are inserted in or extracted from it) so
that the problem with the irrelevant alternatives is back again and there do not
seem to be any easy solution. Both the insertion and the extraction depend on
the individual will of the deciders and cannot be constrained in general cases.
For some tentative solutions of this problem we refer to [5] and [6].

9 The parameters and the various conditions

The parameters we think are meaningful for both the Borda and the Con-
dorcet method and for our purposes include:

- the number n of the deciders,

- the number m of the alternatives.

In the Borda method every decider i assigns to each alternative j a distinct
value ri,j in the range [1,m] for a total of:

m(m+ 1)

2
(24)

points so that the n deciders assign globally:

n
m(m+ 1)

2
(25)

points to the set of the alternatives or, on the average,

n
m+ 1

2
(26)
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points to each of the m alternatives.
The condition that the values ri,j that are assigned to the alternatives j ∈ [1,m]
by each of the i ∈ [1, n] deciders are distinct can be expressed, for any i ∈ [1, n],
as:

m
∏

j=1

ri,j = m! (27)

with ri,j ∈ [1,m].
Under the foregoing conditions we can have a full parity (or a full tie or the same
amount of points) over all the elements of A, according to the Borda method,
iff:

n(m+ 1) (28)

is even. This can occur under the following conditions:

- if n is even,

- if m is odd so that m+ 1 is even.

If at least one of such conditions is verified the m alternatives of A can receive
the same number of points equal to:

n
m+ 1

2
(29)

In this way they are equivalent alternatives from the point of view of the de-
ciders, at least according to the Borda method.
Besides the case of the parity over all the elements of A we can have a wide
number of cases where ki alternatives receive the same number of global points
pi under the following constraints:

∑

i ki = m

∑

i kipi = nm(m+1)
2

for each j ∈ N we have
∑

i rij =
m(m+1)

2

for each j ∈ N we have
∏

i rij = m!

where rij ∈ [1,m] is the weight that decider i assigns to the alternatives j ∈ A.
The former type of tie is termed a full tie whereas the latter type is termed a
partial tie.

Example 9.1 (Simple example with the Borda count and the Condorcet method)
If we have the set A = {a, b, c} and three deciders27 with the following Borda
rankings:

- {a, b, c} = {3, 1, 2}

27Similar considerations hold also for n deicers subdivided in three groups of equal size and
so if n = 3k with k ∈ N.
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- {a, b, c} = {1, 2, 3}

- {a, b, c} = {2, 3, 1}

we get the following global ranking28:

- a gets 6,

- b gets 6,

- c gets 6,

and so a ∼ b ∼ c. In this case we have a full tie. We note that we have n = 3
odd but m = 3 is odd so m+ 1 is even and so the necessary condition for a full
tie is satisfied.
If we use the Condorcet method in this case it is easy to see that we get b � a �
c � b and so, from the transitivity of � (and from the definition of ∼) a full tie
among the alternatives.
If we have the following rankings:

- {a, b, c} = {3, 2, 1}

- {a, b, c} = {2, 1, 3}

- {a, b, c} = {3, 2, 1}

we get the following global ranking:

- a gets 8,

- b gets 5,

- c gets 5,

and so a � b ∼ c and therefore a partial tie29.
If we use the Condorcet method it is easy to see that we get a � b � c or a total
transitive ordering among the alternatives.
If we have:

- {a, b, c} = {3, 2, 1}

- {a, b, c} = {2, 3, 1}

- {a, b, c} = {3, 1, 2}

we get the following global ranking:

- a gets 8,

- b gets 6,

28With the phrase “a gets 6” we summarize the phrase “a gets a number of points equal to
6”. The same holds also for the other cases in this TR.

29In this case we have used � as the binary relation but nothing changes if we use �.
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- c gets 4,

and so a � b � c and therefore no tie.
If we use the Condorcet method also in this case it is easy to see that we get
a � b � c ad so again a total transitive ordering among the alternatives that
coincides with the ordering we got from the Borda method.

For what concerns the Condorcet method we can consider, as the meaningful
features, both the number n of the deciders and some particular types of profile.
For what concerns n we have two cases:

- n is even,

- n is odd.

