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Summary. Dependable data storage in wireless sensor networks is becoming in-
creasingly important, due to the lack of reliability of the individual sensors. Re-
cently, data centric storage (DCS) has been proposed to manage in network sensed
data. DCS reconsiders ideas and techniques successfully proposed in peer to peer
systems within the framework of wireless sensor networks. In particular it assume
that data are uniquely named and data storage and retrieval is achieved using names
instead of sensor nodes addresses. In this paper, we discuss the limitations of previ-
ous approaches, and in particular of Geographic Hash Tables (GHT), and introduce
DELiGHT, a protocol which provides fine QoS control by the user and ensures even
data distribution, also in non uniform sensor networks. The merits of DELiGHT
have been evaluated through simulation in uniform and Gaussian distributed sensor
networks. The simulation results show that the protocol provides a better load bal-
ancing than the previous proposals and that the QoS is ensured without appreciable
overhead.

1 Introduction

A sensor is a micro-system which comprises a processor, one or more sensing
units (transducers), a radio transceiver and an embedded battery. A Wireless
Sensor Network (WSN) is a network formed by a large number of tiny and
inexpensive sensors that cooperate to perform measurement tasks [1]. Sen-
sors are spread in an environment (sensor field) without any predetermined
infrastructure and cooperate to execute common monitoring tasks which usu-
ally consist in sensing environmental data. The sensed data are collected by
an external sink node, when it is connected to the network. The sink node,
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which could be either static or mobile, is in turn accessed by the external
operators to retrieve the information gathered by the network. In a WSN,
data can be accessed according to different paradigms which define sensor-
to-sensor and sensor-to-sink communications. Recent paradigms [2–4] see the
WSN as a distributed database. The WSN is then “programmed” by the sink
by sending queries to the sensors. Sensors in turn reduce and filter the sensed
data locally before sending an answer.

In this scenario, dependable innetwork data storage is becoming increas-
ingly important, due to the lack of reliability of sensor nodes [5], [11], [12],
[13].

In WSNs the content of data is generally more important than the address
of the sensor that has gathered the data. This naturally lead to Data Centric
Storage (DCS) [5], in which data is univocally named and the node in which
data are stored is determined by the name associated with them.

GHT [5] implements Data Centric Storage using Geographic Hash Tables.
Each datum has a unique meta-datum (or name) which is hashed uniformly
as a coordinate in the sensing area, represented as a two-dimensional plane.
GHT implements two operations: put, which stores data, and get, which
retrieves them. In the put operation, the name of data to be stored is first
hashed into a location (x, y) in the sensing field. Then, GHT selects the closest
sensor to (x, y), which becomes the home node for that data. The home node
is selected using GFG routing protocol [6]. GFG uses two operation modes:
greedy and perimeter. Each packet starts in the greedy mode, in which it
is routed progressively closer to its destination at each hop. When a packet
reaches a node si whose neighbors are all farther than si to the destination,
GFG switches to the perimeter mode and the packet is forwarded using the
right hand rule (the packet is forwarded on the next edge clockwise from
the edge from which the packet has been received). As soon as the packet
reaches a node closer to destination than the previous ones, it returns to the
greedy mode. If the destination (x, y) does not correspond to any sensor, GHT
uses the perimeter mode of GFG to locate all the sensors surrounding (x, y)
(called the perimeter of (x, y)). The closest sensor in the perimeter becomes
the home node for (x, y). GHT stores a copy of the data in the home node
as well as in all the sensors belonging to the perimeter. Storing on all the
perimeter is essential to guarantee data persistence also in presence of node
faults. Data retrieval uses a get operation. The name is first hashed into the
destination (x, y), then GFG is used to route the request to (x, y). When the
request reach a node in the perimeter of (x, y), the data is returned back to
the sender. Replicating all data on the perimeter of (x, y) is a simple choice,
which allows to use GFG with almost no changes and which can work quite
well on very large sensing fields with uniformly distributed sensors. However,
this choice has two important drawbacks. The first one is that in non uniformly
distributed sensor networks the number of data stored on each sensors can be
very different. This lead to load unbalance (a few nodes need to answer many
gets) and to rapid consumption of sensor batteries. The second problem is
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related to dependability and QoS. In GHT, the user has no mean to ask for
better dependability for a really important datum. This is because the number
of replicas of each datum depends only on the GFG perimeter it happen to
be hashed its home node.

