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Abstract— Heterogeneous wireless sensor networks are made
up of different kinds of nodes. Some nodes, thesensors, are
used as an interface to the physical environment. Other nodes
act instead as servers, providing various services to the sensors.
In this paper we define an architecture to enable the sensors
to efficiently localize the services, and hence the servers.Our
is a two-tier server architecture. The first tier is made up of
the actual servers. The second tier is formed by nodes that are
basically standard nodes (like the sensors). These nodes know the
current position of the servers (they are calledserver locators).
Sensors needing service query the server locators to find the
corresponding service. The service locator sends a serviceposition
to the sensor. Finally, once got ahold of a server location, a
sensor uses the service directly. Our server architecture provides
load balancing (of queries to the servers) and is tolerant to
server faults. Sensor nodes are endowed with caches to maintain
the location of popular services. Experiments demonstratethe
effectiveness of using caches at the sensor nodes.

I. I NTRODUCTION

Wireless Sensor Networks (WSNs) [1], [2] consist of a large
number of low power, low cost and self-organizing wireless
nodes forming a multi-hop (ad hoc) network [3]. The nodes are
scattered (usually once and for all) in a given area without the
support of any infrastructure. Therefore, they need to cooperate
for executing common tasks, which usually consist in sensing
environmental data and communicating to some collection
points.

Heterogeneous WSNs are made up of various kinds of
nodes. Some nodes are used as the interface to the physical
environment (we will call themsensors). Other nodes acts
instead asservers, providing services to the other nodes. For
instance, in an outdoor intrusion detection application, the
sensor are scattered randomly to provide tracking of possible
intruders, while more powerful nodes provide the service or
connection (e.g., through satellite links) to the end user.

In this paper, we define an architecture for enabling efficient
discovery of services for the sensors that need them. Servers
are organized into two tiers. The first tier comprises the actual
servers. (as the satellite up-link enabled nodes mentioned
before). Then there is an intermediate server tier (front-end)
where some nodes (sensors, or more powerful nodes) are
chosen for storing the current position of the servers. A sensor
that needs to find a specific service (and hence a server), sends
a message to the front-end of the system and gets back the

position of the service. At this point the sensor knows the
server position and is able to start using the needed service.

Our architecture implements strategies to provide both load
balancing and fault-tolerance, as described in the rest of
the paper. It also makes extensive use of a caching sys-
tem to speed-up requests and to save energy. The localiza-
tion/communication infrastructure used as the basis for our
architecture is Q-NiGHT [4], [5], an improved instance of
Geographic Hash Table, GHT [6].

The paper is organized as follows. Section II reviews
GHT and Q-NiGHT, which are used as the building block
of our architecture. Section III explains the architecturein
detail. Section IV presents the experimental results. Finally,
Section V concludes the paper.

II. GHT AND Q-NIGHT

We briefly review here both GHT and Q-NiGHT, whose
ideas and use inspired this work. The reader is referred to the
cited paper for further references on this topic.

The idea on which our architecture rests is that of Geo-
graphic Hash Tables (GHT) [6]. More specifically, it uses a
modified version of GHT called Q-NiGHT [4], [5]. The use of
Q-NiGHT is motivated by the fact that it provides data QoS,
even in networks where the nodes could be deployed non-
uniformly. Specifically, the system provides the capability to
specify the number of copies that are stored in the network for
the data to be stored. Furthermore, being able to deal with non-
uniform nodal distribution, Q-NiGHT enables load (storage)
balancing since the data distribution fits the distributionof the
nodes (or its approximation).

Q-NiGHT (as GHT) requires that the nodes are aware of
their geographical position. This can be easily provided using
a GPS system or other localization strategies [7]. For some
applications, e.g., intrusion detection or some environmental
monitoring, this knowledge is essential to provide meaningful
data to the end-user.

Geographic Hash Tables are designed to enable efficient
data storage and retrieval in the WSN itself. The basic op-
erations areput and get. Data are represented by pairs
〈key, value〉, where thekey identifies an item, andvalue is
the actual item to be stored. When a node performs aput to
store data, the node uses a hash function on the itemkey. The
hash function returns a pair of coordinates(x, y) within the



deployment area. At this time the pair〈key, value〉 is routed
(geographically [8]) toward(x, y) and it is stored at the nodes
closer to that point. When a node performs aget operation to
retrieve stored information with identifierkey, the node uses
the same hash function onkey. The hash function returns the
coordinate pair(x, y), and the node sends the request toward
that point. As soon as the query is received at a node that stores
the item sought for, that node replies with a packet containing
the pair〈key, value〉 to the requesting node.