If n is even we can have direct ties between alternatives so that we can have,
for two alternatives a and b, that vab = vba where vab is the number of deciders
that have a � b. More formally we have:

- vab = vba

- vab + vba = n

so we have vab = vba = n/2 and this condition can be verified only if n is even.
On the other hand if we have a succession of links among the alternatives from
which we can derive that both a � b and b � a hold then we have a ∼ b though
we do not necessarily have vab = vba. In this case we speak of indirect ties,
see the examples we have made in section 7.
We note how direct ties can involve all the pairs of alternatives so that such
alternatives can be said to belong to the same equivalence class and, so, to be
equivalent to the other alternatives through a series of direct ties.
On the other hand if n is odd it is easy to see, from what we have said before,
that we can have only indirect ties but no direct ties. This is the main reason
why, in the literature, many of the examples of application of the Condorcet
method are given with n odd.
For what concerns the profiles we can define the following types of profiles30:

- compensating profiles,

- shift profiles,

globally termed as particular profiles.
We define two profiles as compensating profiles if they define opposite order-
ings on the same alternatives.
If we consider the m alternatives a1, . . . , am we have, for instance, that the two
profiles31:

30In what follows we use the relation � but many of the considerations we make hold also
if we use the relation �.

31It is obvious that if we have a � b then we have b � a and that if we have a � b then
we have b ≺ a. If � means “is weakly preferred to” then � means “is weakly preferred by”.
Similarly if � means “is strictly preferred to” then � means “is strictly preferred by”.

30



a1 � a2 · · · � am

and

a1 � a2 · · · � am

define two opposite orderings on the set A and so two compensating profiles.
If we have m alternatives we can easily see how they can be ordered in m!
different ways (without repetitions) so that we can have m!/2 profiles with the
corresponding m!/2 opposing or compensating profiles32.
It is easy to see that:

- given a generic profile it is always possible to derive the corresponding
compensating profile by simply replacing � with � or vice versa;

- compensating profiles cancel out each other and have no effect on the
global ordering.

From this we have that if n is even we can have pairs of compensating profiles
that make the alternatives as equivalent. On the other hand if n = 2k + 1
(with k ∈ N) is odd we may have 2k profiles that can cancel out as pairs
of compensating profiles so that the final ranking of the alternatives coincides
with the ranking of the remaining profile that is a sort of dictator.

Example 9.2 If for instance we have the following preference profiles:

a � b � c � d

d � c � b � a

b � a � c � d

we have that the first two profiles are compensating profiles so that the total
ranking coincides with the one determined by the last profile for both the Borda
and the Condorcet method.

Compensating profiles have an influence also on the Borda method. It is easy
to see how each pair of compensating profiles contribute with the same weight
to each alternative in the global ranking so that such profiles can be safely
discarded.
For what concerns the shift profiles ([5], [6]), if we imagine the m alternatives
a1, . . . , am as marks on the border of a wheel in a clockwise order we have that,
starting from the basic profile a1 � a2 · · · � am, we can get33 the following
types of shift profiles:

- clockwise shift [one] profile,

- counterclockwise shift [one] profile.

32We note that m! is even for any m 6= 1 as it easily results from its definition.
33We can imagine more complex shift profiles ([5]) whose introduction and use are however

unnecessary for our purposes.
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In the foregoing case we get;

- am � a1 � a2 · · · � am−1 as a clockwise shift one profile,

- a2 � a3 · · · � am−1 � am � a1 as a counterclockwise shift one profile.

For instance, if we have a preference profile of the form:

a � b � c (30)

a clockwise shift one profile is:

c � a � b (31)

whereas a counterclockwise shift one profile is:

b � c � a (32)

From such three profiles we have a full tie with the Borda method where each
alternative gets 6 points. If we use the Condorcet method we get:

a versus b wins a,

a versus c wins c,

b versus c wins b,

so we have c � a � b � c and therefore a relation of indifference among the
alternatives or a ∼ b ∼ c from the definition of ∼ and from the transitivity of
�.
In order to prove this fact we note that, for instance, from c � a and a � c
(obtained through the transitivity of �) we get a ∼ c. The other cases follow
in similar ways.
If, in the same case, we use relation � we get a loss of transitivity that cannot be
solved in an indifference among the alternatives but remains as a contradictory
ranking from the deciders ([5], [6]).
We call the possible profiles homogeneous if they are of the same type and
heterogeneous if they are of distinct types though for any clockwise shift we
can define a counterclockwise shift that gives the same outcome. If we have m
alternatives we can indeed have:

- m clockwise shift one profiles,

- m corresponding counterclockwise shift one profiles.

It is easy to see how using the right number of homogeneous shift one profiles
we can obtain both a cyclical outcome in the Condorcet method and an equal
ranking of the alternatives in the Borda method.

