Q-NiGHT: Adding QoS to Data Centric Storage in
Non-Uniform Sensor Networks

Michele Albano! Stefano Chessa'? Francesco Nidito! Susanna Pelagatti! *
!Dipartimento di Informatica, University of Pisa, Pisa Italy
Istituto di Scienza e Tecnologie dell’ Informazione, CNR, Pisa Italy

Abstract

Storage of sensed data in wireless sensor networks is
essential when the sink node is unavailable due to fail-
ure and/or disconnections, but it can also provide efficient
access to sensed data to multiple sink nodes. Recent ap-
proaches to data storage rely on Geographic Hash Tables
for efficient data storage and retrieval. These approaches
however do not support different QoS levels for different
classes of data as the programmer has no control on the
level of redundancy of data. They result in a great unbal-
ance in the storage usage in each sensor, even when sen-
sors are uniformly distributed. This may cause serious data
losses, waste energy and shorten the overall lifetime of the
sensornet. In this paper, we propose a novel protocol, Q-
NiGHT, which (1) provides a direct control on the level of
QoS in the data dependability, and (2) uses a strategy sim-
ilar to the rejection method to build a hash function which
scatters data approximately with the same distribution of
sensors. The benefits of Q-NiGHT are assessed through a
detailed simulation experiment, also discussed in the paper.
Results show its good performance on different sensors dis-
tributions on terms of both protocol costs and load balance
between sensors.

1 Introduction

A wireless sensor network is composed by a large num-
ber of low power, low cost sensors[1] which self organize
into a (multi-hop) ad hoc network. Sensors are spread in
an environment (sensor field) without any predetermined
infrastructure and cooperate to execute common monitor-
ing tasks which usually consist in sensing environmental
data. The sensed data are collected by an external sink node,
when it is connected to the network. The sink node, which
could be either static or mobile, is in turn accessed by the
external operators to retrieve the information gathered by

*Work funded in part by the European Commission in the framework
of the “SMEPP” project (contract N. 033563), and “PERSONA” IP project
(contract N. 045459)

the network. Storage of sensed data in wireless sensor net-
works is essential when the sink node is unavailable due to
failure and/or disconnections, but it can also provide effi-
cient access to sensed data to multiple sink nodes. Recent
approaches to data storage rely on Data Centric Storage for
efficient data storage and retrieval. The work that intro-
duced Geographic Hash Tables [3] also depicted the scenar-
ios where Data Centric Storage outperforms Local Storage
and External Storage.

Q-NiGHT. In this paper we propose Q-NiGHT, a novel
DCS protocol which moves from GHT incorporating QoS
control and featuring good load balance among sensors. Q-
NiGHT uses a strategy similar to the rejection method [7] to
build a hash function biased with sensor distribution. This
spreads data more evenly among nodes. In addition, Q-
NiGHT can provide QoS with different redundancy tech-
niques. We detail the protocol using pure replication, allow-
ing the user to choose the number of replicas required for a
given datum. We conduct detailed simulations of Q-NiGHT
and GHT and compare the results obtained with respect to
the load of each sensor (i.e. the number of data stored in
each node) and the number of messages needed for data
storage and retrieval. Results show the good performance
of Q-NiGHT on different sensors distributions on terms of
both protocol costs and load balance. In the first part of
this paper we analyze the characteristics of GHT simulat-
ing its behavior with uniform and Gaussian distributions of
sensors. Results show that the amount of data distributed
to each sensor can have a large variance, causing hot spots
on borders of the network even with uniform sensor distri-
bution. This may cause data losses due to lack of storage
in the boarder nodes and to battery exhaustion. Dead sen-
sors on the borders may cause further unbalance due to ill
shaped perimeters. As we may expect, the effect of load
unbalance is more serious when sensors distribution is not
uniform. This is due to the fact that locations are hashed
by GHT uniformly on the sensornet regardless of the actual
sensor density.

Paper organization. The paper is organized as follows.
In Section 2 we present related works. Section 3 discusses

the problems of GHT presenting the results of simulations
carried on with uniform and Gaussian distributions. Sec-
tion 4 discusses the “biased” hash function h used in our
protocol. Then, Section 5 details Q-NiGHT and discusses
how different redundancy techniques can be incorporated in
the protocol. Finally, Section 6 reports on the simulation of
our protocol and compares its performance with plain GHT.
Conclusions are presented in Section 7.

