Veryfing Real—Time Systems The UPPAAL Model Checker

Introduction to UPPAAL

 UPPAAL is a toolbox for modeling, simulation and verification of real–time systems

► Uppsala University + Aalborg University = Uppaal

Examples of real-time systems are

- real-time controllers
- communication protocols
- multimedia applications

Introduction to UPPAAL

Systems modeled as networks of Timed Automata enriched with

- integer variables
- structured data types
- channel syncronisations
- urgency

Properties to be verified can specified in a subset of CTL (computational tree logic)

Introduction to UPPAAL

About Uppaal:

- ▶ first version released in 1995
- it consists of:
 - a graphical description tool
 - a simulator
 - a model-checker
- ▶ Java user interface and C++ verification engine
- freely available at http://www.uppaal.com/

Network of Timed Automata

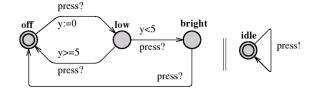
A Timed Automaton is a finite-state machine extended with clock variables.

- A clock variable evaluates to a real number
- ► All the clocks progress synchronously

A system is modelled as a parallel composition of timed automata

An automaton may perform a transition separately or synchronise with another automaton (channel synchronisation)

Network of Timed Automata



The lamp example

Clock Valuations and Boolean Guards

Let C be a set of clocks. A *clock valuation* is a function $u:C \to \mathbb{R}_{\geq 0}$

Boolean guards are defined as follows:

$$B(C) = true \mid false \mid x \bowtie c \mid x - y \bowtie c \mid$$

 $B(C) \land B(C) \mid B(C) \lor B(C) \mid \neg B(C)$

where $x, y \in C$, $c \in \mathbb{N}$, and $\bowtie \in \{<, \leq, =, \geq, >\}$.

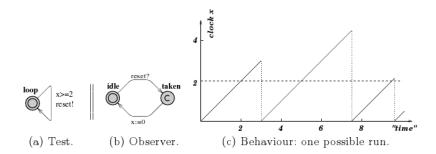
Let $g \in B(C)$, we write $u \in g$ if u is a clock valuation satisfying the boolean guard g.

Location Invariants

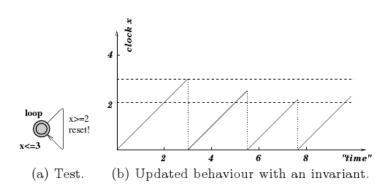
Boolean guards are used as transition guards, but also as location invariants:

The automaton can be in state **Start** only if the valuation of clock x is smaller than or equal to 15.

Example: Transition Guards and Location Invariants

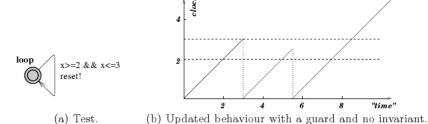


Example: Transition Guards and Location Invariants



The observer automaton is as before

Example: Transition Guards and Location Invariants



The observer automaton is as before

Definition of Timed Automaton

Definition (Timed Automaton) A Timed Automaton is a tuple (L, ℓ_0, C, A, E, I) , where:

- L is a set of locations
- ▶ $\ell_0 \in L$ is the initial location
- C is the set of clocks,
- ▶ A is the set of actions (e.g. press!), co–actions (e.g. press?) and internal τ –actions
- ▶ $E \in L \times A \times B(C) \times 2^C \times L$ is a set of edges between locations with an action, a guard and a set of clocks to be reset
- ▶ $I: L \rightarrow B(C)$ assigns invariants to locations

Semantics of a Timed Automaton

Definition (Semantics of a Timed Automaton) Let (L, ℓ_0, C, A, E, I) be a timed automaton. The semantics is defined as a labelled transition system $\langle S, s_0, \rightarrow \rangle$, where $S \subseteq L \times \mathbb{R}^C$ is the set of states, $s_0 = (\ell_0, u_0)$ is the initial state, and $\rightarrow \subseteq S \times \{\mathbb{R}_{\geq 0} \cup A\} \times S$ is the transition relation such that

- $(\ell, u) \xrightarrow{d} (\ell, u + d) \text{ if } \forall d'. 0 \leq d' \leq d \implies u + d' \in I(\ell)$
- ▶ $(\ell, u) \xrightarrow{a} (\ell', u')$ if there exists $e = (\ell, a, g, r, \ell') \in E$ such that $u \in g, u' = [r \mapsto 0]u$, and $u' \in I(\ell)$

where for $d \in \mathbb{R}_{\geq 0}$, u+d maps each clock x in C to the value u(x)+d, and $[r\mapsto 0]u$ denotes the clock valuation which maps each clock in r to 0 and agrees with u over $C\setminus r$.