Other data centric storage for sensor networks [11], [12], [13] differ from
GHT in terms of algorithms used to compute the set of sensors which should
store a given data, but as GHT they fail to address QoS in data dependability
and they do not address issues related to sensors distribution.

Our work originates form GHT. In some previous work, we proposed
QNiGHT [7, 8], in which we implemented QoS using geographic hash func-
tions. In QNiGHT, a user can specify an extra parameter for put operations
which tell the system the level of QoS (ie, the number of replicas) required for
a given datum. Then, the protocol takes care of spreading exactly this number
of replicas in the surroundings of the home node. Results show that QNiGHT
was actually able to provide QoS with small extra overhead with respect to
original GHT puts and gets. However, to reach these results, QNiGHT needed
to know exact sensor distribution function in advance, showing poor results
and load unbalance when the actual sensor distribution was different.

In this paper we propose DELiGHT (Density Estimation for Load balanc-
ing in Geographic Hash Tables), a novel DCS protocol which moves from GHT
and QNiGHT in order to provide QoS control and good load balance among
sensors in WSNs of any (possibly changing) distribution. DELiGHT uses a
strategy similar to the rejection method [9] to build a hash function biased
with sensor distribution. This spreads data more evenly among nodes. In ad-
dition, DELiGHT can provide QoS with different redundancy techniques. We
detail the protocol using pure replication, allowing the user to choose the num-
ber of replicas required for a given datum. We conduct detailed simulations
of DELiGHT, QNiGHT and GHT and compare the results obtained with re-
spect to the load of each sensor (i.e. the number of data stored in each node)
and the number of messages needed for data storage and retrieval. Results
show the good performance of DELiGHT on different sensors distributions on
terms of both protocol costs and load balance.

The paper is organized as follows. Section 2 discusses more in details the
problems of load unbalance in GHT presenting the results of simulations
carried on with uniform and Gaussian distributions. Section 3 presents the
density estimation technique used in the protocol. Then, Section 4 details
DELiGHT and discusses how different redundancy techniques can be incor-
porated in the protocol. Finally, Section 5 reports on the simulation of our
protocol and compares its performance with plain GHT. Conclusions are pre-
sented in Section 6.
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Fig. 1: Mean and variance of perimeters (number of nodes) measured for
different densities with GG planarization.

2 Load unbalance in GHT

GHT [5] implements Data Centric Storage using Geographic Hash Tables and
the GFG protocol. We have already discussed how the protocol works in the
introduction. Here, we discuss the behaviour of GHT, w.r.t. load balancing.
In particular, we describe a simulation experiments with gives better insigths
on the protocol behaviour and settle some motivations for our proposal.

Our experiment is organized as follows. In order to measure the degree of
unbalance of GHT on realistic scenarios, we simulated a flat square sensing
field, with a 400m side. Each node has circular transmission range with 10m
radius. In this area, we simulated several WSNs ranging from 3600 to 20000
sensors, which correspond to a mean network density ranging in [8, 40]. For
each density, we randomly generated 100 networks with uniform distribution.
For each network, we compute the mean and the variance of the number
of nodes found in a GFG perimeter as follows. For each sensor network the
simulator randomly selects 1000 points and, for each point, it computes the
number of nodes in the perimeter surrounding the point. GFG need to work
with a planar graph in order the perimeter mode to behave correctly. We
assume to planarize graphs using the GG (Gabriel Graph) [10] algorithm.
Figure 1.a shows that, as the network density increases, the average number of
nodes in a perimeter decreases. However, the actual number of nodes remains
highly variable. This variance is partly due to the behavior of nodes in the
outer part of the sensing area, since in that area the probability of having very
long perimeters (i.e. following the whole boarder) is high. With low densities,
the probability that a random point belongs to the exterior of the network
(and thus it is associated to the external perimeter) is not negligible.

