New Perspectives in Autonomic Design Patterns for
Stream-Classification-Systems’

Patrizio Dazzi
HPC Lab — ISTI/CNR
IMT — Lucca
Italy
patrizio.dazzi@isti.cnr.it

ABSTRACT

Nowadays, systems are growing in size and are becoming
more and more complex. Such a complexity suggests a new
need for mechanisms that enable the system to self-manage,
freeing administrators of low-level task management whilst
delivering an optimized system. Autonomic systems sense
their operating environment and automatically take action
to change the environment or their own behavior. They
are able to achieve it with a minimum of human effort.
This is because they are: self-configuring, self-healing, self-
optimizing and self-protecting. Current autonomic systems
are ad hoc solutions: each system is designed and imple-
mented from scratch i.e., there are not standard (or well-
established) methodologies that autonomic system design-
ers and/or programmers can exploit to drive their work. In
this paper, we propose a design pattern that can be eas-
ily exploited by the stream-classification-systems designer
to achieve autonomicity with a minimal effort. The pattern
is described using a java-like notation for the classes and
interfaces. A simple UML class diagram is depicted.

Categories and Subject Descriptors

F.1.1 [Computation by abstract devices|: Models of
Computation—Self-modifying machines, Unbounded-action
devices; D.2.11 [Software Engineering]: Software Archi-
tectures—Patterns

General Terms
Autonomic Computing, Adaptive Strategies

Keywords

autonomicity, behavioral design pattern

*This research is carried out under the FP6 Network of Ex-
cellence CoreGRID funded by the European Commission
(Contract IST-2002-004265), the FP6 GridCOMP project
partially founded by the European Commission (Contract
FP6-034442)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASE Workshop on Automating Service Quality, November 2007, Atlanta,
Georgia, USA

(©2007 ACM ISBN: 978-1-59593-878-7 /07/11...$5.00

Francesco Nidito
Computer Science Dept.
University of Pisa

Italy

Marco Pasquali
HPC Lab — ISTI/CNR
IMT — Lucca
ltaly

francesco.nidito@di.unipi.it marco.pasquali@isti.cnr.it

1. INTRODUCTION

The growing size and complexity of current systems suggests
a new need for mechanisms able to automatically adapt the
systems to new scenarios. A need for mechanisms making
the systems self-managing in order to overcome their rapidly
growing complexity and to enable their further growth. In-
deed, the management of such systems, characterized by a
huge size and complexity, is too difficult and expensive to
be done by using human operators only. On the other hand,
the autonomic systems sense their operating environment
and take action to change the environment or their own be-
havior with a minimum effort. This is because they are able
to adapt themselves to new, somehow not previously taken
into account, situations. Autonomic Computing is an ini-
tiative started by IBM in 2001, with the presentation of its
manifesto [4]. Its ultimate aim is to create self-managing
computer systems to overcome their rapidly growing com-
plexity and to enable their further growth. The manifesto
states that a system, to be autonomic, must have the follow-
ing properties (that are simply listed because their analysis
is beyond the scope of this paper): self-configuring, self-
healing, self-optimizing and self-protecting. The IBM re-
searchers outlined in the autonomic manifesto and in the
“Vision” paper [5], the main aspects characterizing the au-
tonomic computing:

e the features that an autonomic system should have;

e a possible evolution path for the autonomic comput-
ing (five evolution steps: base, managed, predictive,
adaptive, autonomic);

e a highly abstract structure of an autonomic element
(Figure 1).

Nevertheless, they did not provide any programming model
or (behavioral) design pattern to ease the work of auto-
nomic application (or system) designers. The lack of de-
sign and implementation methodologies for autonomic com-
puting brings about a very expensive design and implemen-
tation of autonomic system. Current autonomic systems
can be considered ad hoc solutions: each system is designed
and implemented from scratch. In this paper, we propose a
generic autonomic pattern for stream-classification-systems
(SCS) that can be easily exploited by SCS designers to
achieve autonomicity with a minimal effort. The stream-
classification-systems are designed to analyze streams of data
and to classify each stream item depending on a specific clas-
sification policy. A traffic shaper [1] is a good example of

these kind of systems. The packets come into the shaper,
it first assigns them a priority (w.r.t. some traffic classifica-
tion rules) and then it chooses how to manage them. Some
packets can be put inside higher priority queues, others in
lower priority queues and/or can be discarded by the sys-
tem because are unsuitable for the traffic shape it has to
provide. The pattern provided is a generic solution that
can be easily adapted to specific situations. This paper is
organized as follows: in Section 2 we present the proposed
pattern describing its fundamental entities. In Section 3 we
shortly introduce related work and in Section 4 we draw our
conclusion sketching the path for possible future work.