Paper notation. Recurrent symbols used in the paper
are summarized in Table 1.

58;8; generic sensors

number of sensors in the network
communication range of a sensor
deployment area in which sensors are located
geographical distribution of sensors in A
hash function used to locate data

datum to be stored/retrieved, in the system

name (meta-data) for D

SRS

Table 1: Recurrent symbols

We also planarize the input graphs using both RNG (Rel-
ative Neighborhood Graph) and GG (Gabriel Graph)[8],
as requested by the GFG[4] routing protocol.

2 Related works

Data centric storage. Our work originates from the
GHT [3], we discuss this protocol in depth in Section 3.
Cell Hash Routing (CHR)[6] is another DCS routing based
on hash tables. CHR first clusters nodes in cells of prede-
fined and globally known shape using a distributed proto-
col (e.g. dividing the sensor field in a mesh of squares).
Then it uses the cells, instead of individual nodes to hold
the values. CRT uses a variant of GFG working on cells.
Data are hashed into geographic coordinates as in GHT[3]
and routed to the cell that includes that location. As soon
as the data reaches the destination cell it is stored in all
the nodes in the cell. If the cell is empty (e.g. it has no
sensor) CHR uses an approach similar to GHT to replicate
data around the empty cell. Problems related with using
geographic face routing in practical settings have been dis-
cussed in [13]. To solve this problems new solutions were
proposed. For instance, GEM [14] proposes a graph em-
bedding for sensor networks which defines a set of virtual
coordinates that can be used for routing and DCS in place
of true geographic coordinates. Another approach similar
to GEM is Hierarchical Location Identifiers (HLI)[15]. The
system uses a hierarchical location system to identify nodes
by some characteristics. The system uses DSDV[16] rout-
ing protocol and aggregate routes. This provides a good
base to perform unicast, multicast and anycast. The system,

authors claim, can be used as a base for other solutions as
TinyDB[2] and GHT[3]. An alternative approach for rout-
ing is Information Directed Routing (IDR)[19]. To route a
message, IDR finds a path with maximum information gain
at moderate communication cost. The network routes the
message from the source to the destination finding a path
that is not minimal in terms of energy but this path pass
through high interest areas to collect as much information
as possible to reply to the query.

Non uniformity. Non uniformity is a brand new topic in
wireless sensor networks and it is little explored. The same
is for non uniformity and data management. Two works that
consider non uniformity are [17] and [18]. The first con-
siders the problem of connectivity in sensor networks and
covers also non uniformly deployed networks. The third
study the problem of broadcast using also non uniformity
(introducing the “Hill distribution”).

3 Load unbalance in GHT

GHT[3] implements Data Centric Storage using Geo-
graphic Hash Tables. Each datum has a unique meta-datum
(or name) which is hashed uniformly as a coordinate in the
sensing area, represented as a two-dimensional plane. GHT
implements two operations: put, which stores data, and
get, which retrieves them. In the put operation, the name
of data to be stored is first hashed into a location (z,y) in
the sensing field. Then, GHT selects the sensor closest to
(z,y), which becomes the home node for that data. The
home node is selected using GFG[4]. GFG uses two opera-
tion modes: greedy and perimeter. Each packet starts in the
greedy mode, in which it is routed progressively closer to
its destination at each hop. When a packet reaches a node
s; whose neighbors are all farther than s; to the destina-
tion, GFG switches to the perimeter mode and the packet
is forwarded using the right hand rule, that is the packet is
forwarded on the next edge clockwise from the edge from
which the packet has been received. As soon as the packet
reaches a node closer to destination than the previous ones,
it returns to the greedy mode. If the destination (z,y) does
not correspond to any sensor, GHT uses the perimeter mode
of GFG to locate all the sensors surrounding (x,y) (called
the perimeter of (x,y)). The closest sensor in the perime-
ter becomes the home node for (z,y). GHT stores a copy
of the data in the home node as well as in all the sensors
belonging to the perimeter. Storing on all the perimeter is
essential to guarantee data persistence also in presence of
node faults. Data retrieval uses a get operation. The name
is first hashed into the destination (z,y), then GFG is used
to route the request to (z,y). When the request reach a
node in the perimeter of (z,y), the data is returned back to
the sender. Replicating all data on the perimeter of (x, y) is
a simple choice, which allows to use GFG with almost no
changes and which can work quite well on very large sens-