Example 9.3 If for instance we have the following preference profiles:

a � b � c
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b � c � a

c � a � b

we have that the second profile is obtained with a shift operation34 from the first
and in the same way we obtain the third from the second. In this way we get a
full cycle with the Condorcet method and a full tie with the Borda method.
This eventuality can occur in all the cases where n = km with k ∈ N and where
m denotes both the number of the alternatives and the number of distinct shift
profiles. In more complex cases we can have a mixture of compensating profiles
and shift profile that give an outcome with the same properties.

Last but not least if we consider the possible relations between the values of the
parameters n and m we can have the following cases:

- n < m,

- n = m,

- n > m.

If n = m or n < m we can use distinct shift one profiles whereas if n > m we
are forced to use repeated shift one profiles.
If, for instance, we have n = 5 and m = 3 (so we can have 6 distinct transitive
profiles but only 3 distinct shift profiles) we can start with the following profiles:

- a � b � c

- c � a � b

- b � c � a

but now we are forced to use either repeated shift profiles or different types of
profiles such as b � a � c and c � b � a obtained through local permutations.
We note, however, how the latter profile is obtained from a clockwise shift of
the former.

10 Some examples of the particular profiles

In this section we give some toy examples of the particular profiles we have
described in section 9 and precisely:

- compensating profiles,

- shift profiles.

34A shift operation, to be defined more formally shortly, can be seen as the moving of an
alternative in the ordering in two ways: from the head of the ordering to the tail or vice versa.
We call the former mode a counter clockwise shift and the latter a clockwise shift.
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In all the examples of this section we assume to have the sets A = {a, b, c, d}
and B = {a, b, c} .
As a simple example of a pair of compensating profiles we can use the following
profiles over the set A:

r1: a � b � c � d

r2: d � c � b � a

Such profiles contribute, in the Borda method, with a weight of 5 to every
alternative so that these profiles can be safely discarded from the global ranking
rB made by more than two deciders. If we have only those two deciders then
the four alternatives are seen as equivalent according to the Borda method.
If we apply the Condorcet method to the foregoing profiles we get35:

a versus b gives a ∼ b

a versus c gives a ∼ c

a versus d gives a ∼ d

b versus c gives b ∼ c

b versus d gives b ∼ d

c versus d gives c ∼ d

In this way the four alternatives are to be seen as equivalent according to such
profiles so that they can be safely discarded from the global ranking rC made
by more than two deciders. If we have only those two deciders then the four
alternatives are seen as equivalent according to the Condorcet method.
If we use the set B and use � as the preference relation we can start from the
profile:

r1: a � b � c

and generate in succession the following clockwise shift one profiles:

r2: c � a � b

r3: b � c � a

If we apply the Borda method to such profiles we get:

- a gets 6 points,

- b gets 6 points,

35We recall how for 4 alternatives we have 4∗3/2 = 6 possible comparisons between distinct
alternatives. In general if we have m alternatives we can compare the first alternative with
m− 1 different alternatives, the second one with m− 2 different alternatives and so on for a
total of m ∗ (m− 1)/2 alternatives.
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- c gets 6 points.

In this case we have a parity over the set B. If we apply the Condorcet method
we have:

a versus b gives a � b

b versus c gives b � c

c versus a gives c � a

so that we get a Condorcet cycle with a loss of transitivity a � b � c � a. If on
the other hand we use the relation � we get:

a � b � c � a (33)

that, owing to the transitivity of � and the definition of the indifference relation
∼, gives rise to the following relations:

a ∼ b

b ∼ c

c ∼ a

so that the three alternatives can be seen as equivalent.
If we use the set A we can have the following profiles:

r1: a � c � d � b

r2: b � d � c � a

r3: b � d � c � a

If we apply the Borda method to such profiles we get b � d � c � a and the
same holds if we apply the Condorcet method to the same profiles since by
pairwise comparisons we get:

a versus b gives b � a

a versus c gives c � a

a versus d gives d � a

b versus c gives b � c

b versus d gives b � d

c versus d gives d � c

From this we get that in simple cases the two method give the same rankings.
On the same set we can have, however, the following profiles that produce a
cycle if we apply the Condorcet method but do not produce an indifference
condition among the alternatives if we apply the Borda method:
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r1: a � b � c � d

r2: b � c � d � a

r3: c � d � a � b

If we apply the Borda method we indeed get:

- a gets 7,

- b gets 8,

- c gets 9,

- d gets 6,

and so we obtain c � b � a � d whereas if we apply the Condorcet method we
get:

a versus b gives a � b

b versus c gives b � c

c versus d gives c � d

d versus a gives d � a

and so we get a � b � c � d � a.

