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1 Introduction

Candle auctions have been used in the past as a variant of the English
auction with a random termination time associated either to the going out
of a candle or to the falling of a needle inserted in a random position in a
burning candle ([9], [3], [2], [1]).
In this case such auctions are used by the auctioneer A for the allocation of
a good1 to one of the n bidders bi of the set B.
Our basic motivation for the use of this type of auctions is the following.
We are planning to use such auctions for the allocation of a chore2 ζ at one
bi from the set B whose members have been selected by A using a set of
private criteria3 that do not depend on the willingness to attend of the single
bidders.
The to be selected bidder has to be chosen from the set B given that the
available information about these bidders are imprecise or fuzzy. These fea-
tures prevent the profitable and direct selection of a suitable bidder with the

1We say that an auctioned item is a good if:

- it has a non negative value for the auctioneer A;

- it has a non negative value for each bidder bi;

- the bi attend to the auction on a voluntary basis.

2With the term chore we denote an item that the auctioneer wants to give away but
that the bidders are willing to accept only in exchange of a proper compensation.

3With this we mean that A can choose such criteria in any way he wishes without any
need to justify to anybody his choices.
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guarantee of choosing the best one.
For this reason we plan to adopt an auction mechanism4 ([5]) where the
bidders pay for not getting ζ but one of them has to get it though he also
receives a compensation for being the5 wining bidder.
The compensation to the winning bidder derives him from the other bidders,
the so called losing bidders, and is accumulated during the various steps
or rounds on which the auction is based.

2 The theoretical background

Auctions ([5], [6]) represent an allocation mechanism through which a
resource (the so called auctioned item) is allocated to one actor from a set
of actors called bidders. In classical cases the auction mechanism is charac-
terized by the following features:

- the bidders attend the auction on a voluntary basis;

- the bidders attribute a positive value to the auctioned item so each of
them is willing to bid for getting it;

- the rules of the auction are well known and are common knowledge
among the bidders;

- the valuation that each bidder attributes to the auctioned item deter-
mines his strategy of bidding.

When the auction is over the winning bidder gets the auctioned item and pays
a sum that depends on the structure of the auction. Ties among winning
bidders are resolved with the use of a properly designed random device.
An auction is characterized by an auctioneer (who auctions an item) and a
set of bidders bi (who submit bids xi) and are characterized by the evaluations
mi.
The bids may be ([5, 6]):

- open cry if they are publicly visible;

- sealed if they are made privately and are revealed all at the same time;

4In this paper we are going to use the term mechanism in a rather informal sense as
a set of rules, strategies and procedures. For a more formal use of the term we refer, for
instance, to [5], [6] and [7].

5This seemingly inconsistent naming scheme of winning bider and losing bidders (see
further on) will be made clear in sections 3 and 4.
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- one shot if they are submitted only once;

- repeated if they are repeatedly submitted until a termination condi-
tion is satisfied;

- ascending if they start low and then rise;

- descending if they start high and then decrease.

Classical auctions types include6:

- English auctions;

- Dutch auctions;

- First Price Sealed Bid (FPSB) auctions;

- Second Price Sealed Bid (SPSB) auctions.

In an English auction bids are open cry, repeated and ascending and the win-
ner is the highest bidding bidder who pays the sum he bid that is coincident
to the price at which the second last bidder dropped out.
In a Dutch auction bids are open cry, are offered by the auctioneer and are
repeated and descending. The winner is the bidder who accepts the current
value and that pays such a value.
In an FPSB auction bids are sealed and one shot and the winner is the
highest bidding bidder who pays the sum he bid.
In an SPSB auction bids are sealed and one shot and the winner is the
highest bidding bidder who pays the the second highest bid.
Each evaluation mi represents the maximum sum that each bidder is willing
to pay to accept the auctioned item. Such evaluations may be:

- private if they are independent one from the others so that a reciprocal
knowledge would not change the individual values;

- interdependent if a reciprocal knowledge may change the individual
values;

- common if the evaluations are ex-post the same among the bidders.

6Other possible types of auctions are: all pay auctions, where all the bidders bid and
pay their own bids but only the highest bidding bidder wins the auction, and third price

auctions that are similar to a SPSB auction but for the fact that the paid price is the
third highest bid.
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On the basis of such definitions we note that7:

- Dutch auctions ≡ FPSB auctions;

- under private values, English auctions ≡ SPSB auctions.

Given such equivalences we note that, [5]:

- in a SPSB auction it is a dominant strategy for a bidder to bid his
own evaluation of an item so that we have xi = mi for each bidder;

- if we assume a symmetric model (see further on) in a FPSB auction
it is a dominant strategy for a bidder to bid a little less δ > 0 than his
evaluation. Under the assumption that the evaluations of the bidders
are independent and uniformly distributed over the same interval the
value of δ tends to zero as the number of the bidders increases.