Perimeters on the border.

In order to understand this border effect, we performed another set of simula-
tions in which the sensing networks are generated in the same way as above
but the external area is not used to store data. We “cut away” the 5% of
the area from each border, for a total of 19% of the total area. We randomly
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Fig. 2: Mean and variance of GHT perimeters for different WSNs densities,
Gaussian sensor distribution.

generate 1000 points in the white area and again measure the length of each
perimeter and compute the mean and the variance. Figure 1.b shows the re-
sults we computed. The mean and the variance improve if the border nodes are
let out but standard deviation remains high, leading to a high load unbalance
in the nodes.

Non uniform sensor distribution.

In order to understand the behavior of GHT with non-uniform sensor distri-
bution, we repeated our experiments using a Gaussian function (σ = 1 with
maximum on the center of the area) for distributing sensors. The function
is structured to have the 99 percentile matching the area. The results are
shown in Figure 2. The behavior is much worse than with uniform distribu-
tion because GHT, uses a uniform hash function independently of the real
distribution of the sensors. This bring to a pathological state of load unbal-
ance that is due to the different quantity of data that must be managed by
an equal number of sensors: A sensor on the border of the deployment area
must manage a quantity of data that is larger than the quantity managed by
a sensor in the center of the network.

Load unbalance and QoS.

Another issue with GHT is that there is no way to control the QoS provided for
each datum. Since the point (x, y) is obtained computing an hash function h on
its associated meta-data M , the selection of the sensors candidate for storage
is in practice independent from the importance of the datum. In principle
this ensures the same treatment for each stored datum. However, if the meta-
datum M is particularly popular and many sensors generate data described
by M , the sensors located in the perimeter around (x, y) = h(M) would
be burdened with an high storage and communication load. For this reason
the authors of GHT[5] introduce the technique of structured replication, that
replicates the same datum in different sub-areas. However nor GHT, neither
the structured replication ensure that the level of redundancy associated to a
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Fig. 3: Geographical points chosen for 9 probes.

data is related to the importance of the data itself: GHT assure only the same
average treatment of each stored data. Another aspect is that, although the
average level of redundancy of the meta-datum is constant, in practice it can
vary significantly (due to the fact that each geographic points is surrounded
by a different perimeter), even in case of uniform distribution of the sensors.

3 Distribution estimation

GHT is designed to work on uniform networks and the hash function is a plain
uniform hash function. When the network is randomly distributed the sensors
can be distributed in a non-uniform way. This may bring to a pathological
state of load unbalancing. To ensure data load-balancing DELiGHT must be
able to spread data following a function fitting the distribution of the sensors
in the environment.

In DELiGHT this problem is addressed using a generic hash function
(detailed in Section 4.2). This function takes in input two parameters: The
first one is the meta-datum to hash and the second one is the probability
distribution function with which we want to spread the data in the network.

A solution that uses the actual distribution of the sensors is impracticable
because this distribution can be unknown or it may vary with time, and
measuring the number of neighbours of each sensor and broadcasting the
information is too expensive in terms of energy consumption. Thus, to use the
non-uniform hash function technique, DELiGHT must be able to approximate
the actual distribution of the nodes during the lifetime of the network.

The DELiGHT architecture exploits the measurement of a limited number
of sensors (probes) using an estimation function, in order to approximate the
actual distribution function of the nodes.

