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Abstract— In this paper, we address the problem of
dimensioning wireless sensors networks in order to guar-
antee an expected connectivity. This means finding the
minimum number of sensors to guarantee an expected
mean connectivity on a given area.

We propose an equation which approximates the number
of sensors to be dropped in that area in order to achieve
a given expected connectivity K. Our equation is generic,
and works with any statisical distibution function f(z,y)
of the position of nodes on the sensed area.

The equation is validated both theoretically and by
simulation. In particular, we prove an upper bound for
the error introduced by the approximation which is
independent of the type of distribution f(z,y). We also
simulate the dropping of sensors in a unitary square
area with uniform and Gaussian distribution functions
and compare the results with the dimensioning suggested
by our equation. For a given K, we find that the
dimensioning equation produced networks with a mean
connectivity of K in 97% of cases.

I. INTRODUCTION

In the Homogeneous Topology Control research area
the problem of finding an Equation for the dimen-
sioning of a sensor, or ad hoc, network with a fixed
communication range is very important [10]. Deploying
a wrong number of sensors in an area can affect the
functionality of the network itself and cause a loss
of time and money for the deploying entity. Dropping
few sensors can bring to disconnected or partitioned
networks. As a consequence the data acquired by some
sensors could not be retrieved to sinks or sent to other
sensors: situation that brings to a useless network. On
the other side, dropping too many sensors can produce
an high concentration of nodes in an area, which
in turn can cause frequent packet collisions (channel
contention).

The idea behind our solution is based on the study
of the density of the nodes in an area. We define the
density of the nodes in an area a as the number of
sensors that are present in that area. We propose an
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equation which approximates the number of sensors to
be dropped in that area in order to achieve a given mean
connectivity K. Our equation is generic, and works
with any statisical distibution function f(x,y) of the
position of nodes on the sensed area.

With this new approach we propose three things: the
first one is a model to study, based on a physical char-
acteristic of the network that is density; the second is
about the study of that characteristic in non-uniformly
distributed networks (with the study of the special case
of Gaussian deployed networks); and the last one is
to offer a tool, our formula, to help the designers of
sensors network in the dimensioning of the number of
devices to be deployed to acquire a wished connectivity.
On line strategies [13], to acquire the same results, in
our opinion, are only partially applicable: once sensors
are deployed, if their density is too high they can start
a wake-sleep strategy to reduce density. If density is
too low we must deploy other sensors.

We think that these tasks are not impossible to perform:
we simply think that starting with the right number of
sensors is a better choice.

The paper is structured as follows. In Sec. I, we expose
some results in Homogeneous Topology Control that
are related to the ones presented in this paper. In Sec. 1lI
we present the sensor network model used in this paper.
In Sec. IV we expose the basic ideas behind our work
using an uniform distribution of sensors. In Sec. V,
we discuss the limitations of the previous result for
different distributions and we generalize the model for
arbitrary distributions. The result of the last model
is fully compatible with uniform distribution result.
That Section also presents a theoretical upper bound
to the error. In Sec. VI, we present some simulation
results that validate our work and in Sec. VII, we show
a realistic application scenario in which our method
can be used to establish the size of a sensor network.
Sec. VIII resumes the work in the paper and Sec. IX
concludes giving a small outline of our future research



based on the results of this paper.

Il. RELATED WORKS

In the Homogeneous Topology Control research area
the problem of dimensioning sensors, or ad hoc, net-
works is usually formulated as follows: given a number
of nodes deployed in an area, find the best transmitting
range for all the transmitting radios to guarantee some
given properties, such as connectivity. Most researches
approach this problem only studying the desired prop-
erties of the network once it is generalized as a Random
Geometric Graph (see [3]) as in [12], [4] and [11].

In our formulation, solving the dimensioning problem
means looking for the best number of sensors, with
fixed communication range to be deployed in an area,
to ensure a given property, in the rest of this paper
this property is connectivity. We solve the problem
from this point of view and we also propose a novel
formulation of the problem taking in consideration
physical properties of the network. The physical model
is similar to the one proposed in [1], [9] and [8] but
with different metrics and results.

Another aspect of Homogeneous Topology Control is
that it studies the relation between the transmitting
range and the number of nodes in uniformly distributed
sensor networks as in [7], [5], [4] and [14].