All the types of auctions we have seen so far are characterized by a fixed
termination rule that depends either on the structure of the auction (as it is
in sealed bid auctions) or on the actions of the bidders (as it is in open cry
auctions).
On the other hand we may devise auction mechanisms that terminate inde-
pendently from the actions of the bidders in the sense that they are imple-
mented with an iterative multi step mechanism and at each step there is a
non null probability that the auction ends without the bidder may perform
any bid.
These types of auction have been used as variants of the English auctions and
represent, at least in part, the subject of the present paper. In the literature
([1]) they are seen as a counterpart of the so called hard close auctions, those
auctions that we formerly called classic auctions.

3 Some preliminary remarks

In the present paper we propose an iterative mechanism that is charac-
terized by a certain number L of rounds.
The rounds are numbered as j = 0, 1, 2 . . . , L − 2, L − 1, L but only L are
useful rounds since at the L + 1−th round the auction ends for sure without
any bidder having the possibility of performing any action. This is the main
reason why we speak in many cases of L ticks or times.

7With ≡ we denote a strategic equivalence. Two games are strategically equivalent,
[5], if for every strategy in a game a player has a strategy in the other game with the same
outcome.
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At each round j one of the n bidders bi ∈ B is randomly selected with a
probability equal to π (see equation (1)) and can either accept or refuse

(what this means will be explained in section 4). The presence of this random
selection is enough to qualify the proposed mechanism as a purely probabilis-
tic mechanism.
The auction goes on until a termination condition is verified and then it
stops. At the end of the auction the last accepting bidder is the winning

bidder whereas all the other bidders are the losing bidders (see section 4).
In the proposed mechanism we have introduced the following termination
conditions:

(a) the mechanism is executed a fixed number L of times8 for j =
0, 1, 2 . . . , L − 2, L − 1;

(b) the mechanism is executed L times but each time we have a non null
probability of a premature termination.

We call the case (a) a fixed termination mechanism whereas the mecha-
nism in the case (b) is termed a variable termination mechanism.
The fixed termination mechanism can be used to describe an allocation pro-
cedure where:

- the mechanism has a fixed duration,

- the bidders see it has having a random duration since each of them can
choose an action only if he is selected,

- the bidders are equivalent with regard to the mechanism.

The variable termination mechanism drops the first condition so that we
can use it to model a mechanism with a premature termination due to an
exogenous random pressure. In this case a bidder faces a twofold uncertainty,
on the termination and on the duration, so that when he is selected he can
only make expected guesses.
If we denote as pj the probability that the auction goes on at round j (and
with qj = 1 − pj the corresponding probability of termination at round j):

- in the case (a) we have pj = 1 for j ∈ [0, L − 1] and pL = 0;

- in the case (b) we have:

· p0 = 1,

8We recall that at t = L the auction ends without none of the bidders performing any
action so this last tick at L has a purely formal meaning.
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· pL = 0,

· for j ∈ [1, L − 1] pj is monotonically non increasing.

The last condition allows us to define probabilities that are piecewise con-
stant. A typical case is the following9:

- for j ∈ [0, Lmin] we have pj = 1,

- for j ∈ [Lmin + 1, L − 1] we have that pj is monotonically decreasing,

- pL = 0.

In this case the auction has a minimum guaranteed duration that is common
knowledge among the bidders.
We underline that at each step where the auction does not terminate each
bidder is selected with a probability equal to:

π =
1

n
(1)

whereas the complementary probability of not being selected is:

π̄ = 1 −
1

n
= 1 − π (2)

Meaningful events in the case of a fixed termination are the following:

(ev1) a bidder bi is never selected;

(ev2) a bidder bi is selected at least once;

(ev3) a bidder bi is selected at round h ∈ [0, L − 1] and afterwards he is no
more selected.

If we consider the various selections as independent events we can associate
to the foregoing events, in that order, the following probability values:

P (ev1) = (1 − π)L = π̄L (3)

P (ev2) = 1 − (1 − π)L = 1 − π̄L (4)

P (ev3) = π(1 − π)L−h−1 = ππ̄L−h−1 (5)

Such events may occur also in the case of variable termination but the
corresponding probabilities must be modified to account for the presence of

9We note that Lmin < L − 1.
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the values pj.
We note, indeed, that the probability that the auction lasts for L rounds
(from 0 to L − 1) can be expressed as:

ΠL =
L−1∏

j=0

pj (6)

whereas the probability that it lasts for 0 < h < L−1 rounds can be expressed
as:

Πh =

h−1∏

j=0

pj (7)

We underline how, from the definitions we have given for the values pj, the
probability that it lasts 1 round is equal to 1 and the probability that it lasts
L + 1 rounds is equal to 0 since pL = 0.

4 The basic ingredients

The basic ingredients of the proposed mechanism are therefore:

- an auctioneer A and a set B of n bidders bi, i = 1, . . . , n;

- every bidder bi has the following available individual strategies
Si = {a, r} of either acceptance or refusal;

- every bidder bi is characterized by the number ki of his refusals and the
number k−i of the refusals of the other bidders, both to be initialized
at 0 and one independent from the other10;

- an integer L > 0 and a counter t that starts at 0 and stops not later
than L;

- a fee f and a common pot P (initialized at P = 0) that is the compen-
sation for the winning bidder;

- a set of values pj for j ∈ [0, L] that are common knowledge among all
the bidders;

- a random number generator that generates (according to a uniform
distribution) an integer in the interval [1, n] at each tick of the counter;

10The independence derives from the fact that ki depends on the behavior of bi whereas
k
−i depends on the behaviors of the other bidders.
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- a private value vi that represents the damage that each bidder receives
from the allocation of the chore.