ing fields with uniformly distributed sensors. In order to
measure the degree of unbalance of GHT on more realistic
scenarios, we simulated a flat square sensing field, with a
400m side. Each node has circular transmission range with
10m radius. In this area, we simulated several sensornets
ranging from 3600 to 18000 sensors, which correspond to a
mean network density ranging in [8, 35]. For each density,
we randomly generated 100 networks with uniform distri-
bution. For each network, we compute the mean and the
variance of the number of nodes found in a GFG perime-
ter as follows. For each sensor network the simulator ran-
domly selects 1000 points and, for each point, it computes
the number of nodes in the perimeter surrounding the point,
in the case that GG or RNG are used in the protocol. Fig-
ure 1, summarizes the mean and standard deviation of the
perimeters. The figure shows that, as the network den-
sity increases, the average number of nodes in a perimeter
decreases. However, the actual number of nodes remains
highly variable, and the standard deviation is higher with
RNG than with GG. This variance is partly due to the be-
havior of nodes in the outer part of the sensing area (the grey
part in Figure 2), since in that area the probability of hav-
ing very long perimeters (i.e. following the whole boarder)
is high. With low densities, the probability that a random
point belongs to the exterior of the network (and thus it is
associated to the external perimeter) is not negligible.

Perimeters on the border. In order to understand this
border effect, we performed another set of simulations in
which the sensing nets are generated in the same way as
above but the boarder area is not used to store data. We
“cut away” the 5% of the area from each border (the grey
area in Figure 2.a), for a total of 19% of the total arca. We
randomly generate 1000 points in the white area and again
measure the length of each perimeter and compute the mean
and the variance. Figure 2.b shows the results obtained us-
ing GG. The mean and the variance improve if the border
nodes are let out but standard deviation remains high, lead-
ing to a high unbalance in the node load. Results with RNG
are much worse, as with the whole sensing area.

Non uniform sensor distribution. In order to under-
stand the behavior of GHT with non-uniform sensor distri-
bution, we repeated our experiments using a Gaussian func-
tion (¢ = 1 with maximum on the center of the area) for
distributing sensors. The function is normalized to have the
99 percentile matching the area. The results are shown in
Figure 3. The behavior is much worse than with uniform
distribution because GHT, uses a uniform hash function in-
dependently of the real distribution of sensors. This bring
to a pathological state of load unbalance that is due to the
different quantity of data that must be managed by an equal
number of sensors: A sensor on the border of the deploy-
ment area must manage a quantity of data that is larger than
the quantity managed by a sensor in the center of the net-

nodes

I

300
200
10
0
-100

=]

I L A B I B B A B

10“ “15“ “20“ “25“ “30“ “35

density
(a) GG

| R 1
density
(b) RNG

nodes
Fy
(=]
o

Figure 1: Mean and variance of perimeters (number of
nodes) measured for different densities with GG and RNG
planarization.

work.

Load unbalance and QoS. Another issue with GHT is
that there is no way to control the QoS provided for each
datum. Since the point (z,y) is obtained computing an
hash function h on its associated meta-data M, the selec-
tion of the sensors candidate for storage is in practice in-
dependent from the “value” of the data. In principle this
ensures the same treatment for each stored datum. How-
ever, if the meta-datum M is particularly popular and many
sensors generate data described by M, the sensors located
in the perimeter around (z,y) = h(M) would be burdened
with an high storage and communication load. For this rea-
son the authors of [3] introduce the technique of structured
replication. However nor GHT, neither the structured repli-
cation ensure that the level of redundancy associated to a
data is related to the importance of the data itself: GHT as-
sure only the same average treatment of each stored data.
Another aspect is that, although the average level of redun-
dancy of the meta-datum is constant, in practice it can vary
significantly (due to the fact that each geographic points is
surrounded by a different perimeter), even in case of uni-
form distribution of the sensors.