In sensor networks non-uniformity, in node distribution,
is a new topic. We can find mention of it only in two
recent works: [2] and [6].

I1l. NETWORK MODEL

In our model, size of sensors is considered not
influent (sensors are approximated by their coordinate
point), the transmission area is circular and is centered
on the sensor itself. We say that two sensors are
neighbors if and only if they can communicate (their
distance is less or equal than the transmission range).
In the paper sensors are identified with small cap
’s” with an index (generic sensor is referred as s;),
transmission range is r, and the transmission area
is @ = mr? The expected neighborhood of sensor
s; is N(s;) and denotes the expected set of sensors
in the transmission range of s;. N(s;) has a relative
importance, the real important value is |N(s;)| that
represents the expected size of such neighborhood.
We denote with A the total deployment area of the
sensors and with A; a generic sub area of A such
that A; C A. We also define S as the set of all
deployed sensors such that each s; € S and with §;
the expected sub set of S of all the sensors s; such

that s; is in the area A;. The size of S is denoted with
n. As for N(s;) the real important value to consider
is |.S;| that denotes the expected size of S; sub set.

If we want to use more realistic communication
range models (see [16]) we can consider directly the
transmitting area a, as an approximation of transmitting
area in the realistic radio model, without considering r.

IV. BASIC MODEL

Our model is based on sensor density in the deploy-
ment area. If we consider a sensor s; and its expected
neighborhood N(s;), we can define the expected den-
sity d(a) of sensors in the area a, centered in s;, as the
size of N(s;) plus s; itself divided by the size of the
communication area a (defined as 7r2).

1+ |N(si)
o a

d(a) 1)

In the case of uniform distribution of sensors

d(a) = d(A), where d(A) represents the total density
of the network, and we can state that:
. ~n 14 |N(sy)|
v /L) d(A) - A - a - d(a) (2)

From Eg. 2 we can obtain the total number of sensors
to be deployed for a wished density, K.
1+ K)A
S CL L9 3)

a

We can notice that Eq. 3 makes no more sense in

areas where the distribution of sensors does not follow
the uniform distribution, because for every distinct
area a the density d(a) joins with the position of the
sensor s; that defines that area.
In Fig. 1, we show the surface produced by Eg. 3.
The surface is computed setting the value A = 1
and varying the value of r in range [0.1, 1.4] and the
value K (in the Figure simply K) in range [2, 9].
The Figure shows that the surface has its maximum at
the point with minimum range and maximum desired
neighbors number and tends to grow very quickly for
small values of r.

V. GENERALIZATION OF THE MODEL

Eg. 3 gives information only about uniformly de-
ployed sensors but not about other distributions because
with not uniform distributions we cannot say that for
every A; and A;, with A; and A; of the same size but
located in different places on the plane, the density of
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Fig. 1.
distribution

Number of nodes for uniform

this sub areas are equal, thus % =+ |fx_1| For instance,
Gaussian distributed sensors tend to be more dense near
the mean point of the distribution and very sparse far
from that point.

One way to generalize our model is to consider a rea-
sonable small sub area of A, call it A;, and approximate
the distribution of the nodes in A; with an uniform
distribution. Now the problem becomes to compare the
distribution in the area a with the distribution in sub
area A;. The use of A; instead of A is fundamental
also because f(x,y) could be defined in all R? and its
area could be infinite.

Eqg. 2 is changed to fit this idea. The total number
of sensors n is replaced by the expected number of
nodes in sub area A; (|S;]), that is nPr[s; € S,
that represents the total number of sensors times the
probability of s; to be in sub set S; and so the
probability to be deployed in sub area A;, and the total
area A is replaced by the sub area A;. This produces
a new density Equation:

nPr[si € Sj] - 14+ |N(SZ)|
Aj o a

(4)

The main difference from Eg. 2 is that the two terms

of the equation are not strictly equal but approximately
equal because we assumed that the distribution of the
sensors in a sub area A; is uniform, that is good for
A; small but becomes bad for large sub areas.
As for Eq. 2, we can derive from Eq. 4 an approximated
estimation of the nodes to be deployed. However there
is a difference in the use of the new Equation: the value
K must be changed in K that represents the desired
number of neighbors for the nodes that will fall in area
A;. For some A,, different from A;, but with the same
size, the number K, can be different from K; because
the distribution is not uniform.