11 The R matrix

We can denote36 the matrix n×m of the ri,j as R.
Each ri,j , with i ∈ [1, n] and with j ∈ [1,m], is the score that each decider i
assigns to each alternative j. If we fix i the ri,j must be distinct and belong to
the interval [1,m].
We recall that, in our context, ri,j > ri,k means that alternative j is [weakly]
preferred to alternativeK in both the Borda method and the Condorcet method.
The members of R satisfies the following constraints:

m
∑

j=1

ri,j =
m(m+ 1)

2
∀ i ∈ [1, n] (34)

m
∏

j=1

ri,j = m! ∀ i ∈ [1, n] (35)

If they satisfy also the following constraint:

n
∑

i=1

ri,j =
n(m+ 1)

2
∀ j ∈ [1,m] (36)

36In this section we define more formally the matrix R that we have already used in section
7 in a rather informal way.
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we say we have a full tie if we use the Borda method whereas, if we use the
Condorcet method, we can have both direct and indirect ties among the alter-
natives. We call such a matrix as a tied R and denote it as Rt.
If on Rt we apply the following operations:

- swap of the contents of two columns,

- swap of the contents of two rows,

we get a matrix R′

t that satisfies the same properties as Rt and so has a full tie
according to the Borda method and may have either direct or indirect ties if we
use the Condorcet method.
We underline how such operations, together with those on some sub matrices
that we are going to present shortly, are the only legal operations we can perform
on a matrix Rt so to have it keep on satisfying the Borda full tie condition.
We note that if we swap the contents of two rows we swap the preference profiles
of two deciders so that the global ranking cannot change.
To see why things do not change if we swap the content of two columns we can
proceed as follows:

- we start from an Rt that defines a condition of Borda full tie;

- we use Rt to get an rC (with full direct or indirect ties) by using the
numerical columns identifiers;

- we swap the contents of two columns and define a new R′

t;

- we get the corresponding r′C (with full direct or indirect ties) by using
again the numerical columns identifiers;

- we replace in both cases the numerical column identifies with the names
of the corresponding unchanged alternatives (since we swap the content
and not the columns);

- we obtain two full cycles among the alternatives that produce among such
alternatives a set of direct or indirect ties so that the two cycles can be
seen as equivalent.

Similar considerations hold if we work on a sub matrix R̂t of Rt so that we can
swap the content of two rows i and j of R̂t only if their elements give rise to
the same sum and we can swap the content of two columns h and k of R̂ only
if their elements give rise to the same sum.

Example 11.1 If we consider the set A = {a, b, c} and n = 5 deciders we can
start from the following ad hoc matrix that describes the profiles of preferences
of the deciders:

Rt =













3 2 1
2 1 3
1 3 2
2 3 1
2 1 3













(37)
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If we apply the Borda method we get of course a full tie since we get:

rB: a ∼ b ∼ c

since every alternative gets 10 points. If, on the other hand, we apply the Con-
dorcet method we easily get:

rC : a � b � c � a

and so a cycle that gives indirect ties between pairs of alternatives. We cannot
have direct ties since n is odd.
If we swap the contents of columns 2 and 3 we get the following equivalent
matrix:

R′

t =













3 1 2
2 3 1
1 2 3
2 1 3
2 3 1













(38)

If we apply the Borda method we get in this case we get again:

rB: a ∼ b ∼ c

since every alternative gets 10 points. If, on the other hand, we apply the Con-
dorcet method we easily get:

rC : b � a � c � b

and so again a cycle that gives indirect ties between pairs of alternatives.
If we work on the following sub matrix of Rt:

R̂t =

(

3 1
1 3

)

(39)

we can get:

R̂′

t =

(

1 3
3 1

)

(40)

so we get:

R′′

t =













3 2 1
2 1 3
1 3 2
2 1 3
2 3 1













(41)

where both rB and rC are unchanged, rC since it defines a cycle among the
alternatives that produces a indirect ties between pairs of alternatives.

In this way we have seen how we can start from Rt that gives:

- a Borda full tie,

- a Condorcet full cycle,

and modify it with admissible operations so to get equivalent matrices with the
same outcomes.
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12 Borda and Condorcet

In this and the following section we aim at understanding if given a relation
among the alternatives of the set A in the Borda method we can state a relation
among the same alternatives in the Condorcet method and vice versa (see also
section 1) assuming to have the same voters with the same preference profiles.
With this we mean that we want to check if the following implications (to be
read as possibilities, see further on) hold or not:

(1) if cB ⇒ cC

(2) if cC ⇒ cB

where cB denotes a condition of the Borda method and cC a condition of the
Condorcet method.
If condition (1) is satisfied we have that from a condition on the Borda method
applied to a certain number of preference profiles it is possible to derive a certain
condition on the Condorcet method applied to the same profiles.
On the other hand if condition (2) is satisfied we have that from a condition on
the Condorcet method applied to a certain number of preference profiles it is
possible to derive a certain condition on the Borda method applied to the same
profiles of preferences.
Our aims, therefore, are:

(1) to verify if the presence of Borda ties has some consequence on the outcome
of the Condorcet method,

(2) to verify if the presence of Condorcet direct and indirect ties has some
consequence on the outcome of the Borda method,

(3) to verify if and when we can use the two methods in conjunction so to
have one reinforce the outcome of the other (see section 14).