4 Non-uniform hashing

As we have seen, a serious problem with GHT is due to
the fact that it uses a uniform hash function independently

(a) The border

(7]

S 300
[<]

250

200

150

100
50

Beoosttoriotas H LLLLLL000dddd
Toree

-50
-100

T[T TTTTTT T[T T[T T[T]TT

M0 15 20 25 30 35
density
(b) Perimeter length
Figure 2: The border area (gray) and the storing area
(white). Mean and variance of perimeters measured for dif-
ferent sensornet densities in case of GG using only the white
area.

of the real distribution of sensors. This leads to the patho-
logical load unbalancing shown in Figure 3. We propose to
use hash functions which scatter data approximately with
the same distribution of the sensors. We can observe that
an hash function h(k) is a kind of pseudo-random number
generator: Starting from a seed (in our case the key k) it
produces an output (in our case in a value in R?) such that
for near values of key the hashed values must be distant.
With this consideration in mind we define a new hash func-
tion, whose pseudo-code is shown in Algorithm 1. This
function uses a strategy similar to the one used in the re-
Jjection method[7], but with some differences. Rejection
method is a technique used in random number generation
to produce random numbers following any probability dis-
tribution, with limited dominion. The basic idea is the fol-
lowing. The probability function is boxed and we generate
uniform random values in the box. If the value generated
is below the distribution function the value is accepted and
returned. Otherwise we randomly generate new points in
the box until values are below the function. Notice that in
principle there is a non-null probability of non termination
because the values can be generated all above the function.
In practice a good uniform hash grants to generate values
in all the box. The function RejectionHash returns a pair

FTTT IO TT T [T [TTT [TIT T ITIT[TITT 1]

10‘ L ‘15‘ L ‘20‘ L ‘25‘ L ‘30‘ L ‘35

density
(a) GG

o

c
400
350
300
250
200
150]
100
50

q0 15 20 25 30 3
density
(b) RNG

Figure 3: Mean and variance of GHT perimeters for differ-
ent sensornets densities, Gaussian sensor distribution.

Algorithm 1 REJECTIONHASH(k, f)

Require: A key k& and a function f.
Ensure: A coordinate pair (x,y).

10
loop
(x,y,2) — Hash(k +1)
i—i+1
if z < f(z,y) then
return (z,y)
end if
end loop

(z,y) of coordinates where to place data from its key k, be-
longing to distribution £. Instead of using uniform random-
ization uses random hashing on the key. At each iteration,
if necessary, changes lightly the key in a deterministic way.
Figure 4 shows a good behavior of the non-uniform hash
function. RejectionHash fits well the the sensor distribution
in the data dissemination strategy with a good global load
balancing. These results are better than the results provided
with uniform distribution and uniform hashing (Figure 1
and Figure 2.b). This is due to the Gaussian distribution
of the nodes that does not have a border effect as evident as
in the uniform distribution.

nodes
-
(=]
(=]

n 3
o >
T T T[T T [T[T ITT T

20
-40)
-60=15 15 20 25 30 35
density
(a) GG
@ 140F
'g E
2 120F
100
3u;
60
40--¢
20F
o-
-20°
-40°
B s P R P o) R
10 15 20 25 30 35
density
(b) RNG

Figure 4: Mean and variance of GHT perimeters for differ-
ent sensornets densities, Gaussian sensor distribution and
non uniform hashing.

5 Adding QoS to GHT

As well as GHT [3], Q-NiGHT is built atop the GFG
routing protocol[4]'. Q-NiGHT provides data insertion and
data retrieval on the sensor network. To our purposes the
interface of the put includes, along with the meta-data
M and the data D, also a parameter () expressing the de-
sired QoS. @ gives a measure of the dependability required
for the data, and may be expressed using different metrics
and ranges according to the particular redundancy technique
used. For instance, if Q-NiGHT adopts pure replication
then () can express the number of sensors on which the data
should be replicated, or, if Q-NiGHT adopts n out of m re-
dundant encodings[9, 10], then) can express the number
of fragments in which partition the data (each fragment to
be stored in a different sensor) and the number of redundant
fragments. In the following, we describe Q-NiGHT assum-
ing pure replication of the data. Data insertion is involved
with put (M, D, Q) . We assume @ ranges in [1, Q4] and
gives the number of sensors on which the data should be
replicated. Let s be the source node of a put (M, D, Q) op-
eration. s firstly computes h(M), where h is the hash func-
tion conditioned with the sensor distribution function, f, in
the sensing field, as discussed in Section 4. h(M) returns
a pair of geographic coordinates (z,y) as the destination of