Q-NiGHT improves on GHT in that it includes mechanisms
for providing some QoS (in terms of fault tolerance), and better
load balancing. In GHT the pair〈key, value〉 is stored at the
nodes on the perimeter around the point returned by the hash
applied onkey. We notice that GHT has no control on the
number of copies of the stored data. Therefore, (i) GHT cannot
guarantee fault-tolerance because data is replicated in a low
number of copies, therefore, few faults can compromise it;
(ii) GHT could store data in a large number of nodes (e.g.,
in high density networks), with corresponding unbalancingof
the query load.

With Q-NiGHT data are stored at theQ closest nodes to
the point returned by the GHT hash function (Q is therefore
the number of copies of an item). With this simple extension,
fault tolerance and load balancing are more easily achieved.
Fault-tolerance comes with the fact that being stored atQ

nodes, an item can surviveQ − 1 faults. Load balancing
is achieved via being able to control the replication, espe-
cially through using a new hash function. While GHT uses
only uniform hashing to determine a point, Q-NiGHT uses
a function that, using the knowledge about the distribution
of the sensors (or an approximation) is able distribute data
according to the distribution of the nodes. In particular, this
function (REJECTIONHASH) is based on the rejection method
for pseudo-random number generation [9], and it uses iterative
hashing of thekey, checking at each iteration the goodness
of the returned value. Thekey is hashed over and over
until it fits the wanted distribution (ever time being modified
deterministically). When the hashed value fits the wanted
distribution, the value returned as a valid coordinate pairfor
the item to be stored. Therefore, regions containing a larger
number of nodes store a larger number of items, and regions
with few nodes store fewer items.

As mentioned, further work on GHT and other methods for
localizing services in sensor networks can be seen in [4]–[6].

III. SYSTEM ARCHITECTURE, OPERATIONS AND

PROPERTIES

In this section we present our architecture for locating
servers efficiently and in a fault-tolerant way.

We start by presenting theactors that play important roles
in the architecture. These roles are bothstructural (given by
the physical nature of the heterogeneous network) andlogical
(given the different usage of the same kind of nodes to perform
different tasks).

We then present the operations ofservice registration and
look-up that are provided by the system. The service registra-

tion procedure is performed by the servers to communicate
their position to the nodes of the network. The look-up
procedure is executed by the nodes that require the localization
of a service.

A. Actors

There are three categories of nodes in our architecture. The
sensors, the servers, and theserver locators.

Sensors: The sensors are low power and low cost devices
that are equipped with sensor to control their surrounding
environment. They also sport a CPU for performing simple
computations, and an embedded radio to communicate with
each other.

Servers: The servers are special nodes that are capable to
provide some service to the sensor nodes. These services range
from storage (to keep the sensed data) to perform as gateways
between the WSN and the users. Each serverserveri provides
one or more services that are identified by a name, for instance
servicej .

Server locators: The server locator nodes are nodes that
know the servers, i.e., the services that the servers provide
and the servers location in the network. These node can either
be common sensors or more powerful nodes (although not
necessarily as powerful as the servers).

B. Two-tiers servers architecture

The sensor are the clients of the proposed architecture.
The servers are organized in two tiers. Theback-end of the
architecture is made up of the servers that are able to provide
services to the clients. The servers are randomly deployed (as
the clients) and need to be localized by the server locators.
The server locators form thefront-end of the architecture.
The nodes requiring a service query the front-end to have the
position of the the server, or servers, providing that service.
Once obtained this information, the nodes communicate di-
rectly with the back-end servers.

C. Services localization

Two operations implement service localization:Server reg-
istration and server discovery. The first one is used by the
servers to make the server locator aware of their location. The
second one is used by the node that need a service for finding
the corresponding server. These two operations use the two
Q-NiGHT operationsput and get. The first is for storing
the position of a server and the second is used to retrieve it.

Servers registration: During the network set-up phase
the serveri determines its position,positioni, and registers
it with the server locators nodes. To perform such operation
each server hashes the name of each of its services and
determines the corresponding point(x, y). At this time, for
each one of the provided services, it performs aput of the pair
〈servicej , positioni〉 to the point(x, y) by using Q-NiGHT.
The nodes that store the pair〈servicej, positioni〉 become
the server locator nodes forservicej .



