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Abstract. Are the patterns of car travel different from those of general
human mobility? Based on a unique dataset consisting of the GPS tra-
jectories of 10 million travels accomplished by 150,000 cars in Italy, we
investigate how known mobility models apply to car travels, and illus-
trate novel analytical findings. We also assess to what extent the sample
in our dataset is representative of the overall car mobility, and discover
how to build an extremely accurate model that, given our GPS data,
estimates the real traffic values as measured by road sensors.
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1 Introduction

The analysis of human movement has received increasing attention in the last
decade, due to the emergence of big mobility data, portraying mobility activity
at an unprecedented scale and detail. Data collected by wireless technologies,
such as GPS and mobile phone networks, constitute a brand new social mi-
croscope, which promises to help us discover the hidden patterns and models
that characterize the trajectories humans follow during their daily activity. This
direction of research has recently attracted scientists from diverse disciplines,
notably data mining and network science, also given its importance in domains
such as urban planning, sustainability, transportation engineering, public health,
and economic forecasting.

In this paper, we focus on mobility by car, the most popular private means
for transportation in the current society. We have access to a unique dataset
consisting of the detailed spatio-temporal trajectories of approximately 10 mil-
lion travels, accomplished by more than 150, 000 cars in central Italy during the
month of May 2011. Starting by the preferential return model for human mobil-
ity introduced by Barabási and others in [3, 4], which explains the patterns and
laws governing the key phisical quantities of human movements, we address the
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following question: does this model apply to car travel? Models in [3, 4] are devel-
oped with reference to mobile phone data, which have two main differences with
respect to our GPS data: mobile phone data pertain to general mobility (while
GPS data pertain only to cars) and are much less detailed than GPS trajecto-
ries, the latter providing for the precise spatio-temporal records of each travel
with high exact geo-location and high sampling rate. It is therefore legitimate
to investigate to what extent the previous models apply to GPS data, which
deviations are observed, and which new analytical opportunities are provided by
the finer spatio-temporal granularity. On the other hand, it is compulsory to in-
vestigate to what extent our GPS data are representative of the overall vehicular
mobility, in order to generalize the validity of our findings. To this purpose, we
use independent ground-truth measurements of global traffic volumes obtained
by sensors placed in a set of locations during the same observational period of
our GPS data, and show that the GPS data are an extremely accurate estimation
of the overall volumes in each location.

2 Related works

In the past few years, the exploding prevalence of mobile phones, GPS naviga-
tors, and other handheld devices allowed scientists to track human mobility and
to test mobility models on a fertile ground. González et al. [3] analyzed a massive
mobile phone dataset, and found a power law in the distribution P (rg) of the
radius of gyration rg, the characteristic distance traveled by a user. Authors of
[4] discovered that the number of distinct location visited by humans is sublin-
ear in time, while the probability of a user to visit a given location presents a
Zipf-like distribution. Bazzani et al. [5] discussed an exponential law for the tra-
jectories distribution in a urban road network, using a GPS dataset on private
cars similar to ours. In [6], Lee et al. clustered visit points from a GPS dataset
to form hot spots, finding that the pausetime distribution in hot spot follows
a truncated power law consistently with [5]. From the data mining community,
authors of [2] presented an extensive set of analyses on large sets of GPS data.

Predicting and estimating the number of vehicles is a crucial component of
advanced traffic management and information system. Factor approaches are the
most popular methods, and are generally implemented by developing a set of fac-
tors from historical data and applying them on new data to make predictions [7].
Locally weighted regression is a memory-based algorithm that learns continuous
mappings from real-valued input vectors to real-valued output vectors. It assigns
a weight to each training observation depending on the location of the training
point in the input variable space relative to that of the point to be predicted [8].
Artificial neural networks and support vector machines also have proved to be
valid alternatives for modeling and predicting traffic counts [9].
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3 Understanding the patterns of car travel