From the foregoing list it should be clear why we call the last accepting bidder
as the winning bidder (so that the other bidders are termed losing bidders):
because he is the one who gets the pot P that is formed, for what concerns
his utility, by the payments of the others.
We note how both the value of L and the entity of the fee f play an impor-
tant role in the mechanism.
The auctioneer A is free to select f at his will and to select L from an inter-
val [Lmin, Lmax]. We note that f is common knowledge among the bidders
whereas both L and the interval [Lmin, Lmax] are a private information of A.
For what concerns f we note that:

- if it is fixed too low the bidders tend to refuse more often than they
accept but the content of the pot may rise too slowly for effectively
compensating the damage deriving from the allocation;

- if it is fixed too high the bidders tend to accept more often than they
refuse so that the content of the pot may rise too slowly for effectively
compensating the damage deriving from the allocation.

On the other hand the values Lmin and Lmax must be selected so that the
value L, though randomly selected, is neither too low nor too high.
If L is too low the probability that all the bidders refuse for the whole du-
ration of the auction is high. On the other hand it is meaningless to have L

too high so that at each step from one value of the counter on all the bidders
accept. In this case the pot is no more incremented and the auction is a mere
waste of time.
We make some more comments in sections 5.2 and 6.2.

5 The fixed termination case

5.1 The basic steps

In the case where the auction has a fixed termination time the rules of
the auctions are the following:

(1) we have an initialization phase where we put P = 0 and t = 0;

(2) at each tick t of the counter from 0 to L − 1 a random integer i is
generated and a bidder bi is selected;
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(3) the bidder bi can either accept or refuse;

(4) if he refuses he adds a fee f to the common pot so that P = P + f ,
t = t + 1;

(5) if he accepts he qualifies as the current candle holder or cch,
t = t + 1;

(6) when the counter expires the possible cch wins the auction and gets
both ζ and the content of the common pot P .

The counter is incremented of one unit at each acceptance or refusal and
runs for L + 1 ticks (from 0 to L) and at t = L it stops with no selection so
that we have only L useful ticks.
At the end of the auction (so when the counter expires) we can have two
cases:

(o1) there is a last cch that is the winner of the auction,

(o2) there is no last cch so the auction is void.

In the case (o1) the last cch bi gets ζ and P with a net utility of:

ui = k−if − vi (8)

as the difference between the net gain that bi receives from P and the damage
he suffers from the allocation of ζ .
From relation (8) we can easily see how the last cch may have also a negative
utility, depending on the value of the parameter k−i in relation to the values
f and vi and so depending on the decisions of the other bidders.
The winning bidder may accept a negative utility if by refusing once more
(and so by paying once more the fee) he would be worse off.
For what concerns the losing bidders bj 6= bi we note that each of them gets
a utility that can be expressed as:

uj = vj − kjf (9)

as the difference between the gain that bj has from the missed allocation of
ζ and the the sums that he has paid for refusing the allocation of ζ .
From relation (9) we can easily see how the losing bidders may have also a
negative utility, depending on the values of the parameters kj in relation to
the values f and vj . We note that kj depends only on the decisions of the
bidder bj and on the chances of being selected at each step.
A losing bidder may accept a negative utility if by by accepting he would be
worse off so that he is better off even if he has to pay once more the fee.
The case (o2) can occur in the following two cases:
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(1) if each bidder refuses at every tick from 0 to L;

(2) if each bidder refuses at every tick from h to L, including the last bidder
who accepted at h − 1.

In the case (1), at the end of the auction we have P = Lf and the auctioneer
can use this sum to allocate the chore to a different player not included in
the set B by having the members of B pay him a compensation. In section
5.2 we are going to show how, at least in the current fixed termination case,
this case can hardly ever occur in practice.
In the case (2) we have that one or more bidders, when selected, at the
beginning accept but, from a certain round onwards, they all refuse so that
we have no accepting bidder11.
In this case at the end of the auction we have P = kf with k ∈ [1, L−1] and
the auctioneer can use this sum to allocate the chore to a different player not
included in the set B.

5.2 The possible collective and individual strategies

In the current fixed termination case every bidder knows how long the
auction is going to last for sure and this feature is a common knowledge
among the bidders.
What each bidder does not know for sure, before the end of the auction, is:

- if and when he can be selected,

- once selected, if and when he will be selected again.

We can express this fact by saying that the probability that the auction ends
at step h for a given bidder has a value given by relation (5).
We recall indeed that the bidder bi can play his individual strategies
Si = {a, r} only if he is selected and this can occur, at every round, with
a probability π.
From this policy we have that if a bidder is no more selected for him the
auction has ended the last time he has been selected (though he is sure of
this only when the auction actually ends).
When a bidder is selected at round h he can choose one of his available
actions depending on:

- the value of f ;

11In section 5.2 we are going to see under which conditions this collective behavior can
occur.
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- the value of h;

- the value of ki;

- the value of k−i;

- the value of vi.