2. AUTONOMIC DESIGN PATTERN FOR
STREAM-CLASSIFICATION-SYSTEMS

In this section, we present our autonomic behavioral design
pattern. Its aim is to provide a general repeatable solu-
tion easing the design of autonomic stream-classification-
systems. A stream-classification-system is characterized by
three components: an InputStream, a Classifier and an Out-
putStream. They can be represented in the following way:

e INPUTSTREAM: a stream (or set) of independent ele-
ments I among which there are not functional depen-
dencies.

e CLASSIFIER: a classification function (f) applied to
each element of I.

e OUTPUTSTREAM: a stream (or set) of elements O such
that each element is e; = f(e;) with e; € I and €; € O.

The CLASSIFIER retrieves each input element from the IN-
PUTSTREAM, then it classifies the element eventually sent to
the OUTPUTSTREAM. Typically, the classification is driven
by a policy specified by the classifier administrator e.g., in
case the classifier is a traffic shaper the policy is specified by
the network administrator. Let’s suppose that the classifier
has a priori knowledge of the nature of all possible elements
it has to classify, and it is able to manage every possible dis-
tribution of the items coming from the input streams with-
out any performance loss. In this case the classifier performs
all classifications correctly, simply exploiting the informa-
tion specified by the administrator policy. Nevertheless, in
a more realistic scenario, the input items come from the in-
put streams with a non-predictable distribution. Hence the
classifier could behave in a strange or inefficient way. Let’s

Autonomic Manager

Analyze Plan

Monitor Knowledge Execute

\ Managed Element /

Figure 1: Structure of an autonomic element

suppose a shaping policy of a network traffic shaper that as-
signs a high-priority to IP packets whose size is less than 2
Kb, and it assigns a low-priority to the other packets. More-
over, suppose that the 80% of the network bandwidth is re-
served for high-priority packets. In presence of long and very
different streams, each one made of items characterized by
very similar size, the classifier will emit long streams of high-
or low-priorities, resulting in a bad utilization of the network
channel. In this case, it could be fruitful to replace the classi-
fication strategy deriving from the administrator policy with
a more suitable one. If a designer has sufficient knowledge
about the streams of input element, it is sufficient to exploit
the GoF strategy design pattern [2] to give to the system the
ability to replace its strategy dynamically. Unfortunately, it
is impossible to have such a priori knowledge. Hence, in or-
der to accomplish the task to classify items in an efficient
way, the CLASSIFIER needs to behave in an autonomic way.
Conceiving our autonomic pattern for stream-classification-

Classifier

InputStream OutputStream
K >

<<use>> <<use>>|

<<use>> !

I
autonomic_stream_classification_pattern
(] -] q) (-]
Reconfigurator
N
DataReEositoE DU Lo ssuserzo_ Evaluator
Strategy

Figure 2: UML schema of the proposed autonomic
strategy pattern.

systems we have been inspired by the GoF strategy pattern.
As the strategy pattern, we have a system which behavior
is driven by an external entity: the strategy. Moreover, the
main entity of our pattern is called STRATEGY. On the con-
trary w.r.t the original strategy pattern, it is able to classify
the packets, to evaluate itself and to change its behavior ac-
cordingly to some rules. To perform these tasks STRATEGY
uses three other entities: DATAREPOSITORY, EVALUATOR
and RECONFIGURATOR. Their behavior can be described as
follows:

e DATAREPOSITORY: it is an entity that holds up to a
certain (finite) number of past input elements coupled
with the respective computed outputs.

e EVALUATOR: it is an entity able to suggest a STRAT-
EGY reconfiguration. It takes as input the current
STRATEGY configuration and the DATAREPOSITORY,
than it suggests a change in the STRATEGY behavior.

e RECONFIGURATOR: it takes as input the STRATEGY
and the output of EVALUATOR, it is able to reconfigure
the STRATEGY, in order to optimize it.

The CLASSIFIER forwards the items retrieved from the IN-
PUTSTREAM directly to the STRATEGY. Before classifying