At network startup, the sink chooses a number of geographical points in the
network and sends them an initialization message. The message is routed by
GFG and the sensors which are the closest to each of the selected geographical
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Fig. 4: Mean and variance of GHT perimeters for different WSNs densities,
Gaussian sensor distribution and non uniform hashing.

points detect their number of neighbors. Then they store this information in
the network using the put operation of DELiGHT under the assumption of
uniform nodes’ distribution, using Probed Distribution (PD) as key.

Every node that needs to estimate the distribution of the sensors does a
get operation to retrieve the measurements. Then, the sensor uses the esti-
mation function to calculate the distribution. In front of frequent topology
modifications, it is possible for the probes to detect periodically their number
of neighbors to update the estimation function. The tradeoff between the com-
munication cost of the distribution of probe’s measurements and the fidelity
of the estimation is evaluated in Section 5.

Probes’ selection algorithm chooses the geographical points in a regular
pattern, as shown in Figure 3. The number of probes is k2, and the cartesian
axis of the network area is divided in k + 1 segments. All the segments on
the x axis have the same length, except the first and the last which have half
length. The y axis is divided in the same way. The geographical points are
on the convergence of the delimiters of the segment. We set k2 = 25 which
proved a good tradeoff as shown in Section 5. Thus, the first and last segment
of x axis is 10% of the x range, and each other segment is 20% of the range.

The estimation function is the weighted mean of the density measured by
the 3 nearest probes, with the weight equal to 1 divided by the squared distance
from the probes, or, in formulae, the density estimation for the geographical
point (x, y) is

ρ(x, y) =

∑3
i=1

di

(x−xi)2+(y−yi)2∑3
i=1

1
(x−xi)2+(y−yi)2

(1)

with (xi, yi, di) respectively the coordinates and the number of neighbors
of the 3 nearest probes.
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Algorithm 1 get(K)

Require: A key K. PROBED is set to NULL during the initialization.
Ensure: Retrieves a datum D or null if K correspond to no data.

if PROBED = NULL OR K == PD then
(x, y) ← RejectionHash(PD, UNIFORM)
Route the request towards (x, y) using GFG.
PROBED is set to the received PD

end if
if K != PD then

// now PD is available
(x, y) ← RejectionHash(K, PROBED)
Route the request towards (x, y) using GFG.
Return the received data associated to key K.

end if

4 DELiGHT: Extending Geographic Hash Tables with
Density Estimation

In the initialization phase of DELiGHT the sink node selects the set of ge-
ographical points to be used to probe the network density and sends the
initialization message to this points using GFG [6] as discussed in Section 3.
Once the network density had been probed and stored in the network using
the put operation of DELiGHT under the assumption of uniform distribution
of the nodes, DELiGHT is full functional and can be used to store data by
any node in the network taking into account the nodes’ distribution.

To this purpose DELiGHT offers a modified version of the put and get
operations. The first time a node performs either a put or a get, it prelimi-
narily acquires PD (the Probed Distribution). The put and get operations
are detailes in the next subsection.

4.1 The put and get operations

During the initialization, PROBED, a state variable which corresponds
to meta datum PD is set to NULL. The get operation is used to retrieve a
datum described by a metadata (which could also be PD itself). It takes as
parameter a key (the metadata) and exploits the information about network
distribution stored in PROBED, if available. If PROBED is NULL, then the
get first acquires PROBED. This is achieved since the position of the nodes
stored PROBED can be computed using the function RejectionHash over
metadata PD and assuming uniform distribution of the nodes.

Otherwise, if PROBED is available, it directly computes the location of
the desired data using the function RejectionHash over the input metadata
and using PROBED as distribution of the nodes.
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Algorithm 2 put(k,D,Q)

Require: A key K, a datum D, a QoS parameter Q. PROBED is set to
NULL during the initialization.

Ensure: A datum D is stored in the network, with Q replicas.

if PROBED = NULL then
PROBED ← get(PD)

end if
(x, y) ← RejectionHash(K, PROBED)
Route the request to the home node for (x, y) using GFG.
Store datum D using the dispersal protocol.