Definition of Network of Timed Automata

A network of Timed Automata over a common set of clocks and actions consists of n Timed Automata $(L_i, \ell_i^0, C, A, E_i, I_i)$ with $1 \le i \le n$.

A location vector is a vector $\overline{\ell} = (\ell_1, \dots, \ell_n)$

Location invariant functions are composed into a common function over location vectors $I(\bar{\ell}) = I_1(\ell_1) \wedge \ldots \wedge I_n(\ell_n)$.

 $\overline{\ell}[\ell_i/\ell_i']$ denotes the location vector where the *i*th element ℓ_i of $\overline{\ell}$ has been replaced by ℓ_i' .

Semantics of a Network of Timed Automata

Semantics of a network of Timed Automata Let

 $A_i = (L_i, \ell_i^0, C, A, E_i, I_i)$ be a network of Timed Automata. Let $\bar{\ell}_0 = (\ell_1^0, \dots, \ell_n^0)$ be the initial location vector. The semantics is defined as a transition system $\langle S, s_0, \rightarrow \rangle$, where $S = (L_1, \times ... \times L_n) \times \mathbb{R}^C$ is the set of states, $s_0 = (\bar{\ell}_0, u_0)$ is the

initial state, and $\rightarrow \subset S \times S$ is the transition relation defined by:

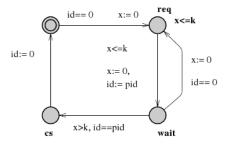
- \bullet $(\bar{\ell}, u) \rightarrow (\bar{\ell}, u + d)$ if $\forall d'.0 < d' < d \implies u + d' \in I(\bar{\ell})$
- \bullet $(\bar{\ell}, u) \rightarrow (\bar{\ell}'_i/\ell_i, u')$ if there exists $(\ell_i, \tau, g, r, \ell'_i)$ such that $u \in g, u' = [r \mapsto 0]u \text{ and } u' \in I(\ell[\ell'_i/\ell_i])$
- $(\ell, u) \rightarrow (\bar{\ell}[\ell'_i/\ell_i, \ell'_i/\ell_i], u')$ if there exist $(\ell_i, c?, g_i, r_i, \ell'_i)$ and $(\ell_i, c!, g_i, r_i, \ell'_i)$ such that $u \in (g_i \land g_i), u' = [r_i \cup r_i \mapsto 0]u$ and $u' \in I(\ell[\ell'_i/\ell_i, \ell'_i/\ell_i]).$

Extensions to Timed Automata

Some of the additional features of the UPPAAL modelling language are the following:

- ▶ Bounded integer variables are declared as int[min,max] name, where min and max are the lower and upper bound, respectively. Violating a bound leads to an invalid state that is discarded at run—time.
- Arrays are arrays. . .
- ▶ **Broadcast channels** One sender *c*! can synchronise with an arbitrary number of receivers *c*?. Any available receiver must syncrhonise. Broadcast sending is never blocking.

Example: Fisher's Mutual Exclusion Protocol



With the following declarations (for 6 processes):

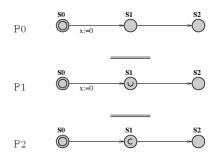
and the following parameter (for 6 processes): int[1,6] pid;

Extensions to Timed Automata

Some of the additional features of the UPPAAL modelling language are the following:

- ▶ **Urgent locations** Time is not allowed to pass when the system is an urgent location. They are semantically equivalent to adding an extra clock x that is reset on all incoming edges, and having an invariant $x \le 0$ on the location.
- Committed locations A committed location is the same as a urgent location but the next transition must involve an outgoing edge of at least one of the committed locations of the network.

Example: Urgent vs Commit



- ▶ When P0 is in S1, time can pass and any edge can be taken.
- ▶ When P1 is in S1, time cannot pass, but any edge can be taken.
- When P2 is in S1, time cannot pass and the only edge that can be taken is the one from S1 to S2 in P2.