We recall that a Borda tie can be of two types (see Table 1):

- full if all the alternatives get the same number of points and so the same
ranking,

- partial if the alternatives of a subset of the set A get the same ranking.

If the conditions for a full tie are satisfied we can have also some partial ties
whereas if they are violated we can have only partial ties.
A full tie can be possible only if either n or m+ 1 or both are even37 whereas
a partial tie can be possible also when both are odd.
On the other hand for what concerns the Condorcet method we must differ-
entiate between direct and indirect ties.
A direct tie defines a condition of parity between two alternatives a and b so
that we say that they are tied if vab = vba or the number of the deciders who

37We recall that if m+ 1 is even then m is odd and vice versa.
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n \ m+1 even odd
even full/partial full/partial
odd full/partial only partial

Table 1: Possible types of tie in the Borda method

weakly prefer a to b is equal to the number of the deciders who weakly prefer b
to a.
A direct tie is said to be full if it involves all the alternatives of the set A other
wise it is termed partial.
Indirect ties, on the other hand, derive from the presence of cycles, from the
transitivity of the � preference relation and from the definition of the ∼ rela-
tion.
More concretely if we have the set A = {a, b, c, d} we can have a � b � c � a so
we have a tie among the alternatives a, b and c and we call such a tie as partial
since is derives from a partial cycle or a cycle not involving all the alternatives.
The possible cycles can indeed be seen as:

- full,

- partial.

A full cycle is a cycle that involves all the m alternatives ai ∈ A and can be
expressed as:

a1 � a2 � · · · � am � a1 (42)

A partial cycle, on the other hand, involves only a subset of the alternatives.
If, for instance, we have A = {a, b, c} we can have a � b � a as well as a � c
and b � c.
Given a set of the m alternatives A and n preference profiles, one for each
decider, we note that:

(c1) we can obtain a full cycle through the composition of 2h different com-
pensating profiles,

(c2) we can obtain a full cycle through the composition of km different shift
one profiles,

(c3) we can obtain a full cycle through the composition of km different shift
one profiles and 2h different compensating profiles.

13 The conditions of interest

In this section we define so called conditions of interest or the conditions
we think are meaningful, then we give the conditions under which any of such
conditions can occur and, last but not least, we provide the links between such
conditions. To each condition we assign a label that will be used to identify it
in the rest of the section.
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B1 : Borda full ties, n even;

B2 : Borda full ties, n odd & m odd;

B3 : Borda partial ties;

C1 : Condorcet full direct ties;

C2 : Condorcet full indirect ties;

C3 : Condorcet partial direct ties;

C4 : Condorcet partial indirect ties.

We note that B1 and B2 are equivalent conditions but for what concerns their
link with the Condorcet related conditions.
From what we have already seen we can state that also C1 and C2 are equivalent
conditions but for the conditions under which they can occur and their relations
with the Borda related conditions.
As an example of B3 we can consider the set A = {a, b, c} with five deciders
with the following preference profiles:

r1: a � c � b

r2: b � a � c

r3: a � b � c

r4: b � a � c

r5: c � b � a

In this case if we apply the Borda method we get {a, b, c} = {11, 11, 8} or:

rB : a ∼ b � c

whereas if we use the Condorcet method we get:

rC : b � a � c

As an example of C3 we can use the following global ranking:

rC : a ∼ b � c ∼ d

whereas as an example of C4 we can use the following global rankings among
the alternatives of the set A = {a, b, c, d}:

rC : a � b � c � a

rC : a � d

rC : c � d

rC : d � b
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We recall that a Borda full tie can be defined as ∀ x, y ∈ A vx = vy. It can
occur in two cases:

B1 : if n is even and for any m;

B2 : if n is odd and m is odd.