In DELiGHT the interface of the put includes, along with the meta-data
K and the data D, also a parameter Q expressing the desired QoS. put uses
PROBED, a state variable, to estimate the distribution of the sensors. If
PROBED is not available, it is first retrieved using a get operation with
meta-datum PD. Then the algorithm calculates the geographical coordinates
(x, y) and it routes the request to the home node for (x, y). In turn the home
node will apply the dispersal protocol, which is presented in Section 4.3. The
dispersal protocol stores the datum D, using Q as a parameter of the depend-
ability required for the data, in terms of number of replicas required for the
data.

4.2 Non-uniform hashing

An hash function h(k) is a kind of pseudo-random number generator: Start-
ing from a seed (in our case the key k) it produces an output (in our case a
value in R2) such that for near values of the key, the hashed values must be
distant. With this consideration in mind, we define a new hash function based
on the rejection method [9], but with some differences. Rejection method is
a technique used in random number generation to produce random numbers
following any probability distribution, with limited dominion. The basic idea
is the following. The probability function is boxed and we generate uniform
random values in the box. If the value generated is below the distribution
function, the value is accepted and returned. Otherwise we randomly gener-
ate new points in the box until a value is below the function. Notice that in
principle there is a non-null probability of non termination because any num-
ber of subsequent values can be generated all above the function. In practice,
a good uniform hash grants to generate values in all the box. The function
RejectionHash returns a pair (x, y) of coordinates where to place data from
its key k, belonging to the estimated PD. Instead of using uniform random-
ization, it uses random hashing on the key. At each iteration, if necessary, it
changes lightly the key in a deterministic way. Figure 4 shows a good behavior
of the non-uniform hash function. RejectionHash fits well the sensor distri-
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bution in the data dissemination strategy with a good global load balancing.
These results are better than the results provided with uniform distribution
and uniform hashing (Figure 1.a and Figure 1.b). This is due to the Gaussian
distribution of the nodes that does not have a border effect as evident as in
the uniform distribution.

4.3 The Dispersal Protocol

As in GHT we call home node the sensor sd (of coordinates (x′, y′)) geographi-
cally nearest to the destination coordinates. The home node naturally receives
the packet as a consequence of applying GFG. Upon the reception of packet
Pp, sensor sd begins a dispersal protocol which selects Q sensors to store a
copy of <M,D>. The dispersal protocol is iterative and uses the concept of ball.
Given a sensor sd of coordinates (x, y), we denote with B(x,y)(r) the ball cen-
tered in (x, y) of radius r, that is the set of sensors that are within a Euclidean
distance r from (x, y). In the first iteration sd broadcasts a replica of D to all
the sensors included in the ball B(x′,y′)(r). r is chosen in order to reach the
Q sensors nearest to (x, y) with high probability. In simulations, to compute
r, we use a simple strategy based on the density estimation calculated as in
Section 3. Using this heuristic, we have experimented that the method con-
verges in no more than 2 iterations. Each sensor receiving a replica responds
with an acknowledgment to sd. Sensor sd confirms the Q−1 acknowledgments
received from the sensors geographically nearest to (x, y) and disregards the
others. The confirmation requires an extra packet sent by sd. Sensors which
receive the confirmation keep the data while the other sensors will disregard
the data after a timeout. If sd receives Q′ < Q acknowledgments, then it
executes another iteration of the dispersal protocol with r = 2r in which it
considers only the sensors in B(x′,y′)(2r)−B(x′,y′)(r). The dispersal protocol
stops as soon as Q sensors have been hired or the outermost perimeter has
been reached. When a node sg of coordinates (r, z) executes get(M) it firstly
computes (x, y) = h(M), and sends a query packet Pg=<(x,y),<(r,z),M>>
using the GFG protocol. In turn, packet Pg will reach the perimeter sur-
rounding (x, y) and it will start turning around the perimeter. Eventually, the
packet will reach either the home node or another node containing a replica
of the data D associated to M . This node will stop packet Pg and will send
the required data back to sg. The complexity of the put protocol clearly de-
pends upon the choice of r as this determines the number of iterations made
to successfully place the Q replicas. However, if we know the distribution of
sensors f , for any given (x′, y′), coordinates of sd, and Q it is possible to fix
r in such a way that, with high probability, at least Q sensors belong to the
ball B(x′,y′)(r).