Our GPS dataset stores information of approximately 9.8 Million different car
travels from 159, 000 cars tracked during one month (May 2011) in an area
corresponding to central Italy (a 250km×250km square). The GPS traces are
collected by a company that provides a data collection service for insurance
companies, covering around 2% of the total registered cars1. The GPS device
is automatically turned on when the car is started, and the global trajectory
of a vehicle is formed by the sequence of GPS points that the device transmits
each 30 seconds to the server via a GPRS connection. When the vehicle stops no
points are logged nor sent. We exploit these stops to split the global trajectory
into several sub-trajectories, that correspond to the travels performed by the
vehicle. Clearly, the vehicle may have stops of different duration, corresponding
to different activities. To ignore small stops like gas stations, traffic lights, bring
and get activities and so on, we chose a duration threshold of at least 20 minutes:
if the time interval between two consecutive observations of the car is larger
than 20 minutes, the first observation is considered as the end of a travel and
the second observation is considered as the start of another travel.

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

��
�

�
��

��

�
�
�����

�
�

�����

�������
��������

��
��

��
��

��
��

��
��

��
��

��
��

��
�

�� ��� ����

�
��
�
�

�������

��

�������
�
�
��
�
��������

���

���

���

���

���

���

���

�� ��� ��� ��� ��� ���� ���� ���� ����

�
��

�
��

�
��
��
�
�

�������

��
�

��
�

��
�

��
�

��� ����

�
��
�

�������������

������
������

�������
�������

��������
��������

�
����

�
����

��
��

��
��

��
��

��
��

��
�

��� ����

� �

�

����

����

����

�����

�����

�
�����

Fig. 1. (Top Left) Probability density function of travel distances in kilometers. (Top
Center) Distribution of the radii of gyration. (Top Right) Correlation between rg and
the distance d(cm, L1). (Bottom Left) Number of visited distinct location over time
for different rg groups. (Bottom Right) Visitation frequency of the kth most visited
location, for users that have visited s = 40, 60, 80, 100 and 120 different locations.

1 http://www.octotelematics.it/
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Our first measurement is the distribution of travel length, from which two
different regimes clearly emerge (Figure 1, left). The first one (from 1 to about
20 km) corresponds to low range travels, mainly located within the cities, and is
characterized by an exponential distribution. The second regime corresponds to
inter-city travels (i.e. travels connecting different urban areas), and is governed
by a power law distribution with exponent β = 2.53. Here, the observed scaling
exponent is different from the one observed for GSM data (β = 1.75) [3], since
it is influenced by a reduced range of distances in the GPS dataset. Indeed,
both geographical and physical boundaries (the region considered has a length
of about 500 km and travels longer than 500 km are rare) provide a limitation to
the range of possible distances. In order to characterize human mobility patterns
emerging from available trajectories, we used the radius of gyration as the char-
acteristic travel distance covered by each individual, a measure of how far a car
is from its center of mass (mean location) [3]. Formally, the radius of gyration
of a user u is defined as

rug =

√√√√ 1

nu

nu∑
i=1

(rui − rucm)2, (1)

where rui represents the i = 1, . . . , nu positions recorded for the user u, and
rucm = 1