A Borda partial tie (B3) is defined through the following conditions:

- ∃Ai such that ∪iAi = A and Ai ∩ Aj = ∅ for any i 6= j;

- ∀ x, y ∈ Ai vx = vy

A Borda partial tie can occur for any values of n and m.
A Condorcet direct tie can occur if ∃x, y ∈ A such that vxy = vyx.
We define a Condorcet full direct tie (C1) if ∀x, y ∈ A we have vxy = vyx
whereas we have a Condorcet partial direct tie (C3) if such condition holds
for a proper subset of the set A.
On the other hand we define a Condorcet full indirect tie (C2) if we have a
cycle among all the alternatives whereas we have a Condorcet partial indi-
rect tie (C4) if such condition holds for a proper subset of the set A.
We note that C1 can occur if n is even and for any m. If we can express n
as km + 2h, so that we compose k distinct shift profiles and h compensating
profiles, we have that C2 is verified though the converse does not necessarily
hold. It is easy to see this if we consider that we can get the same result if
we compose k distinct shift profiles and a certain number of profiles that are in
agreement with the cycle that is defined by the shift profiles.
Last but not least C3 can occur only if n is even and for any value of m whereas
C4 can occur for any values of n and m.
We note how the conditions on the Condorcet method do not depend in any
case from the value of m.
As an example we can consider the set A = {a, b, c, d} with four deciders and
the following preference profiles:

r1: a � b � c � d

r2: d � a � b � c

r3: c � d � a � b

r4: b � c � d � a

In this case if we apply the Borda method we get:

rB : a ∼ b ∼ c ∼ d

(since every alternative gets 10 points) whereas if we use the Condorcet method
we get:

rC : a � b � c � d � a
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If we consider the set A = {a, b, c} with three deciders and the following prefer-
ence profiles:

r1: a � b � c

r2: c � a � b

r3: b � c � a

if we apply the Borda method we get:

rB : a ∼ b ∼ c

(since every alternative gets 60 points) whereas if we use the Condorcet method
we get:

rC : a � b � c � a

We now try to detail the conditions under which C1 can occur. We have already
seen that a sufficient condition is that n is even since we have that if n is even
then C1 can occur whereas if n is odd then we cannot have a full direct tie
among the alternatives.
We can state that:

- if we compose pairs of compensating profiles we surely have that the con-
dition C1 is satisfied.

To see this we note that, in each pair of compensating profiles, for each pair of
alternatives x, y ∈ A if we have x � y in one profile we have y � x in the other
so that we necessarily have vxy = vyx in the global profile.
On the other hand we wish to verify that:

- if the condition C1 is satisfied then we have n/2 pairs of compensating
profiles.

We can argue as follows. If C1 is satisfied then we have that for any x, y ∈ A
we have vxy = vyx so that for any profile where we have x � y we must have a
profile where y � x. Since this condition must hold for any pair of alternatives
it turns in the definition of pairs of compensating profiles.
For what concerns the condition C2 we have that if we define:

ng = km+ 2h (43)

(with k 6= 0, k, h ∈ N) then if we have n = ng then the condition C2 can be
satisfied though the converse is false.
This can be easily seen if we consider that we can have a full indirect tie if we
use, for instance, m shift profiles (that produce a cycle) and a certain number
of profiles that are in accordance with the cycle but do not form pairs of com-
pensating profiles.
For instance if we have the set A = {a, b, c} we can use the three shift profiles
a � b � c, c � a � b and b � c � a (that form the cycle a � b � c � a) together
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with two profiles of the form a � b � c and one of the form b � c � a so without
using any compensating profiles.
We recall that k counts the number of groups of distinct shift profiles (that are
m) whereas h denotes the number of pairs of compensating profiles.
For what concerns B3, on one side, and C3 and C4 on the other we cannot draw
any general conclusion since we can find examples where we have partial ties
according to the Borda method but a transitive ordering according to the Con-
dorcet method as well as cases where the presence of partial ties in one method
turns into similar partial ties in the other.
Anyway, in order to compare B3 with C3 we must consider n even otherwise C3

cannot occur.
As an example we can consider the set A = {a, b, c, d} with four deciders and
the following preference profiles:

r1: a � b � c � d

r2: b � a � c � d

r3: d � a � b � c

r4: c � b � a � d

In this case if we apply the Borda method we get:

rB : a ∼ b � c � d

(since we get {a, b, c, d} = {12, 12, 9, 7}) and if we use the Condorcet method we
get:

rC : a ∼ b � c � d

At this point we can introduce some relations between the Borda related con-
ditions and the Condorcet related conditions, relations that can be justified, if
not proved, by the considerations we have made so far. We argue that:

(A1) B1 ⇒ C1 or C2 depending on both n and m;

(A2) B2 ⇒ C2;

(A3) C1 ⇒ B1;

(A4) C2 6⇒ B1;

(A5) C2 6⇒ B2.