4.4 Behavior in case of faults.

If some of the nodes holding the replicas of <M,D> fail, our protocol ensures
graceful degradation of data availability. Due to GFG protocol, any get with
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Fig. 5: Average load of sensors

key M is routed to the node geographically nearest to (x, y) = h(M) (home
node of M). If the faulty node is not the home node, the protocol implicitly
discards it. If this is not the case, the second nearest node in the perimeter is
always included in the ball built by our protocol.

5 Simulations and results

In this section, we discuss the results of our simulation. We simulated a square
with a 400m side, with sensor transmission range of a perfect 10m radius cir-
cle. We assumed a density of 14 and performed 2000 put operations with ran-
domly generated meta-data using both GHT and DELiGHT˙ In these trials,
DELiGHT uses a pure replication QoS with 15 replicas for each datum. Fig-
ure 5 compares the behavior of GHT (graphics a,c,e) and DELiGHT (graphics
b,d,f). Charts (a,b) consider uniform sensor distribution and uniform hash-
ing, (c,d) Gaussian sensor distribution and uniform hashing and finally (e,f)
Gaussian sensor distribution and Gaussian hashing. In all graphs, the x axis
shows the different load (e.g. Number of data) on a node and the y axis shows
the number of nodes storing exactly this number of data. Values on the y
axis follow a logarithmic scale for better comprehension. We can notice that
DELiGHT reaches better load balance even in the uniform case (graphs a,b),
while from graphs (c,d) it is evident that DELiGHT reaches better load bal-
ance even in the uniform case. Figure 5.(c,d) shows the average load of sensors
in case of Gaussian sensor distribution and uniform hashing. GHT shows its
usual unbalance problems, while DELiGHT manages to balance the load is
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Fig. 6: Mean and standard deviation of the costs (number of hops) of put and
get with Gaussian distribution.

able to balance the load (despite uniform hashing) because it keeps replica
distribution localized and avoids replication on long perimeters (which hap-
pens with GHT in low density areas). This behavior is even more evident in
Figure 5.(e,f) in which we compare the load of GHT and DELiGHT in case
of Gaussian distribution of sensors and Gaussian hashing.

Evaluating puts and gets.

Figure 6 shows the mean and standard deviation of the cost of the basic
put and get operations (number of hops needed to store a data). We per-
formed 2000 puts and 2000 gets with randomly chosen meta-data. The QoS
for DELiGHT is again pure replication with 15 replicas for each datum. In all
graphs, the x axis shows the sensor density in the network and the y axis the
operation cost measured. Graphs in the first row compare the cost of a put
operation in GHT (a) and DELiGHT (b). The put is much more efficient in
DELiGHT as it keeps the replicas localized in a ball without following long
perimeters across the network. On the other hand, Figure 6.(c,d) shows the
mean and standard deviation of the cost of a get operation with GHT (c) and
DELiGHT (d). The cost of DELiGHT is greater than GHT. This is due to
the fact that in GHT, as soon as a get request hits a node in the perimeter it
immediately finds the data, on the other hand, using DELiGHT that request
must travel until it reaches the replication ball, which may need more hops.
In fact, if meta-data is hashed outside the external perimeter, a get operation
could mean traverse the entire network before hitting the ball where the data
was stored.
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Note however, that the higher costs incurred in the get of DELiGHT is
largely conterbalanced by the much larger cost of the put of GHT, and that
this additional cost also provides load balance and QoS in the network. Note
also that the put operations are expected to be much more common than gets
during the network lifetime.