Fig. 2. Number of nodes for Gaussian with
Ogy = 0.35in A(o'g_’o,g)

Fig. 3. Number of nodes for Gaussian with
O'zy = 035 in A(0_570_5)

As already done for Eqg. 3 we replace the value | N (s;)|
with the desired number of neighbors K; and we move
the terms to obtain n:

o (1+KjA;

" aPrfs; € 5] ©)

Eqg. 5 is fully compatible with Equation 3 and repre-
sents a special case of it: because in the uniform case if
we take into account a sub area A; of A, A; must have
the same density of A. In Fig. 3 and Fig. 2, we show a
graphical representation of the Eqg. 5 for the Gaussian
distribution.

The Figures show the surfaces resulting from Eq. 5
in the case of an unitary square with the mean of the
Gaussian in (0.5, 0.5) and standard deviation on both
axis equal to 0,, = 0.35. The surface is computed
varying the value of r in range [0.1, 1.4] and the value
K; (in the Figures simply K) in range [2, 9]. Sub
areas A; used for the realization of the surfaces are
two squares, with side of length [ = 0.2. The square
A.5,0.5) centered in the mean with sides parallel to
the axis and the other square, A.9,0.9), IS centered in
point (0.9 ,0.9) with sides parallel to the axis, in order
to be placed in the corner of the unitary square.

In Fig. 3, A; is centered in the mean of the distribution
with Prs; € S;] = 0.047. In this case, the number of
sensors to be dropped is small, also in the case of high
values of K; because the distribution has high values
near the mean and a lot of sensors will be dropped there
making easy to reach the value of K in that sub area
even for low values of n. The shape of the Gaussian,
high near the mean and low at the borders, is also the
reason for the surface shown in Fig. 2 that represents
the one produced by a sub area A; in the corner of the
unitary square with Pr[s; € S;] = 0.014. In this case,
with very high values of 7] the value of n grows very
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Fig. 4. Connectivity in uniform case

quickly.

All the surfaces representing values distributed follow-
ing a Gaussian distribution have a shape similar to the
one presented in Fig. 1, because of the approximation
of the distributions in sub areas A; with the uniform
distribution.

We said before that the Eg. 5 is an approximation and
now we study the error of this Equation at the variation
of the parameter A; in relation with a.

We define the error e as the absolute value of the
difference between the two terms of Eq. 4:

. nPr[s; € S;] 1+ K; ©)
Aj a
nPr[si S S]] 1 —I—E (7)
- Aj a
nPrls; €S;] 1+K;
= +
Aj a
nfy, flzy)dd; 14K
- T v ®
Aj a

Starting from Equation 6 we can upper bound it with
Equation 7 and remove from this equation the absolute
values because the two terms are positive. Then in
Equation 8 the probability term is substituted with its
value that is the volume of the probability function
f(z,y) insub area A;. Now we can find another upper
bound of Equation 8 using the following idea. The
volume of f(x,y) in sub area A; can be upper bounded
by the volume of the solid that has as base the sub
area A; and as height the maximum of the function
f(x,y) insubarea A; (maxa,{f(x,y)}). Atthis point
Equation 8 becomes:
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Fig. 5. Mean neighborhood in uniform case
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In Equation 8 after upper bounding the volume of
the function f(z,y) we can eliminate the term A; and
finally obtain Equation 9. Equation 9 can be absolutely
upper bounded using the maximum value of f(z,y) in
all A:

1+ K.
n-mazxa,{f(x,y)} + - !

1+ K;

IN

n-max{f(z,y)} + (10)

Eg. 10 gives an absolute upper bound to the error
e and gives a precious information about the error in
relation with the shape of the distribution function.
The error increases when the function is steep: for
instance let us consider the Gaussian: if the standard
deviation is low, the max of the distribution is high
and the density of the function increases rapidly in a
short space. If the standard deviation is high, the max
is lower and the difference of density in the same span
of space is lower. This implies that the approximation
of that span with an uniform distribution introduces
less error.