In this section we start by examining some particular collective strategies
and then we examine the various possibilities that a bidder has at a generic
round h ∈ [0, L − 1].
For what concerns the collective strategies we want to verify if and under
which conditions the following collective strategies are a Nash Equilibrium
(NE, [8], [7], [4]):

(cs1) each bidder, upon a selection, always accepts;

(cs2) each bidder, upon a selection, always refuses.

In the case (cs1) in order to verify that it is a NE we can proceed as follows.
We assume to have L − 1 consecutive acceptances (from 0 to L − 2) and we
see if a bidder selected at the L−th round is better off by accepting or by
refusing. In the first case (cs1) is a NE otherwise not.
So we suppose to have12:

a0, a1, . . . , aL−2, xL−1 (10)

where x may be either a or r.
In order to make the desired verification we note that at round L−2 we have
had only acceptances so that we have13 P = 0 so when the currently selected
bidder bi has to choose an action he considers that, from relations (8) and
(9):

- if he accepts he has a utility ui = −vi,

- if he refuses he has a utility ui = vi − f since ki = 1.

In this case bi refuses if vi−f > −vi or if f < 2vi (and therefore the collective
strategy of all acceptances is not a NE) but accepts if f ≥ 2vi so that that
the collective strategy of all acceptances would be a NE. We are going to
make some more comments shortly.

12We use the notation ah to denote an acceptance from any of the bidders at step h

and xh to denote a generic action at step h. We are not interested in putting in evidence
repeated acceptances from the same bidder.

13We note that P = (ki + k
−i)f so if P = 0 we have ki = 0 and k

−i = 0 and vice versa.
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In the case (cs2) we have a succession of refusals14 and we want to verify if
the bidder bi selected at round L−1 is better off by accepting or by refusing.
We therefore want to verify if, in the succession (11), the x must be an a or
an r:

r0, r1, . . . , rL−2, xL−1 (11)

In order to verify this we note that at round L − 2 we have, owing to L − 1
consecutive refusals, P = (L − 1)f = (ki + k−i)f so when the currently
selected bidder bi has to choose an action at round L − 1 he considers that,
from relations (8) and (9):

- if he accepts he has a utility ui = k−if − vi,

- if he refuses he has a utility ui = vi − (ki + 1)f (since by refusing he
has to pay once more the fee).

In this case bi at round L − 1 refuses if:

vi − (ki + 1)f ≥ k−if − vi (12)

or if:

2vi ≥ k−if + (ki + 1)f = (k−i + ki)f + f = (L − 1)f + f = Lf (13)

So if:

f ≤
2vi

L
(14)

then bi refuses and we have that the collective strategy of all refusals is a
NE otherwise he accepts and that collective strategy is not a NE.
We have therefore derived that if:

2vi

L
< f < 2vi (15)

the foregoing collective strategies are not NE so that we are sure that at the
end of the auction:

- there will be a winning bidder,

- there will be an effective content of the pot P 6= 0 to compensate him.

14We use the notation rh to denote a refusal from any of the bidders at step h and xh to
denote a generic action at step h. We are not interested in putting in evidence repeated
refusals from the same bidder.
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Such conditions depend, however, on the value vi of the last selected bidder
and on the random value L. In order to make them operational we can choose
a suitable pair v, v̄ such that:

vi ∈ [v, v̄] (16)

or:
v < vi < v̄ (17)

for every bi. In this way we can fix f such that:

2vi

Lmin

<
2v̄

Lmin

< f < 2v < 2vi (18)

Before examining other strategies that are individually available to the bid-
ders we make some comments and introduce some definitions.
At each step t ∈ [0, L − 1] bi, if he is selected, can either accept or refuse
and is characterized by the following parameters that influence his decision
at that step:

(1) k−i(h− 1) or the number of the refusals from the bidders bj with j 6= i

up to the step h − 1 with the conventional initialization, for h = 0, as
k−i(−1) = 0;

(2) ki(h − 1) or the number of the bi’s own refusals up to the step h − 1
with the conventional initialization, for h = 0, as ki(−1) = 0.

In this way we can state that:

(1) if bi is not selected at a step h we have:

ki(h) = ki(h − 1) (19)

so that ki is constant with h whereas we have:

k−i(h) ≥ k−i(h − 1) (20)

so that k−i is not decreasing with h;

(2) if bi is selected at step h we have:

k−i(h) = k−i(h − 1) (21)

so that k−i is constant with h whereas we have:

ki(h) = ki(h − 1) + δh (22)

In relation (22) we have δh = 1 if, at step h, bi refuses and δh = 0 if at
step h bi accepts so that ki is not decreasing with h.
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In order to state the criteria according to which bi chooses an action at step
h we define the maximum number of refusals from the other bidders from
step h + 1 to step L − 1 as:

R(h) = L − h − 1 (23)

and the following parameters that define the decision of bi at step h according
to their signs:

α1(h) = k−i(h − 1)f − vi

α2(h) = (k−i(h−1)+R(h))f−vi = α1(h)+R(h)f so that α2(h) ≥ α1(h),

α3(h) = vi − ki(h)f = vi − (ki(h − 1) + δh)f from (22).