Servers discovery: When a node needsservicej , it
hashes the service name by using the Q-NiGHT hash function,
finding the point(x, y). Then it performs aget operation
of servicej from point (x, y), i.e., it sends a request toward
that point. One of the server locators replies with the position
of the server (this operation is called alook-up). In addition
to the basic Q-NiGHTget operation, at this time the node
caches the position of the service/server for future use. Itthen
sends the request forservicej to the server. The use of caches
improves the function of the whole look-up process in many
ways. First of all, faster replies are provided to those other
nodes interested in locating the same server whose look-up
queries pass through the caching node. Moreover, caching
enables cheaper look-ups because fewer hops can be enough
to provide a reply, and lower energy consumption for the
server locator nodes is required since they have to deal with
a lower number of queries. For instance, cached positions
increase information retrieval performance in applications such
as intrusion detection. In this case, messages for a particular
server are generated by nodes that are close to each other
and to where the intrusion happens. Hence, spatial localityof
caches is taken advantage of.

Fig. 1 depicts the interaction pattern between sensors, server
locators and servers. The figure shows a situation in which a
client first perform a service discovery sending a message to
the server locator. The server locator replies with the server
position. Finally, the node sends the necessary messages with
the server. In particular, this picture refers to the case where

Sensor Server (s )Server  locator(s)

Fig. 1. Sensor, server locator and Server interaction pattern

the server is an “exit point” (like a gateway) for the network.
Therefore, when the sensor has gained access to the server,
it sends packet to it (the server does not send packets/acks
back).

D. Load balancing and fault-tolerance

By using the Q-NiGHT mechanism described above, our
architecture is able to balance the query load to the locator
servers and to be tolerant to servers failures. The load bal-
ancing property is particularly useful for distributing multiple
request of the same service to multiple servers that provide
it. Fault-tolerance helps in removing from the list of services
that provide a given service those servers that are no longer
available (because of failures or network disconnections). The
disappearance of a service/server can be signaled to a server

locator by a sensor node that, trying to contact a server, realizes
that it is no longer available. This feature of the architecture
presents security issues, which we discuss at the end of this
section.

Load balancing: Query load-balancing is provided via
multiple server registrations. All the servers that provide a
service have the same server locators. This happens because
the servers share a common service name, sayservicej. The
server locators store all the coordinates that were provided for
each service name. When a request arrives to a server locator
for servicej , the node chooses one of the possible servers
according to a given strategy (for instance, randomly, or in
a a round-robin way, by keeping a pointer to the last server
returned and incrementing it modulo the number of servers).
This method also provides an easy way to increase the number
of servers. When a new server (that providesservicej) enters
the network, the server registers itself with the server locators
and these return the server location as one of the possible
servers for that service.

Fault-tolerance: Fault-tolerance to service outage is ob-
tained as follows. The servers keep providing their position to
the server locators periodically (for instance, eachτ seconds).

In case of service failure, afterτ seconds from the last
update the server locators cancel the server position. In the
worst case this system provides the cancellation of a server
from server locators after2τ seconds.

In order to make our protocol completely fault-tolerant we
have to remove the cached server positions from the caches
of the sensors that stored such information. To this aim, a
server position is cached by a sensor for at mostτ seconds,
after which it is removed from the cache. In case the sensor
needs the position of the server again it will have to query
the server locators again. Finally, if a node queries a server
whose entry was in its cache (i.e.,τ seconds from its last query
to a server locator have not passed yet) and the server is no
longer available, the server’s (ex) neighbors report an error
to the sensor requesting the service. Upon receiving the error
message the node removes the cache entry and performs aget
for a new server forservicej , at the same time communicating
to the server locators that the server is unavailable.

Security issues: The capability of sensors to invalidate a
service location at a server locator, makes possible attacks in
which the server locators server list are modified by malicious
(or faulty) nodes.

To address this problem the network user (administrator) can
choose between three solutions: (i) The sensors are not allowed
to invalidate server locators and/or invalidation messages are
dropped by server locators; (ii) The server locator verifies
the invalidation querying the server itself to double check
about the availability of that server, or (iii) the user provides
a cryptography based system to verify the identity of the
message sender and possibly itstrust-level. All these solutions
are equally able to provide a minimum level of trust to our
architecture. The choice of one of them (or any combination
of them) depends on the characteristics of the network (e.g.,
in terms of computational power and energy) as well as the



application and environmental characteristics (probably, for
border monitoring or in the battlefield a level of trust much
higher than wildlife monitoring is required).

IV. EXPERIMENTAL RESULTS

We have performed experiments for measuring the effec-
tiveness of our service localization architecture with respect
to the energy cost of querying with and without caches, as
well as the cost of the look-up operation.