nu

∑nu

i=1 r
u
i is the center of mass of the trajectory. For each user in

the dataset D1, we calculated his radius of gyration by taking all points com-
posing his sub-trajectories as the nu recorded positions. Then, we plotted the
distribution of rg, observing a power law with an exponential cutoff, P (rg) ∼
(rg + r0)−β exp(rg/τ) where r0 = 5.54, β = 1.13 and τ = 39.76 (Figure 1, cen-
ter). Such curve agrees with the previous results found on GSM data (power law
with β = 1.65) [3], confirming that the majority of users travel within a small
distance, but some of them carry out long journeys. The difference between the
predicted distribution and the observed behavior for people with low rg (up to
5km) is presumably due to the tendency of covering small distances by foot,
bike, or bus, resulting in a low probabilty to find such travels in our dataset.
Figure 2 shows the spatial distribution of the centers of mass and most fre-
quent locations, with the color representing the value of relative rg. People with
high radius of gyration concentrate their center of masses in the countryside, in
the mountains (Appennines) and on the coast, whereas those with lower rg are
mainly located in urban areas. Another interesting characteristic of individual
mobility we consider is the most frequent location L1, i.e. the zone where a ve-
hicle can be located with highest probability when it is stationary, most likely
his home or work. To estimate L1 for a user u, we calculated all the locations
where he goes by extracting origin and destination points of his sub-trajectories,
without taking into consideration the time spent in each location by the vehicles.
Then, we applied on such points the Bisecting K-means clustering algorithm, an
extension of K-means algorithm that splits the set of all points in two clusters,
dividing recursively the obtained clusters until they have a radius smaller than
or equal to a threshold, set in our experiments to 250 meters. The centroid of
the cluster with the highest frequency is chosen as L1 for the user u.



Validating general human mobility patterns on massive GPS data 5

Fig. 2. Spatial distribution of centers of mass (left) and most frequent locations (right)
on the map of central Italy.

The most frequent location does not necessarily coincide with the center of
mass, and the distance d(L1, cm) tends to grow with rg. The strong correlation
in Figure 1 (Top Right) shown is not obvious, and it is presumably due to the
systematic nature of human motion. Indeed, if a person travels arbitrarily on any
direction from and to the same preferential location, then the distance between
cm and L1 would tend to zero, and the radius of gyration would have no relation
with such distance. On the contrary, since each vehicle follows systematic travels
among few preferred places, the center of mass is pulled by these trips towards
the mean point of the frequent locations. Therefore, the more a vehicle travels
away from its L1, the more the center of mass tends to be distant from the most
frequent location. Figure 1 (Top Right) also suggests that people with low rg
have a larger probability to be located near the place where they live or work.
On the contrary, people traveling at large distances tend to be located in distant
places, depending on the fact that they are moving or not. Such phenomenon
is confirmed by plotting on the map L1 instead of rcm, and noting that points
corresponding to users with high radius of gyration move towards urban centers,
showing a power of attraction of cities on mobility by car (Figure 2).

In order to estimate the trend of people to visit new distinct locations, we
extracted the number of clusters S(t) visited by a user, finding a power law
S(t) ∼ tµ. For users having a small rg (within 1km), the exponent of power
law is µ ≈ 0.3, while it grows for users traveling at large distances from the
center of mass, µ = 0.65 ± 0.03 (Figure 1 bottom left). In both cases, the fact
that µ < 1 indicates a decreasing tendency of users to visit previously unvisited
locations. Moreover, the visitation frequencies of individuals, that measures to
what extent individuals return to the same place over and over, follow a Zipf’s
like distribution fk ∼ k−1.2 (Figure 1, bottom right), confirming the pattern
found in [4].
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The results of our analysis substantially confirm and refine the mobility pat-
terns found on GSM data [3], with a difference in the population of very short
range travelers which is underrepresented with respect to the prediction. This
suggests that movements by car represents a significant portion of human trav-
els, serving as a good social microscope that enables us to observe habits, trends
and patterns in human mobility behavior.

4 Inferring traffic count by GPS data

GPS data representing movements of cars traveling within an urban territory
could be very useful to address urban traffic monitoring and prediction, provided
that this data are a trustable proxy of ground-truth. This is also important to
assess the generality of our analytical results: to what extent our 2% sample of
tracked cars is representative of the overall mobility?

In this study, we use as ground truth a dataset D2 composed by logs collected
in May 2011 from twelve Variable Message Panels (VMP). VMPs are devices
situated in the outer belt of the city of Pisa with the purpose of counting hour
by hour all the vehicles entering the entry gates of the city. Exploiting the spatial
precision of GPS data, we simulated the number of GPS vehicles crossing a VMP
gate, by considering a buffer of 30 meters radius around the position of the road
sensors, and by aggregating hour by hour the number of GPS vehicles crossing
those areas. We found a good match between the curves, which essentially differ
for a scaling factor (Figure 3).
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Fig. 3. Traffic sensed by a VMP device and GPS traffic volume in one entry gate.