In this way α1(h) represents what bi gains if he accepts at step h in the
prospect of being the last cch whereas α2(h) represents the highest gain bi

can obtain if he accepts at step h in the prospect of being the last cch.
It is easy to understand how the signs of α1(h) and α2(h) are related, in some
way to be specified, whereas that of α3(h) is determined independently. From
the foregoing definitions it is easy to derive the following conditions:

(1) if α1(h) ≥ 0 then α2(h) ≥ 0,

(2) if α2(h) < 0 then α1(h) < 0,

(3) if α1(h) < 0 then α2(h) can be of any sign depending on the value of
R(h) (so it is unconstrained),

(4) if α2(h) ≥ 0 then α1(h) can be of any sign depending on the value of
R(h) (so it is unconstrained),

(5) α3(h) is positive up to a value k̄i and from that value on it is negative.
With this we mean that we can define:

k̄i = ⌊
vi

f
⌋ (24)

such that:

- for ki < k̄i if bi refuses at h we have α3(h) ≥ 0,

- for ki ≥ k̄i if bi refuses at h we have α3(h) < 0.
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From the foregoing definitions and considerations we have that if bi is selected
at step h he can choose his best action from the set15 Si = {a, r} according
to the following algorithm16,17:

if with δh = 1 α3(h) ≥ α2(h) then bi selects r

else [here bi, by refusing, is not sure to have a greater gain]

if α1(h) ≥ 0 or α2(h) ≥ 0 then bi selects a

else [we are in the case α1(h) < 0 and α2(h) < 0]

if with δh = 1 α3(h) ≥ 0 then bi selects r

else [we are in the case α1(h) < 0, α2(h) < 0 and α3(h) < 0]

if α3(h) > α2(h) then bi selects r

else bi selects a

The condition α3(h) ≥ α2(h) with δh = 1 (and so with a refusal from bi at
step h) can be expressed as:

vi − ki(h − 1)f − f > k−i(h − 1)f − vi + R(h)f (25)

or:

2vi > k−i(h − 1)f + ki(h − 1)f + f + R(h)f = P (h) + f + R(h)f (26)

From relations 18 between f and the values vi we have that such condition
is rarely, if ever, verified so that we are going to discard completely the
corresponding case in the considerations that follow.
We recall that we have18 α2(h) = α1(h) + R(h)f where R(h) is the number
of steps from h + 1 inclusive to L− 1 inclusive. In this way at the step h the
best that bi can expect is R(h) refusals from the other bidders. Moreover we
can make the following considerations.

- If at step h we have α2(h) < 0 then ∀h′ > h we have α2(h
′) < 0. Such

feature derives from the fact that we have α2(h
′) ≤ α2(h) since we have

R(h′) ≤ R(h) owing to the fact that some players bj with j 6= i can
accept and that bi can be selected again so that not all the steps can
turn into useful refusals.

15We recall that in the set Si = {a, r} a stands for acceptance and r for refusal.
16We recall that the negative of the proposition aor b is ¬aand¬b and that the negative

of x ≥ 0 is x < 0.
17In the pseudo code we represent comments as text within square brackets.
18We note that α2(h) attains its maximum value at h = 0 where R(h) = L − 1.
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- If at step h we have α2(h) ≥ 0 with a given R(h) at h′ > h, since we
have R(h′) < R(h), we can have α2(h

′) < 0.

- From such considerations we have that for α2(h) we can have either a
permanence of the sign − or + or a switch of sign from + to −.

- If at step h we have α1(h) ≥ 0 then at every step h′ > h we have
α1(h

′) ≥ 0 since we have k−i(h
′) ≥ k−i(h).

- If at step h we have α1(h) < 0 (and this is true at step 0) then at the
step h′ > h we can have α1(h

′) ≥ 0 since we have k−i(h
′) ≥ k−i(h).

- From such considerations we have that for α1(h) we can have either a
permanence of the sign − or a switch of sign from − to +.

We can therefore devise the following strategies19 for a bidder bi:

- if we have α2(0) < 0 then α2(h) < 0 at every step h > 0 so that, by
property (2) and since α2(h) ≥ α1(h) for every h, we have α1(0) < 0 and
α1(h) < 0 and therefore bi is better off if he refuses at every selection
at least until ki < k̄i since from that point on he may be better off by
accepting according to the algorithm we provided;

- if we have α1(0) < 0 and α2(0) ≥ 0 then at the beginning, upon being
selected, bi is better off by accepting until at some h we have α2(h) < 0
so that bi is better off if he refuses at every selection at least until
ki < k̄i since from that point on he may be better off by accepting
according to the algorithm we provided;

- if we have α1(0) < 0 and α2(0) ≥ 0 then at the beginning, upon being
selected, bi is better off by accepting and he is better off if he keeps on
accepting if there is a step h form where we have also α1(0) ≥ 0 (see
also the algorithm we provided).