Examples...

Examples included in the UPPAAL package

- The four vikings problem (bridge.xml)
- ▶ The train gate (train-gate.xml)

State Formulae

UPPAAL uses a simplified version of CTL as its query language.

The query language consists of path formulae and state formulae.

- State formulae describe individual states
- Path formulae quantify over paths of the model

A state formula is an expression that can be evaluated for a state.

$$x>3$$
 $i==2$ $x<=3$ and $i==5$

Moreover:

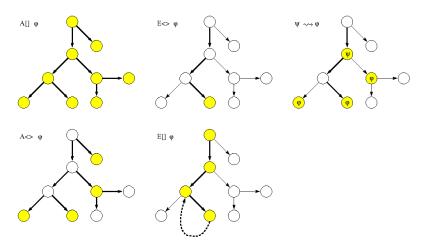
- ▶ the state formula $P.\ell$ tests whether the Timed Automaton identified as process P is in a given location ℓ
- ▶ the state formula deadlock is satisfied for all deadlock states of the network (there are no enabled transitions)

Path formulae have the following syntax:

$$\begin{array}{c|cccc} PF & ::= & A \square & \phi \\ & & A \diamondsuit & \phi \\ & & E \square & \phi \\ & & E \diamondsuit & \phi \\ & & \phi \leadsto \psi & \text{that is } A \square & (\phi \to E \diamondsuit & \psi) \end{array}$$

Path formulae can be classified into

- reachability
- safety
- liveness



Reachability Properties

They ask whether there exists a path starting at the initial state, such that a state formula ϕ is eventually satisfied

Reachability properties are often used while designing a model to perform sanity checks (e.g. is it possible for a sender to send a message?).

These properties do not by themselves guarantee the correctness of the protocol (i.e. that any message is eventually delivered), but they validate the basic behavior of the model.

A reachability property is expressed by the path formula $E \diamondsuit \phi$.

Safety Properties

Something bad will never happen! (e.g. in a nuclear power plant the temperature of the core is always (invariantly) under a certain threshold)

A variation: something bad will possibly never happen! (e.g. in a game, a safe state in one in which the player can still win – will possibly not loose)

In UPPAAL these properties are formulated positively (something good is invariantly true) and they are expressed by the path formulae $A\square$ ϕ and $E\diamondsuit$ ϕ

Liveness Properties

Something good will eventually happen! (e.g. when pressing the on button, then eventually the television should turn on)

A variation: if something good happen, then something else will eventually happen! (e.g. in a communication protocol, any message that has been sent should eventually be received)

These properties are formulated as $A\diamondsuit \phi$, and $\phi \leadsto \psi$ (i.e. ϕ leads to ψ).

Model Checking Procedure

All path formulae can be expressed as reachability and invariance properties:

- \blacktriangleright $E \diamondsuit \phi$ is reachability
- \blacktriangleright $E \square \phi$ is invariance
- \rightarrow $A \diamondsuit \phi = \neg E \Box \neg \phi$
- \blacktriangleright $A\Box \phi = \neg E \diamondsuit \neg \phi$

The model–checking procedure implemented in UPPAAL is based on a finite–state symbolic semantics of networks.

- ▶ the logic is interpreted with respect to symbolic states of the form $(\bar{\ell}, D)$, where D is a constraint system.
- ▶ a symbolic state $(\overline{\ell}, D)$ represents all the states $(\overline{\ell}, u)$ where u satisfies the constraint D

Model Checking Procedure

```
Passed := \{\}
WAITING:= \{(\bar{l}_0, D_0)\}
repeat
    begin
      get (\bar{l}, D) from Waiting
      if (\bar{l}, D) \models \beta then return "YES"
      else if D \not\subset D' for all (\bar{l}, D') \in PASSED then
           begin
             add (\bar{l}, D) to Passed
             Succ:=\{(\bar{l}_s, D_s) : (\bar{l}, D) \leadsto (l_s, D_s) \land D_s \neq \emptyset\}
             for all (\bar{l}_{s'}, D_{s'}) in Succ do
                  put (\bar{l}_{s'}, D_{s'}) to WAITING
           end
    end
until Waiting={}
return "NO"
```

An algorithm for symbolic reachability analysis. Symbolic invariance should be similar.