VI. EXPERIMENTAL RESULTS

Experimental results are acquired using simulations
that are organized as follows: we compute the number
of sensors n for the distributions and then we place the



n sensors in the unitary square checking the expected
K with the size neighborhood obtained by simulations.
For the Gaussian distribution, we check the FJ with
the size neighborhood in sub-area A; and in the whole
area A.

A. Uniform Distribution

Now we present the experimental results for the
uniform distribution.
Fig. 4 shows the number of connected nodes over the
total number of deployed nodes. As shown the value
is in the order of one for the largest part of the tested
combinations of deployed networks. We have, as we
can expect, the worst results for low values of K
because the desired structure of the network tend to
be quite difficult to obtain in randomized network: for
instance a K = 2 means that the desired structure of
the whole network is a ring, quite difficult structure to
obtain randomly.
Fig. 5 shows the mean size of the neighborhood for
each sensor deployed in A. The value, in the largest
part of the experimental cases, is linear with the growth
of K but around the value of 0.6 we have a fall in the
number of neighbors.
We call this effect the shape factor.
The shape factor is produced by the difference of shape
between A, squared, and a, circular.
We explain the shape factor with an example: consider
the sensor in the center of the unitary square with a
communication range of 0.6. The area reachable by
this sensor has size larger than one but leaves the 4
regions at the corners uncovered (as shown in Fig. 6) .
The shape effect is more evident with the growth of K
because theoretically a covers all A, but this is not true
in practice because we have no topological coincidence
between A and a.

B. Gaussian Distribution

For the non uniform distribution experiments we use
a Gaussian distribution centered in (0.5, 0.5), with both
axis o,y = 0.35.
Experiments are performed varying 7] (in the Figures
simply K) in range [2, 9]. The two sub-areas A; used
for the experiments are both square, with side of length
[ = 0.2. In one case, that we called A5 o5), A; is
centered in the mean with sides parallel to the axis and
the other, called A g9, ¢.9), centered in point (0.9, 0.9)
with sides parallel to the axis, so to be placed in the
corner of the unitary square.

According to considerations made at the end of the
error analysis, we use » = 0.1 so that a sensor
placed in the center of the sub-area A; has all its
communication area inside A;.

Fig. 7 shows the connectivity percentage of the whole
network with our equation applied in A5, o5 We
can notice that the global connectivity grows with the
growth of K. We do not acquire the full connectivity
of the network because near the max of the Gaussian
we have a number of sensors that fits the requirements
for K but far from the max the density of the sensors
decrease and this bring to an unconnected network.
To understand this, we must see Fig. 8 that shows the
connectivity percentage of the sub-area under the mean
with the same Gaussian distribution and our equation
applied to the square near the max of the distribution:
in this Figure the connectivity percentage grows very
quickly and goes to 1 for values of K > 5. If we
discard from our experiment the value of K = 2 the
the connectivity is never below 0.94.

Fig. 9, shows the connectivity percentage of the whole
network with our equation applied to Ag .9y, In
the corner of the unitary square. We can notice that
the global connectivity grows with a smoother curve
if compared to the one in Fig. 7, and in a good
interval that never falls under 0.91, also for K = 2.
This happens because the number of neighbors fits the
requirements given by a sub-area where the probability
to be dropped is low: near the max of the Gaussian this
large number guarantees high connectivity (higher than
K) and far from the max there is the right density of
nodes to archive connectivity.

This is more evident if we look at Fig. 10 because
the curve is similar to the one proposed in Figure 8:
connectivity percentage keeps high values and grows
to 1 for values of K > 6, with a percentage interval
that starts at 0.93.

Fig. 11 shows the mean neighborhood size of the whole
network with our equation applied to the square under
the mean of the distribution. We can notice that the
mean size of neighborhoods grows with the growth
of K but at a significantly lower rate. The mean
neighborhoods size does not grow linearly because near
the max of the Gaussian we have a number of sensors
that fits the requirements for K but far from the max the
density of the sensors decrease and this lowers the mean
of neighborhood sizes. In fact, as shown in Fig. 12, we
acquire that the mean neighborhood size in the sub-
area near the max of the Gaussian the curve follows in
a quasi-linear fashion the values of K.
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(a) Disaster Area

(b) Sensors Deployment

Fig. 15. Application scenario

Fig. 13 shows that when the number of sensors is
computed respect to a sub-area not near the max, the
mean size of the neighborhood of the whole network
grows with K but is never greater than K. This is
because the total number of sensors in the network fits
well the sub-area, but near the max we achieve a denser
network.