! In [3] the authors call it GPSR[5]

the packet P,=< (x,y) , <M, D, Q>>. The packet in turn is
sent to the destination using the GFG protocol. As in GHT
we call home node the sensor s (of coordinates (2',y’))
geographically nearest to the destination coordinates. The
home node naturally receives the packet as a consequence
of applying GFG. Upon the reception of packet P, sen-
sor sy begins a dispersal protocol which selects () sensors
to store a copy of <M, D>. The dispersal protocol is iter-
ative and uses the concept of ball. Given a sensor sg of
coordinates (,y), we denote with B(, ,(7) the ball cen-
tered in (x, y) of radius 7, that is the set of sensors that are
within a Euclidean distance 7 from (z, y). In the first itera-
tion s4 broadcasts a replica of D to all the sensors included
in the ball B, (7). T is chosen in order to reach the
(@ sensors nearest to (x,y) with high probability. A com-
plete proof of our statement can be found in [12]. Each
sensor receiving a replica responds with an acknowledg-
ment to sq. Sensor sy confirms the) — 1 acknowledg-
ments received from the sensors geographically nearest to
(z,y) and disregards the others. The confirmation requires
an extra packet sent by s4. Sensors which receive the confir-
mation keep the data while the other sensors will disregard
the data after a timeout. If s4 receives Q' < @ acknowl-
edgments, then it executes another iteration of the dispersal
protocol with 7 = 27 in which it considers only the sen-
sors in By) (2T) — B, (T). The dispersal protocol
stops as soon as () sensors have been hired or the outer-
most perimeter has been reached. The dispersal protocol
is a simple implementation a of geo-casting protocol[11].
When a node s, of coordinates (r, z) executes get (M) it
firstly computes (x,y) = h(M), and sends a query packet
Py=<(x,y),<(r,z) ,M>> using the GFG protocol. In
turn, packet P, will reach the perimeter surrounding (z, y)
and it will start turning around the perimeter. Eventually,
the packet will reach either the home node or another node
containing a replica of the data D associated to M. This
node will stop packet P, and will send the required data
back to s,. The complexity of the put protocol clearly de-
pends upon the choice of 7 as this determines the number of
iterations made to successfully place the () replicas. How-
ever, if we know the distribution of sensors f, for any given
(z',3y"), coordinates of sg, and @ it is possible to fix 7 in
such a way that, with high probability, at least () sensors
belong to the ball B,/ (7). In simulations, to compute
T, we use a simple strategy based on the approximation of
the ball with its inscribed square. Using this approximation,
we are have experimented that the method converges in no
more than 2 iterations and the average number of messages
generated is minimal [12].

Enhanced GFG. Q-NiGHT uses a slightly modified ver-
sion of GFG. Usually, when GFG is in the perimeter mode,
it always adopts clockwise turn to reach the destination co-
ordinates. This behavior leads to pathological situations as

Destination
© O' o o~ O\ o
o o
O @) O Source

(a) Standard perimeter mode

Destination

O O. o O
SO\ - O
Oz O
\0‘04» Source

<180

Center
(b) Enhanced GFG strategy

Figure 5: GFG routing perimeter mode

the one shown in Figure 5.a. The right hand rule make the
packet traverse all the perimeter before reaching the desti-
nation node. This is not a problem for GHT as the data are
replicated on all the perimeter, but may be very inefficient
for Q-NiGHT, which replicates only on a ball surrounding
the destination. In our GFG version, we turn clockwise or
counterclockwise depending on the destination, as shown
in Figure 5.b. Let s, be the position of the sender node, c
the position of the center of the deployment area and sq4
be the position of the destination. We turn clockwise if
0 < $5¢84 < 1802, and counterclockwise otherwise.
Behavior in case of faults. In case some of the nodes
holding the replicas of <M, D> fault our protocol contin-
ues to operate correctly. Due to GFG protocol, any get
with key M is routed to the node geographically nearest to
(z,y) = h(M) (home node of M). If the faulty node is not
the home node, the protocol implicitly discards it. If this
is not the case, the second nearest node in the perimeter is
always included in the ball built by our protocol [12].