the items, The STRATEGY evaluates its own configuration
by invoking the EVALUATOR. The EVALUATOR reads the
past input/output from the DATAREPOSITORY and then it
evaluates the adherence of the classifier behavior w.r.t. the
given classification policy. If the behavior is different from
the expected one, the EVALUATOR suggests a change in the
STRATEGY configuration. If the system needs to be recon-
figured, STRATEGY invokes the RECONFIGURATOR passing
to it the suggestions proposed by the EVALUATOR. The
RECONFIGURATOR retrieves the tuning parameters of the
STRATEGY through which it changes the configuration and,
in consequence, the behavior of STRATEGY. After the re-
configuration step the STRATEGY computes the output val-
ues accordingly to its new configuration and stores both the
input and the computed output into DATAREPOSITORY. Fi-
nally, the STRATEGY sends the computed output back to the
CLASSIFIER that in turn send it to the OUTPUTSTREAM. A
UML schema of the packages and classes that implements
our autonomic strategy pattern is depicted in Figure 2. The
higher part of the figure represents the classification system,
made up of the CLASSIFIER entity, the INPUTSTREAM entity
and the OUTPUTSTREAM entity. In the lower part of the
figure, it is represented our autonomic pattern belonging to
a package. The pattern package is made up of four entities:
the EVALUATOR, the STRATEGY, the DATAREPOSITORY and
the RECONFIGURATOR.

2.1 Interfaces definition for the pattern enti-
ties
The entities involved in the behavioral pattern presented
can be represented by classes. In this section we use a
Java-like syntax to report seven different programming in-
terfaces that the classes representing the entities must im-
plement. The first three interfaces represent the methods of
a very summarized view of the stream-classification-system:
the INPUTSTREAM, the OUTPUTSTREAM and the CLASSI-
FIER. The last four interfaces are presented to describe the
methods of the entities to be provided to make the stream-
classification-system autonomic: the STRATEGY, the EVAL-
UATOR, the RECONFIGURATOR and the DATAREPOSITORY.
Figure 3 presents the INPUTSTREAM class interface. This

class InputStream {
Element Read(void);
}

Figure 3: The InputStream class interface.

interface must provide a public method, called READ, that
permits the CLASSIFIER to retrieve data elements from the
input stream. The type of the elements belonging to the
input stream is ELEMENT. ELEMENT must present a suit-
able interface for its analysis and classification. Figure 4

class OutputStream {

void Write(ClassifiedElement e);

}

Figure 4: The OutputStream class interface.

presents the OUTPUTSTREAM class interface. This interface

must provide a public method, called WRITE, that enables
the CLASSIFIER to write the classified elements into the out-
put stream. The elements of the output stream have type
CLASSIFIEDELEMENT, that represents an element after the
classification process. A possible CLASSIFIEDELEMENT class
can contain an instance of the ELEMENT class that origi-
nated it and a QoS field, set to the appropriate value for the
subsequent usage by the application reading such output val-
ues. A convenient way to represent the class of CLASSIFIER

class Classifier extends Thread {
void Run();

}

Figure 5: The Classifier class interface.

(presented in Figure 5) is to use a subclass of the Thread
class. The CLASSIFIER is a thread consisting in an infinite
loop which performs three operations: a Read on the INPUT-
STREAM, an elaborate(described below) on the STRATEGY
and a Write on the OUTPUTSTREAM. Figure 6 presents the

class Strategy {
void Elaborate(Element);
List GetTunableParameters();
void SetTunableParameters(List);

Figure 6: The Strategy class interface.

STRATEGY class interface. It provides three methods. The
first one (FElaborate) is invoked by the CLASSIFIER to acti-
vate the classification activity of the strategy. The second
(GetTunableParameters) and third (SetTunableParameters)
methods are invoked by the RECONFIGURATOR to get and to
set the STRATEGY tuning parameter in order to optimize the
classification performances. The EVALUATOR class interface

class Evaluator {
Evaluation Evaluate(DataRepository);
}

Figure 7: The Evaluator class interface.

is presented in Figure 7. It defines only one public method:
Evaluate. This method takes as input a DATAREPOSITORY
object storing a finite set of CLASSIFIEDELEMENT. The
EVALUATOR analyzes such data in order to evaluate the
behavior of the current strategy, comparing it to the one
expected by the administrator. If the behavior is not com-
pliant to the one specified by the administrator’s policy, the
FEvaluate method returns an evaluation object describing the
distance between the current behavior and the desired one.
The instance is defined as the difference between the opti-
mal behavior and the actual behavior. Its nature strictly
depends on the application: it can be a single numeric value
or a complex tuple. Figure 8 presents the RECONFIGURATOR
class interface. It defines the Reconfigure method that takes
as input: the evaluation returned by the EVALUATOR and a
reference to the STRATEGY object. If the returned distance,
computed by the EVALUATOR, is different from zero, the RE-
CONFIGURATOR retrieves the strategy tuning parameters in

class Reconfigurator {
void Reconfigure(Evaluation, Strategy);

}
Figure 8: The Reconfigurator class interface.

order to change the behavior of the STRATEGY object. The

class DataRepository {
void Store(Element, ClassifiedElement);
List GetData();

Figure 9: The DataRepository class interface.