In order to estimate accurately such scaling, we considered VMP and GPS
traffic counts related to each gate as discrete signals, and decomposed them
through a Discrete Wavelet Transform (DWT). DWT is a mathematical tool
that projects a time series onto a collection of orthonormal basis functions and
produces a set of coefficients, capturing information from the time series at
different frequencies and distinct times. Given two decompositions, representing
the VMP and GPS traffic count of a gate, we exploit the produced coefficients
to build a model able to infer real traffic from a GPS sample.
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To check the validity of such approach and evaluate the performance of the
model, we measure the error with respect to the observed VMP traffic counts in
all locations. In Figure 4 is showed the real VMP series, the scaled GPS signal,
and the measured relative error at a selected VMP location. The error is low
when the GPS traffic is high. During the night hours the relative error tends to
grow since there are too few circulating GPS vehicles, but the absolute error is
still negligible.
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Fig. 4. (Left) Real traffic volume versus scaled GPS signal in a single location. Plot at
the bottom is the relative error. (Right) Real traffic data versus our approach (upper),
a neural network approach (center), and a naive approach (bottom).

It is possible to generalize the approach to scale the GPS traffic observed in
a single VMP location to the total traffic entering the city, i.e. the total traffic
measured by all the VMP sensors. This approach can enable a real time traffic
estimation based on the observation of the GPS vehicles alone, reducing the
need for ad hoc installation of new panels. To generalize the inference to the
real time scenario, we need to create a model trained on historic data capable
of giving precise estimates for the traffic situations. To this aim, we create the
signal v, that represents the total real traffic obtained by summing hour by hour
the traffic volume of all VMP devices. Then, we divide v into a training set vTR,
used to learn the model; and a test set vTS used to evaluate the performance
of the extracted model. As training set we used the sub-signal corresponding
to the first week of our dataset. The remaining weeks are used as test set. Our
method consists in learning a model by extracting the scaling factors, and then by
estimating the signal of the unseen traffic. The resulting series is then compared
with the real signal vTS .

To evaluate the accuracy of our model we performed the evaluation using two
other approaches: a Backpropagation Multilayer Feedforward Neural Network
[12] and a naive predictor, learned on the training set by averaging, for each
hour, the values observed during the training week. Figure 4 (Right) compares
the estimations made by the three approaches. Our DWT method maintains the
general shape of the curve but tends to overestimate the real traffic, especially
in daylight hours. The ANN approach provides volumes that are comparable
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with the VMP observations but does not preserve the general shape of traffic.
Finally, the naive approach shows how the phenomenon can not be captured by a
static model. Although the shape of the naive curve is similar to the VMP curve,
it tends to underestimate the real traffic and in particular the first peak in the
morning, corresponding to people going to work. Furthermore, since it is a simple
daily mean of the traffic in the observation period, it is not able to discriminate
between working and nonworking days. Of the three approaches, ours gives a
better approximation of evolution of traffic during the week capturing the crucial
peaks during the rush hours.

5 Conclusions

In this paper we studied the patterns of human mobility by car using a large
dataset of GPS traces collected in central Italy. Since the GPS data pertain only
private cars movements, we used our data to assess the validity of the general
laws of mobility derived from individual movements observed by means of GSM
data. Moreover, we focused on the analysis of local behavior and validity of the
dataset by comparing the observations with the ground-truth provided by real-
traffic sensors. The experimental settings showed a close correlation between the
real traffic volume and the scaled GPS flows obtained by means of a machine
learning approach. The final part of the paper introduces a method, based on
historic data analysis, to monitor real time traffic.
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