Such strategies can be summarized by Table 1 that is used by each bidder bi

if he is selected at step h. With yes we denote the fact that the sign of α3(h)
plays a role in the decision that may be either a refusal (r) or an acceptance
(a) whereas if an entry contains no this means that the sign of α3(h) plays
no a role in the decision. The other entries have an easy interpretation.
If a bidder bi accepts at step h we have:

19We note how the cases:

α1(0) ≥ 0 and α2(h) < 0,

α1(0) ≥ 0 and α2(h) ≥ 0,

are impossible cases from the very definitions of αi(h) and αi(h).
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α1(h) - - +
α2(h) - + +
α3(h) yes no no
action r/a a a

Table 1: Signs and actions

- he is no more selected for h′ > h and there are only refusals from
the other bidders then he has a gain otherwise, if there is at least one
acceptance, he is better off since he did not pay the fee f at step h;

- he is selected again at step h′ > h he can revise his decision and in any
case he is better off since he did not pay the fee f at step h.

We recall that bi at step h, if he is selected, takes a decision according to the
signs of α1(h), α2(h) and α3(h) but he has no influence, unless he is selected
again, at step h + 1 where a bidder bj (with j 6= i) can replace him as cch.
As a last issue we examine the cases where we can have no last cch so that
we can define the auction as void. From what we have seen up to this point
this eventuality can happen in the following cases:

(1) every bidder refuses at every step h ∈ [0, L − 1],

(2) we may have some acceptances from 0 to h− 1 but from h on to L− 1
we have only refusals even from the last accepting bidder.

For what concerns the case (1) we refer to what we have said about it at the
beginning of this section.
For what concerns the case (2) we note what follows.
Since we are in a case different from case (1) we must have at least one
acceptance and since we are in the case (2) we must have a last acceptance
followed by only refusals.
We assume such last acceptance at step h from bidder bk. We have the
following two cases:

- bk accepts for α1(h) ≥ 0;

- bk accepts for α2(h) ≥ 0 but with α1(h) < 0.

In the former case this last acceptance can never be turned into a refusal
since the characterizing condition holds for any h′ > h so bk is the last
cch since all the distinct bidders that are selected afterwards refuse and bk

cannot be selected again since otherwise he should refuse notwithstanding
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the acceptance condition is verified (so we have a contradiction).
In the latter case for all h′ ∈ [h + 1, L − 1] we can have only refusals from
the bidders bi with i 6= k since we are assuming to have the last acceptance
at step h. From this we have that the acceptance condition for bk is possibly
backed up (since we can have also α1(h) ≥ 0) so also in this case bk is the
last cch.
In this way we assume implicitly that bk is no more selected for all h′ ∈
[h + 1, L − 1]. Since we are assuming a last acceptance at step h we have
that if the condition of acceptance for bk is verified for any h′ ∈ [h+1, L− 1]
then bk cannot be selected again otherwise he should refuse notwithstanding
the acceptance condition is verified.
We have to prove the last claim we made about the validity of the acceptance
condition for bk if he is selected again at h′ > h.
Upon a new selection at h′ > h if we have α1(h

′) ≥ 0 then bk should accept
against the fact that the acceptance at h is the last one so that new selection
of bk is impossible.
If we have α2(h

′) ≥ 0 and α1(h
′) < 0 we can make similar considerations.

The hard case is if α2(h
′) < 0 (and so α1(h

′) < 0) though this case can occur
only if we have:

α2(h
′) = α2(h) − f < 0 (27)

whereas in all the other cases it is not verified and we are back to the pre-
ceding cases.
We have therefore proved that case (2) can hardly ever occur. If anyway it
occurs we have that the auctioneer can use the content of the pot:

P ≥ (L − h − 1)f (28)

(since there can have been some refusals in the steps from 0 to h − 1) to
allocate the auctioned item to one actor distinct from the bidders bi.

6 The variable termination case

6.1 The basic steps

In this case at every step j ∈ [0, L − 1] we have a probability pj that
the auction ends at that step (see section 3). The proposed procedure is
therefore based on the following steps:

(1) starts at j = 0 with all the variables properly initialized among which
we have P = 0;
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(2) at step j we see if the auction can go on (with a probability pj) or must
stop (with a probability 1 − pj);

(3) if it must stop go to (7);

(4) if it can go on a bidder bi is randomly selected;

(5) if bi accepts then bi is the cch; j = j + 1; go to (2);

(6) if bi refuses then P = P + f ; j = j + 1; go to (2);

(7) the final cch gets P and ζ ;

(8) end;

The auction can end either at t = L or at any step h < L.
The former case occurs with a probability:

p̄ =

L−1∏

j=0

pj (29)

and for its analysis we refer also to section 5.
The latter case occurs with a probability:

1 − p̄ (30)

In both cases the final cch at step (7) (if it exists) is the current cch when
the auction ends otherwise the auction is void and the auctioneer can use
the content P of the pot to allocate the auctioned item to an actor distinct
from the bidders bi.
The termination of the auction at every step is determined with the use
of a properly defined random device that uses a predefined distribution of
probability values (so pj and 1 − pj at every step j) that are assumed to be
common knowledge among the bidders.
From the structure of the auction and from what we have seen in section 3
we easily derive that at step h:

(1) every bidder bi knows his current situation as represented by the values
ki(h − 1) and k−i(h − 1);

(2) every bidder bi can evaluate the probability that the auction goes on
for k more rounds up to round L − 1;

(3) every bidder bi can evaluate the probability of being selected once again
before the end of the auction.
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The values at point (1) define the past for each bidder whereas those at points
(2) and (3) define his future for what concerns the length of the auction and
the probability of a further involvement in the auction. With this we mean
that every bidder bi knows if his past is profitable or not and can guess if his
future is promising or not.
The past is profitable for bi if at step h we have (see section 5.2):

α1(h) = k−i(h − 1)f − vi ≥ 0 (31)

(upon an acceptation) or:

α3(h) = vi − ki(h)f ≥ 0 (32)

where:
ki(h) = ki(h − 1) + 1 (33)

upon a refusal so we have δh = 1.
On the other hand the future is promising if the expected gain (including the
gain from the past) is positive or if:

α̃2(h) ≥ 0 (34)

with:
α̃2(h) = k−i(h − 1)f + k̃f − vi = α1(h) + k̃f (35)

where k̃ assumes a value k ∈ [1, R(h)] with a probability P (k|h) (to be defined
shortly) and R(h) = L − h − 1 is the number of rounds after round h up to
the maximum duration of the auction at L − 1.
With P (k|h) we define the probability that the auction lasts k more rounds
having reached round h.
We recall that ph is the probability that at round h the auction goes on so
that we can define the probability that the auction lasts for k more rounds
having reached round h as:

phk = P (k|h) =

h+k∏

j=h+1

pj (36)

From definition (36) we derive:

P (L − h − 1|h) =
∏L−1

j=h+1
pj

P (1|h) =
∏h+1

j=h+1
pj = ph+1
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We recall indeed that between h + 1 and L − 1 we have:

L − 1 − h − 1 + 1 = L − h − 1 (37)

rounds.
In relation (35) we have a random contribution P (k|h)kf that is composed
of two parts:

- one that increases with k or kf ;

- one that decreases (since pj < 1 for each j 6= 0) with k or

P (k|h) =
h+k∏

j=h+1

pj (38)

Since the values pj form a non increasing succession of values with j we have:

pk
h+k ≤ P (k|h) ≤ pk

h+1 (39)

From the definition (36) and from the properties of the values pj we can
easily derive the following properties:

(a) phk > phk′ for every k′ > k;

(b) phk > ph′k for every h′ > h;

(c) phk > ph′k′ for every h′ > h and k′ > k.

We moreover have, since pj < 1 for every j 6= 0 that:

pk
h+1

→ 0 as k increases,

pk
h+k → 0 as k increases,

so, from relation (39), we have that:

phk → 0 as k increases.

In this case we have assumed (see section 3):

(1) p0 = 1,

(2) pj < 1 and decreasing for any j > 0,

(3) pL = 0.

If, on the other hand, we assume (see section 3) for instance:
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(4) pj = 1 for any j ∈ [0, Lmin],

(5) pj < 1 and decreasing for any j ∈ [Lmin + 1, L − 1],

(6) pL = 0,

we can make the following considerations:

- if h > Lmin the bidders behave as in the previous case,

- if h ≤ Lmin the bidders must consider that the auction has a minimum
guaranteed duration so that they define:

α̃2(h) = αi(h) + R(h)f + k̃f (40)

where R(h) = Lmin − h is the maximum number of refusals from the
other bidders in the guaranteed rounds of the auction and k̃ assumes a
value k ∈ [1, L − Lmin − 1] with a probability P (k|h). In this case the
bidders can use a variant of the algorithm we are going to present in
section 6.2 to account for the presence of the term R(h)f .

In what follows, owing to space constraints, we focus only on the case where
assumptions (1), (2) and (3) hold.

6.2 The possible collective and individual strategies

At this point we can consider what we have seen in section 5.2 and extend
it to the new situation where the bidders know the probabilities pj (for j ∈
[0, L− 1] since pL = 0) and can guess the probabilities phk = P (k|h) for any
h ∈ [1, L − 1] and k ∈ [1, L − h].
It is easy to see how, for h = L − 1, we have (by similar arguments to those
we used in section 5.2):

- a succession of L acceptances is not a NE for the same reasons we saw
in section 5.2;

- a succession of L refusals may not be a NE for the same reasons we
saw in section 5.2.

We underline how, from property (a) of section 6.1, the value P (L − 1|0)
(with p0 = 1) represents the minimum value of phk so that such successions
are events with a low probability of occurring.
Within the current framework where the auction can end at step h inde-
pendently from the actions of the bidders we must consider the following
successions:
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(1) of h refusals from 0 to h − 1,

(2) of h acceptances from 0 to h − 1.