In the simulation setting, we have considered5000 wireless
sensor networks where5000 sensor nodes are scattered ran-
domly and uniformly in a square area with a side long1000m.
Each node has communication range of30m. Power consump-
tion for transmission is set to24mW and that for reception
is set to 14.4mW, as in the EYES sensor prototypes [10].
The sensors that perform a look-up operation and then send
a message to the server are uniformly chosen between the
deployed sensors.

All the experiments are aimed at showing the effectiveness
of the architecture in providing prompt and energy efficient
response to sensor queries. In particular we show here that
caching is particularly useful in providing a more balanceden-
ergy consumption, and therefore an overall better performance
of the network. For this reason all the presented experiments
are provided with and without nodal cache enabled. All tests
are performed starting from the same seeds to generate the
same scenarios with different architectural parameters. The
results we show achieve a statistical confidence of95%, with
a precision within5%.

Figures 2, 3 and 4 depict the cost for a sensor to contact
server locators and servers. In Fig. 2 the cost is defined as
the energy spent by a node to send a packet to the server
locators, to get the server location back and then to perform
one communication to the server. In other words we compute
the total energy to deliver/receive three packets. In Fig. 3the
cost is defined only as the cost to send a message from a sensor
to the server locators and to get the server location back (that
is, the energy to send two packets). This provides us with a
more detailed idea of how much it costs to a sensor to use the
intermediate tier provided by the sensor locators. Fig. 4 shows
the cumulative cost of the look-up operation, to have an idea
of difference in the growth of the energy cost. As mentioned,
each set of experiments is performed with and without the
cache mechanism enables. The network is observed for a time
long τ to take into account the maximum usage of the caches
before their refresh. In our experimentsτ = 30 minutes i.e.,
the time needed to perform1000 queries.

Fig. 2 depicts the cost for each single query in the network
with and without the caching enabled. This cost, expressed in
Jules, is defined as the sum of the energy spent at each node for
propagating the query. This cost is computed considering both
the cost for transmission and reception We observed that when
caching is enabled the cost of the single query decreases with
increasing number of queries because the caching mechanism
becomes more and more effective (more and more nodes have
the location in cache).
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Fig. 3. Cost for servers look-up operations.

Fig. 3 depicts only the cost of the look-up operation for
each single query in the network with and without the caching
enabled on sensors. This cost, as the previous one, is defined
as the sum of the energy spent at each node for propagating
the query. This case, is used to have a better evaluation of the
look-up procedure, that is cached optimized, with respect to
the server interaction, that in our scenario does not use caches
to optimize the sensor-server. Some particular applications can
use caching also between sensors and servers but we chose
this situation (the worst case) in which the interaction with
the server is not cached to have a more clear vision of the
look-up costs and benefits.

Fig. 4 depicts the cumulative cost of the look-ups only
(sensor-server locators communication and back) without con-
sidering the cost for server interaction. This cost (in Joules)
is computed as follows: The cost of theqth look-up is given
by its cost and summed to the cost of all the previousq − 1
look-ups. In this case we observe that the cost to reach the
server locator nodes decreases when the number of the queries
increase, as expected.

Fig. 5 presents the (normalized) residual energy level of the
server locators with and without using caches. The residual
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locators refresh step(normalized).

energy level of the server locator is computed reading the
energy level of the server locators before the first refresh of
the service location by the servers, that restoreQ copies of
the location, also in the case in which some server locators
run out of energy. The figure shows a high influence (36%) of
the caches in the energy spent by the server locators in their
function.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we presented an architecture to provide server
localization in heterogeneous wireless sensor networks. The
proposed architecture enables servers to register the services
that they provide, with their location, in some algorithmically
elected nodes (the server locators) that sensor nodes can find
easily. A sensor needing a service is able, using the name of
the service, to locate a group of nodes (and their position) that
know the actual current position of the service.

They can therefore query them to obtain the position of the
server providing the service. At this point the node is able
to query the server for its service. The presented architecture
provides this service in a load-balanced and fault-tolerant way.
A caching system enables the nodes that lay in the same
region to assist in providing service location while relieving
the service locators of providing the location. The effectiveness
of using caches is demonstrated by experiments.

A more detailed performance evaluation remains to be
performed where the cost metrics actually take into account
physical and MAC layer characteristics of WSNs. Moreover,
we want to investigate the performances of our system in the
case in which other routing protocols are used (e.g., [11],
[12]). Furthermore, we want to investigate more in depth the
security aspects of the system, as well as the possibility to
use other load balancing and fault-tolerant strategies. Finally,
the obtained results are encouraging and open up possibilities
for further studies and for the application of this method to
problems such as data storage and replication.
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