6 Simulations and results

In this section, we discuss the results of our simulation.
We simulated a square with a 400m side, with sensor trans-
mission range of a perfect 10m radius circle. We assumed a
density of 14 and performed 2000 put operations with ran-
domly generated meta-data using both GHT and Q-NiGHT
. In these trials, Q-NiGHT uses a pure replication QoS with
15 replicas for each datum. Figure 6 compares the behav-
ior of GHT (graphics a,c,e) and Q-NiGHT (graphics b,d,f).
All graphics show the average load of sensors using RNG.
Graphs (a,b) consider uniform sensor distribution and uni-
form hashing, (c,d) Gaussian sensor distribution and uni-
form hashing and finally (e,f) Gaussian sensor distribution

2 Computed in clockwise way

and Gaussian hashing. show the average load of sensors in
the In all graphs, the = axis shows the different load (e.g.
Number of data) on a node and the y axis shows the number
of nodes storing exactly this number of data. Values on the
y axis follow a logarithmic scale for better comprehension.
We can see that Q-NiGHT reaches better load balance even
in the uniform case (graphs a,b), while from graphs (c,d) it
is evident that Q-NiGHT reaches better load balance even in
the uniform case. Figure 6.(c,d) shows the average load of
sensors in case of Gaussian sensor distribution and uniform
hashing. GHT shows its usual unbalance problems, while
Q-NiGHT manages to balance the load is able to balance
the load (despite uniform hashing) because it keeps replica
distribution localized and avoids replication on long perime-
ters (which happens with GHT in low density areas). This
behavior is even more evident in Figure 6.(e,f) in which we
compare the load of GHT and Q-NiGHT in case of Gaus-
sian distribution of sensors and Gaussian hashing.

Evaluating puts and gets. Figure 7 shows the mean
and standard deviation of the cost of the basic put and get
operations (number of hops needed to store a data). We per-
formed 2000 puts and 2000 gets with randomly chosen
meta-data. The QoS for Q-NiGHT is again pure replication
with 15 replicas for each datum. We always consider RNG
networks. In all graphs, the axis shows the sensor density
in the network and the y axis the operation cost measured.
Graphs in the first row compare the cost of a put operation
in GHT (a) and Q-NiGHT (b). The put is much more effi-
cient in Q-NiGHT as it keeps the replicas localized in a ball
without following long perimeters across the network. On
the other hand, Figure 7.(c,d) shows the mean and standard
deviation of the cost of a get operation in case of RNG
networks with GHT (c¢) and Q-NiGHT (d). The cost of Q-
NiGHT is greater than GHT. This is due to the fact that in
GHT, as soon as a get request hits a node in the perime-
ter it immediately finds the data, on the other hand, using
Q-NiGHT that request must travel until it reaches the repli-
cation ball, which may need a few more hops. This behav-
ior was much worse using standard (not enhanced) GFG as
travelling along the perimeter could mean traverse the entire
network before hitting the ball. However, in our opinion the
cost of get is still rather low as a price to be payed in order
to get load balance on the network and QoS. We can ex-
pect that the put operations would be much more common
during the network lifetime.

7 Conclusions and future work

In this paper, we discussed the limitations of the GHT in
practical sensor networks and we have proposed a new pro-
tocol (Q-NiGHT) which overcomes these limitations and al-
lows a fine QoS control by the user. Q-NiGHT corrects the
ill behavior of GHT in three ways. (1) It uses non uniform
hash tables, which allow a much balanced distribution of

o o ?
(3 [@
3 B 10°E 3
E “\ﬁ L
L . 10°
1025 10°
L L M
L 10? ‘
10% 10
TE . . | | | L L L L L L | | | | I | I 10 [L
2 4 6 8 1 12 14 16 18 20 2 2 3 6 & 10 12 14 16 0 200 400 600 800 1000 1200 1400
. . o . oa . . . R . loa load
(a) GHT with uniform distribution (b) Q-NiGHTwith uniform distribution (¢) GHT with uniform hashing and Gaussian
distribution
3 3 0
$ | 3 3 10°
g i | 2 10 ; 2
wh | F
Ef | [
£ |

Wf

L

i 1 | | 1 1 1

== 20 a0 60 80 100 ‘12‘0‘",;d
(d) Q-NiGHTwith uniform hashing and Gaus-

sian distribution distribution

=

PR] e
20 40
(e) GHT with Gaussian hashing and Gaussian

— 00120 2 2 6 8 10 12 14 16 ol
(f) Q-NiGHTwith Gaussian hashing and Gaus-
sian distribution

Figure 6: Average load of sensors

data across the sensor network when sensors are distributed
in a non uniform way. (2) The dispersal protocol used in Q-
NiGHT allows the user to control the number of replicas of
a given datum (using the quality of service parameters in the
put). (3) Data replicas are placed in sensors which are “as
close as possible” to the home node, which result in much
balanced load on all the sensor network. The merits of Q-
NiGHT have been evaluated through simulation in uniform
and Gaussian distributed sensor networks. The results show
that the protocol performs a better load balancing with re-
spect to GHT, and has a smaller cost for put operations.
We also proposed an enhanced version of GFG protocol to
correct the ill behavior in the case of perimeter mode.