We note how we disregard relations between partial conditions since there is no
general rule we can derive and, moreover, such conditions are less harmful and
less significant in the context of the method we present in section 14.
We moreover note how we do not aim at establishing conditions of necessity or of
sufficiency but rather conditions of possibility. To understand what this means
we make an example. In the case (A1), for instance, we aim at verifying if,
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from a condition B1, we can derive either a condition C1 or a condition C2 (but
not both, obviously) and not that we necessarily derive one of such conditions
(anyway which?).
Of course the cases (A4) and (A5) are a little bit different since in such cases we
show how a relation does not necessarily hold by means of counter examples.
We now start with the various conditions.
To show (A4) we use the following example. We consider the set A = {a, b, c}
with eight deciders with the following preference profiles:

r1: a � b � c

r2: c � a � b

r3: b � c � a

where three deciders have the profile r1, three deciders have the profile r2 and
two deciders have the profile r3. In this case we have that n is even and so we
are in a condition where B1 can occur.
In this case if we apply the Borda method we get:

rB : a � c � b

(since we get {a, b, c} = {17, 15, 16}) but if we use the Condorcet method we
get:

rC : a ∼ b ∼ c ∼ a

On the other hand, to show (A5) we use the following example. We consider
the set A = {a, b, c} with seven deciders with the following preference profiles:

r1: a � b � c

r2: c � a � b

r3: b � c � a

where three deciders have the profile r1, two deciders have the profile r2 and
two deciders have the profile r3. In this case we have that n and m are odd and
so we are in a condition where B2 can occur.
In this case if we apply the Borda method we get:

rB : a � b � c

(since we get {a, b, c} = {15, 14, 13}) but if we use the Condorcet method we
get:

rC : a ∼ b ∼ c ∼ a

We have so shown with two examples that the presence of a Condorcet full
indirect tie (and so C2) does not produce necessarily a Borda full tie both in the
case of n even (B1) and in the case of n odd and m odd (B2). We note that the
difference between B1 and B2 is meaningful only in the cases (A1) and (A2).
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We now want to argue about A3 (C1 ⇒ B1) so that a full direct tie in Condorcet
implies a Borda full tie with n even.
We note that C1 is defined as: for any x, y ∈ A we have vxy = vyx. If we have
a decider who has x � y we need a decider with y � x and this must hold for
any pair of alternatives. From this we derive that n must be even.
Since the condition vxy = vyx must hold for any pair of alternatives and n is
even necessarily we must have pairs of compensating profiles so that B1 holds
directly from the fact that two compensating profiles assign to each alternative
the same sum of Borda scores.
We note indeed that we have x ∼ y iff vxy = vyx and such relations hold for
any pair x, y ∈ A and must also satisfy transitivity (since both ∼ and = are
transitive relations) so that given a profile we necessarily get the corresponding
compensating profile.
For instance if we have a ∼ b ∼ c we obtain a ∼ b (or vab = vba), b ∼ c (or
vbc = vcb) and a ∼ c (or vac = vca). In this case for any a � b condition we need
a b � a condition for any pair of alternatives. The only possibility is through a
compensating profile.
We now examine the case (A1). In this case we have that n is even so that we
can have a Borda full tie for any m.
In this case if we obtain B1 from the combination of h pairs of compensating
profiles so that n = 2h we easily obtain C1.
If, on the other hand, we obtain B1 from the composition of:

- k groups of m shift profiles,

- h pairs of compensating profiles,

(so that we have n = km + 2h) we easily obtain C2 and so a full indirect tie
among the alternatives.
We note that the fact that n must be even imposes that km must be even so
that we have the following cases:

- k even and any m,

- m even and any k.

As an example we can consider the set A = {a, b, c, d} with six deciders and the
following preference profiles (where we have k = 1 and h = 1):

r1: a � b � c � d

r2: d � a � b � c

r3: c � d � a � b

r4: b � c � d � a

r5: a � b � c � d

r6: d � c � b � a
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We note that the first four profiles are shift profiles whereas the last two profiles
are compensating profiles.
In this case if we apply the Borda method we get:

rB : a ∼ b ∼ c ∼ d

(since we get {a, b, c, d} = {15, 15, 15, 15}) and if we use the Condorcet method
we get:

rC : a � b � c � d � a

We now examine the case (A2). In this case we have that n is odd so that we
can have a Borda full tie only if m is odd.
In this case we can obtain B1 from the composition of:

- k groups of m shift profiles,

- h pairs of compensating profiles,

so that we have n = km+ 2h and we easily obtain C2 and so a full indirect tie
among the alternatives.
Since n is odd and m is odd we have that that km must be odd so also k must
be odd.
As a closing remark we note what follows.
In the case (A1) we can define the following conditions:

- we can express n as 2h,

- we can express n as km+ 2h

If n is even such conditions imply B1 and also imply either C1 (the former) or
C2 (the latter) but from B1 we do not derive either of such conditions. The idea
is simple: we produce admissible profiles that give us a desired condition from
which we derive a wished condition. The remaining step, or that B1 implies
either the former or the latter of such conditions, is still to be done though,
probably, it cannot be done.
We note, for instance, that if we have n = km + 2h (with k 6= 0 and h 6= 0 or
k 6= 0 and h = 0) we have C2 but the converse is not necessarily true. We can
show this with the following example.
We can consider the set A = {a, b, c} with seven deciders and the following
preference profiles:

r1: a � b � c

r2: c � b � a

r3: b � c � a

where three deciders have the profile r1, two deciders have the profile r2 and
two deciders have the profile r3. In this case we have C2 since we get:

rC : a � b � c � a
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but n cannot be expressed as km+2h since we have two groups of 3 shift profiles
(so k = 2) and an added profile (a � b � c) in accordance with the cycle but
not any pair of compensating profiles.
As another case we have that if we can express n as 2h or if we get a global
profile with a full tie by composing pairs of compensating profiles we get both
B1 and C1. On the other hand B1 does not imply n = 2h since we can have at
least also n = km + 2h (with k 6= 0 and h 6= 0) whereas, how we have already
seen, from C1 we get n = 2h.
We close this section with the following example.
We can consider the set A = {a, b, c, d} with four deciders and the following
preference profiles:

r1: a � c � d � b

r2: b � a � c � d

r3: d � b � a � c

r4: c � d � b � a

In this case if we apply the Borda method we get:

rB : a ∼ b ∼ c ∼ d

(since we get {a, b, c, d} = {10, 10, 10, 10}) but if we use the Condorcet method
we get:

rC : a � b � c � d � a

together with a ∼ d and b ∼ c that derive from the former profile.

14 A proposal: a compound method

Now that we have examined in some detail both the Borda and the Con-
dorcet methods we can try to make a merge of such methods so to define a
new composed method that can get the best features from both methods and,
possibly, avoid (this fact must be proved yet) the drawbacks of the Arrow’s
impossibility theorem.
Given a set of n total and without ties preference profiles p1, . . . , pn the proposed
method is based on the following steps:

(1) we apply the Borda method and get a global ranking rB;

(2) we apply the Condorcet method and get a global ranking rC ;

(3) if the two rankings coincide (so rB = rC) the procedure is over;

(4) if the two rankings differ (so rB 6= rC) we firstly consider rC since we
assume that rB may be vitiated by strategic voting;
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(5) if the Condorcet method succeeds then the procedure is over and rC is the
final global ranking;

(6) if the Condorcet method fails we use rB though it can contain ties (but
no cycles).

We say that, in the present context, the Condorcet method succeeds if it does
not fail and fails if rC contains indirect ties. In this case we abandon it since we
want to avoid any “garbage out” effect and aim at getting a total order though
possibly with ties but without cycles.
From what we have seen in the previous sections we can argue that the presences
of a full cycle in the Condorcet method does not necessarily imply the presence
of ties in the Borda method.
We underline that also rB can contain ties as either a full tie or a partial tie
but such ties are assumed to be of less harm in this case and at this level of
decision.
If we have a full tie we can choose one of the alternatives at random since they
are equivalent, at least according to the given preference profiles.
If, on the other hand, we have partial ties they are even less harmful since they,
in the worse case, involve top ranked alternatives as in the full tie case. If, on the
other hand, partial ties involve low ranked alternatives they can be discarded
with no harm since they affect alternatives that the deciders are not going to
select.
In this way we can define a compound voting method that can gather the best
features from both the Borda and the Condorcet methods without possibly
(this fact has not been proved in this TR) suffering the drawbacks of Arrow’s
impossibility theorem.

15 Conclusions

The present TR has presented a detailed analysis of both the Borda method
and the Condorcet method so to understand their properties, their relations and
their weaknesses. The examples we have presented are mainly toy examples but
can be easily generalized. Future plans include a stronger and more accurate
formalization of the two methods and their relations as well as a formal analysis
of the proposed composed method to analyze its properties and to see if it can
represent a loophole from the limitations imposed by the Arrow’s impossibility
theorem.
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