Finally, Fig. 14 shows the mean size of neighborhoods
in A.9, 0.9)- This Figure shows results very similar to
the ones in Fig. 12 with a quasi-linearity between the
values of the curve and the values of K.

VIl. APPLICATION SCENARIO

Suppose that in a urban area as the one shown in
Fig. 15.a there is some kind of poisonous, or radioac-
tive, substance released in the environment and the area
is too large, or too dangerous, to be monitored with
special squads of humans, even if well equipped with
special clothes to operate safely. In cases like this, we
are interested in dropping some sensors in the area to
monitor the evolution of the situation. Such sensor drop
can be performed, as instance, with airplanes.

As shown in Fig. 15.b sensors dropped from above, fall
on the ground following a Gaussian distribution: the
sensors density at the center of the deployment area is
higher than on the borders of the same area.

If we are interested in monitoring all the area, we must

drop enough sensors to ensure a connected network
on all the region interested by the disaster. To perform
such action we must know how many sensors must be
dropped in the whole area.

To estimate such number, we establish that in one sub-
area at the border of the deployment area, in Fig. 15.b
the one in the square with dashed borders, we need
a connectivity of K + 1 elements, or in other terms
we need that each sensor s; in the sub area has K
neighbors.

A simple numerical instance of the scenario could be
the following.

We want to monitor the squared territory with side of
1K'm with sensors that have a maximum transmitting
range of 100m. We will deploy the sensors using a
Gaussian distribution with o, = 0.35 and centered in
the median point of the surface.

We also want to have a mean number of neighbors (K)
at the borders of the area (the sub-area with dashed
borders) at least K; = 6 that implies, using our formula
(or the chart in Fig. 2), to drop around 637 sensors.
We start from this value, performing simulations, to
determine the right value of sensors to drop.
According to the chart in Fig. 9 the value K; = 6
produce a connectivity of the whole network greater
than 96%. On the other size the mean neighborhood
size of the whole network in very high (around 12)



and we can expect higher values in the center of the
distribution. A value so high will produce a network
suffering of the channel contention problem.

To correct this problem we try with a lower value of
K;, and we try with K; = 3. To obtain this mean
neighborhood size according to our formula we need
to drop around 364 sensors.

Looking at the chart in Fig. 9 with this number of
sensors we will guarantee a global connectivity greater
than 93% and a mean neighborhood size in the whole
network around 6.

The output values of our formula are indicative and
represent starting points for the network deployment
study: the network designer will decide the final num-
ber of sensors through many simulations and he will
obtain the correct value for his application.

VIIl. CONCLUSIONS

In this paper, we analyzed the dimensioning of a
sensor network as the problem of finding the minimum
number of sensors to be dropped in an area to guarantee
a desired mean connectivity.

We presented a novel formulation of the problem and
discussed an approximate solution which uses a density
equation. We also derived a theoretical bound on the
error incurred and discussed simulation results.

We acquired this goal using a physical characteristic of
the network, the density of the nodes.

The results that we archive are very good, and the
evidence of that is given both analytically and exper-
imentally. We achieve a network connectivity in the
97% of the cases and we obtain with simulations a
value of neighbors equal to K in the all the cases with
few exceptions, due to some pathological problems of
the networks as the impossibility of the creation of a
connected network with X = 2 and the shape factor
in the approximation of sub-areas.

Also these pathological problems, and their conse-
guences are studied and analyzed in the paper.

IX. FUTURE WORKS

The study presented in this paper introduce a possible
real solution for the network dimensioning.
One possible future development is to consider the case
of networks deployed in a 3D environment, as undersea
environments. This future development is interesting
also for the evaluation of the physicals features, like
slopes and the joined problem of sensor sliding. The
problem concern the fact that some sensors can fall
from the initial deployed position, so the final distribu-
tion could be different from the one estimated at the

beginning.

Another future work is the study of our model and
solution in the case of sensor networks that adopt
sleeping patterns (see [15]).
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