DATAREPOSITORY class interface is presented in Figure 9.
It defines two methods: Store and GetData. The former is
used by the STRATEGY class to store each input item and
the classification it received. The latter is used by the EvAL-
UATOR to retrieve a List of the data stored.

2.2 Polytope

In the previously described system, each input may trigger
the reconfiguration activity. This operation can be expen-
sive and sometimes the optimization gain can be less than
the reconfiguration overhead. To address this problem we
introduce the concept of polytope. A polytope consists in
a particular subset of the possible values returned by an
EVALUATOR invocation. When an EVALUATOR invocation
returns a value belonging to the polytope the reconfigura-
tion step is not performed i.e., the polytope is a geomet-
rical area in which the values returned by the EVALUATOR
are free to move without triggering a reconfiguration. A
geometrical interpretation of the polytope is the following:
each value v returned by the EVALUATOR can be seen as a
coordinate vector which points are real numbers (v € R™),
and the polytope as a subspace in R" centered in the value
representing the optimal stream-classification. A strategy
reconfiguration is required if and only if the value returned
by the EVALUATOR relies outside the polytope meaning that
the classification behavior is quite bad. As a consequence,
the RECONFIGURATOR plays a slightly different role. The
RECONFIGURATOR reconfigures the STRATEGY to move the
possible next status inside the polytope perimeter (accord-
ingly to the past history only).

3. RELATED WORK

In this section we present some works that deal with differ-
ent aspects of autonomic systems and their design. Sterritt
and Bustard in their paper [9] discuss the type of system
architecture needed to support such objectives. They pro-
pose a design template based on a simple characterization
of autonomic systems. In [3], Gilbert exploits the analogy
of autonomic human behavior with object behavior as an
abstraction used to identify opportunities for concurrency.
The paper provides a pattern that exploit such abstraction.
In [6] is presented a technique to approximate the form of
the data stream distribution. Their estimation can lead to
a good data classification, but their proposal has not au-
tonomic features. Pendarakis et al. [7] propose a charac-
terization of the traffic generated by distributed applica-

tions. They present a system for autonomic management
of network resources (such as local link bandwidth) to effect
a desired balance between concurrently executing processes
on a stream processing node. Solomon et al. [8] outline a
component-based architecture for autonomic computing and
propose a set of seven components for building autonomic
systems. While our approach focus on the programming
model of autonomic SCSs, they propose a general architec-
ture for autonomic applications.

4. CONCLUSION AND FUTURE WORK

In this paper, we presented a pattern easing the design
and the implementation of autonomic stream-classification-
systems. The pattern can be easily incorporated into the de-
sign and implementation process packaging it inside a com-
ponent (or a library) around which develop the autonomic
SCS. An interesting direction for future research concerns
meta-programming and Aspect Oriented Programming: code
transformation tools that, starting from a set of high level
specification, are able to generate the code needed to provide
autonomic behavior to certain class of systems.

5. REFERENCES

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,
and W. Weiss. letf rfc 2475.
http://tools.ietf.org/html/rfc2475, December 1998.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. 1995.

[3] John W. Gilbert. Privatethread: A software pattern for
the implementation of autonomic object behavior. In
Workshop on design patterns for concurrent, parallel,
and distributed object-oriented systems (OOPSLA 95),
1995.

[4] IBM. “autonomic computing: Ibm perspective on the
state of information technology”.
http://www.research.ibm.com/autonomic/manifesto,
2001.

[5] Jeffrey O. Kephart and David M. Chess. The vision of
autonomic computing. Computer, 36(1), January 2003.

[6] Nittaya Kerdprasop and Kittisak Kerdprasop. Density
estimation technique for data stream classification. In
DEXA °06: Proceedings of the 17th International
Conference on Database and Expert Systems
Applications, Washington, DC, USA, 2006. IEEE
Computer Society.

[7] Dimitrios Pendarakis, Jeremy Silber, and Laura
Wynter. Autonomic management of stream processing
applications via adaptive bandwidth control. In ICDCS
’06: Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems,
Washington, DC, USA, 2006. IEEE Computer Society.

[8] Bogdan Solomon, Dan Ionescu, Marin Litoiu, and
Mircea Mihaescu. Towards a real-time reference
architecture for autonomic systems. In SEAMS "07:
Proc. of the 2007 International Workshop on Software
Engineering for Adaptive and Self-Managing Systems,
Washington, DC, USA, 2007. IEEE Computer Society.

[9] Roy Sterritt and Dave Bustard. Towards an autonomic
computing environment. In Proc. of the 14th
International Workshop on Database and Expert
Systems Applications, 2003.