Density estimation evaluation.

In this section we show the results of the simulations that we performed to
select an estimation function to approximate the sensor distribution.

Section 3 details the motivation to have an heuristic that estimates the
density of the sensors.

The geographical points to place the probes are chosen as a regular pattern
of k2 points. We performed simulations with k2 = 9, 16, 25, 36, 49.

Let Ax,y be the area around the a geographical point (x, y) of which we
want to estimate the density, and (xi, yi, di) the coordinates and the density
measured by the probes. The estimation functions that we test are:

1. the mathematical mean of the densities measured by the probes
2. the theoretical density of the network
3. the density measured by the nearest probe

4. ρ(x, y) =
∑

i

di
(x−xi)

2+(y−yi)
2∑

i

1
(x−xi)

2+(y−yi)
2

with the summation performed on all the

probes of the network

5. ρ(x, y) =
∑3

i

di
(x−xi)

2+(y−yi)
2∑3

i

1
(x−xi)

2+(y−yi)
2

with the summation performed on the 3 probes

that are closer to (x, y).

The difference between heuristics 4 and 5 is that the latter performs the
weighted mean only on the 3 probes of the PD (Probed Density) that are
closer to (x, y) while the former uses the entire PD.

The other simulation parameters are:

• network area is a square with a 400m side
• sensor transmission range is 10m
• the number of sensors is between 3600 and 20000
• sensor distribution can be uniform or gaussian

The performance of the estimation is measured using the χ2 of the esti-
mation with a number of degrees of freedom equals to the number of nodes
minus the number of probes. The χ2 is divided by the number of degrees of
freedom. As shown in [14], the χ2 function should approach 1.

Note that the gaussian distribution is approximated using polinomial func-
tions. The motivation is that we look for a general solution to the estimation
problem. Thus, we do not exploit the knowledge of the real distribution func-
tion.
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(a) χ2 with 9 probes
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(b) χ2 with 49 probes
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(c) χ2 with 25 probes

Fig. 7: χ2 for different Heuristics. From top to bottom, Heuristics 1,2,3,4 and
5.

The results of the simulations show that an uniform distribution of sensors
is estimated equally well by every estimation function we proposed. More
interesting are the results on gaussian distributed WSNs.

The first two heuristics have a lousy performance. In fact, they calculate
a global estimation, independent from the geographical point the density is
estimated on.

Heuristic 3 performs slightly better, but it does not implement a real in-
terpolation of the densities measured by the probes.

Heuristic 4 does a poor job, caused by the non-locality of the data that
are used in the estimation.

Heuristic 5 significantly outperforms the other heuristics. The χ2 can not
approach 1, because the estimation function we used is not a gaussian.

Figure 7.a shows a comparison of the different heuristics with 25 probes.
Figure 7.b shows the same comparison with 49 probes. The behavior of the es-
timation functions are clearly visible, and it is seen that quality of the approx-
imation with more than 25 probes does not provide significant improvements,
while with less than 25 probes the quality is poor.

6 Conclusions and future work

In this paper, we discussed the limitations of the GHT in practical WSNs
and we have proposed a new protocol (DELiGHT) which overcomes these
limitations and allows a fine QoS control by the user. DELiGHT corrects the
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ill behavior of GHT in three ways. (1) It uses non uniform hash tables, which
allow a much balanced distribution of data across the WSN when sensors are
distributed in a non uniform way. (2) The dispersal protocol used in DELiGHT
allows the user to control the number of replicas of a given datum (using
the quality of service parameters in the put). (3) Data replicas are placed
in sensors which are “as close as possible” to the home node, which result
in much balanced load on all the WSN. The merits of DELiGHT have been
evaluated through simulation in uniform and Gaussian distributed WSNs. The
results show that the protocol performs a better load balancing with respect
to GHT, and has a smaller cost for put operations.
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