Both successions occur with the following probability:

(1 − ph)

h−1∏

j=0

pj (41)

In the case (1) the auction is void but the auctioneer can use the final content
of the pot P = hf to allocate the auctioned item to an actor that is distinct
from the bidders.
A succession of h refusals is motivated from the fact that no bidder finds
the content of the pot as worth enough and, at the same time, none of them
thinks the auction is going to last long enough to get a gain from it.
In the case (2) the auction is not void (since the last accepting bidder is the
final cch) but the bidder who gets the item ζ has no compensation since the
pot is empty (no bidder ever paid the fee f).
A succession of h acceptances can depend on the fact that either refusing is
too costly or that each bidder thinks the auction is going to last enough so
to have a gain from accepting or that both conditions hold.
In order to understand if such successions can occur we must examine the
individual strategies of the bidders to be formalized with an algorithm, ac-
cording to the same approach we have used in section 5.2.
In the current case the behavior of each bidder depends on the sign of the
following parameters:

(1) α1(h) = k−i(h − 1)f − vi,

(2) α̃2(h) = k−i(h − 1)f − vi + k̃f = α1(h) + k̃f ,

(3) α3(h)vi − ki(h)f with ki(h) = ki(h − 1) + δh.

We recall that k̃ is a random variable that represents the maximum number
of refusals from the bidders bj with j 6= i from the round h + 1 to the end of
the auction ans is associated with the probability phk = P (k|h) so that we
have k̃ = k with that probability.
The algorithm we are going to present shortly is based on the following
strategy. At the step h bi is selected so that he can evaluate the maximum
value of k̃ such that, with δh = 1 (and so by refusing at h) he has:

α3(h) > α̃2(h) (42)
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If such a value is associated with a low probability then he is better off by
refusing. Similar considerations hold in all the cases where bi has to deal with
α̃2(h) and so with k̃. If the needed value is associated with a sufficiently high
probability then bi can bet on it otherwise he is better off by non betting and
by choosing the alternative course of auction (if any).
At the beginning of the auction (and so at h = 0) we conventionally have
k−i(−1) = 0 and ki(−1) = 0 so we have:

(1’) α1(0) = −vi,

(2’) α̃2(0) = −vi+k̃f where k̃ assumes a value in [1, L−1] with a probability
P (k|0),

(3’) α3(0)vi − ki(0)f with ki(0) = δh.

From the above definitions (1), (2) and (3) we derive the following properties
(fully analogous to those we have seen in section 5.2):

(1) if α1(h) ≥ 0 then α̃2(h) ≥ 0,

(2) if α̃2(h) < 0 then α1(h) < 0,

(3) if α1(h) < 0 then α̃2(h) is unconstrained,

(4) if α̃2(h) ≥ 0 then α1(h) is unconstrained,

(5) if α1(h) ≥ 0 then for any h′ > h we have α1(h
′) ≥ 0,

(6) α̃2(h) ≥ α1(h).

From these premises we can devise the following algorithm that each bidder
bi can use to determine his choice of an action from the set Si = {a, r} at the
generic step h (after the termination test has been executed, see the steps
(2), (4) and (5) of the procedure at the beginning of section 6.1)20:

if with δh = 1 α3(h) ≥ α̃2(h) then bi selects r

else [here bi, by refusing, is not sure to have a greater gain]

if α1(h) ≥ 0 or α̃2(h) ≥ 0 then bi selects a

else [we are in the case α1(h) < 0 and α̃2(h) < 0]

if with δh = 1 α3(h) ≥ 0 then bi selects r

else [we are in the case α1(h) < 0, α̃2(h) < 0 and α3(h) < 0]

20In the pseudo code we represent comments as text within square brackets.
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if α3(h) > α̃2(h) then bi selects r

else bi selects a

The condition α3(h) ≥ α̃2(h) means that bi thinks it is unlikely that the
auction is going to last a number of rounds that is sufficient to have him
collect the minimum number of refusals from the other bidders so he is better
off by refusing at the current step.
If this condition is falsified b : i tries to see if he can have a gain by accepting.
If also this attempt fails he then tries to minimize his damage by choosing the
best worst action. The difference with the algorithm in the fixed termination
case is due to the fact that bi may guess the needed value of k̃ with its
associated probability and then he behaves in the proper way depending on
such value of probability.

7 Concluding remarks

The present paper introduces two repeated or multi shot auction mecha-
nisms. In both mechanisms the bidders are selected at each step according
to a uniform distribution and each bidder can perform a choice (accept or
refuse) only if he is selected.
In this way each bidder has a random termination time for his participation
to the auction as the last time he is selected. On the other hand every bidder
is influenced by the decisions of the others.
If bi at step h is selected and accepts he becomes the cch. He keeps this
title upon successive refusals from the other bidders (that make him better
off) and upon his own successive acceptances (upon being selected) and loses
it upon any acceptance of one of the other bidders or upon his successive
refusal.
In the former mechanism this random selection is the only probabilistic el-
ement we introduced in the procedure whereas in the latter we introduced
a further probabilistic device since we allowed each step to be assigned a
probability of premature termination at that step.
Both mechanisms have been presented and described together with some
strategies for the bidders.
Their formal treatment must, however, still be completed and will be the
subject of further research efforts.
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