Future work will include the study of protocols to esti-
mate the sensor distribution on the deployment area. We
would work on new routing protocols that work better in
non-uniformly distributed networks. Another issue we will
address is the latency of get/put operations. We would
compare standard GHT with Q-NiGHT to evaluate their
performance. We also want to use, in our approach, the
modified GFG protocol proposed in [20]. We will study,
also, the opportunity to use virtual coordinates systems [21]
instead of GPS-based positioning system.

References

[1] Akyildiz, LE, Su, W., Sankarasubramaniam, Y.,
Cayirci, E.: A survey on sensor networks. IEEE Com-
munications Magazine 40(8) (2002) 102-114

[2] Maddenand, S., Franklin, M.J., Hellerstein, J.M., Hong,

W.: The design of an acquisitional qouerg rocessor for
sensor networks. In: Proc. of the 2003 SIGMOD Con-

ference, San Diego, (2003) 491-502

[3] Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govin-
dan, R., Yin, L., Yu, F.: Data-centric storage in sensor-
nets with GHT, a geographic hash table. Mob. Netw.
Appl. (MONET) 8(4) (2003) 427-442

Bose, P., Morin, P., Stoimenovic, 1., Urrutia, J.: Rout-
ing with Guaranteed Delivery in Ad Hoc Wireless Net-
works. Wireless Networks, 7(6) (2001) 609-616 Also
in DialM’99, Seattle, August 1999, 48-55.

Karp, B., Kung, H.T.: GPSR: Greedy Perimeter State-
less Routing for Wireless Networks. In: Proc. of Mobi-
Com 2000, Boston, (2000) 243-254

Araujo, F., Rodrigues, L., Kaiser, J., Liu, C., Miti-
dieri, C.: CHR: a Distributed Hash Table for Wireless
Ad Hoc Networks. In: Proc. of the 25th IEEE ICD-
CSW’05. (2005)

Neumann, J.V.: Various techniques used in connection
with random digits. In Taub, A.H., ed.: John von Neu-
mann, Collected Works. Volume 5. Pergamon Press,
Oxford (1951) 768-770

Jaromczyk, J., Toussaint, G.: Relative neighborhood
graphs and their relatives. Proc. of IEEE 80(9) (1992)
1502-1517

[9] Rabin, M.O.: Efficient dispersal of information for se-
curity, load balancing, and fault tolerance. Journal of

the ACM 36(2) (1989) 335-348

[10] Rizzo, L.: Effective erasure codes for reliable com-
puter communication protocols. ACM Computer Com-
munication Review 27(2) (1997) 24-36

200

(]
(=3
o
FIT I T T[T T[T T T[T T [TTT[TTT 11T

q0 15 20 25 30 35
density
(a) GHT-put

30

cost

25

20

1% 0000000000600 00

10

FTT T [TIT T[T T I T[T T[T IT [TTTT]T

o TR T e e a0 s
density
(¢) GHT-get

%1000
o

o

cost

900
800
700
600
500

300
200
100|

q0 15 20 25 30 35
density
(b) Q-NiGHT-put

60

40

204 0000%000000000

-20|

T R I (A
density
(d) Q-NiGHT-get

Figure 7: Mean and standard deviation of the costs (number of hops) of put and get with Gaussian distribution (Q-NiGHT

uses the enhanced GFG).

[11] Seada, K., Helmy, A.: Efficient and robust geocasting
protocols for sensor networks. Computer Communica-
tions 29(2) (2006) 151-161

[12] Albano, M., Chessa, S., Nidito, F., S.Pelagatti: Q-
night: Adding QoS to data centric storage in non-
uniform sensor networks. Technical report, Diparti-
mento di Informatica, Universita di Pisa (2006)

[13] Kim, Y., Govindan, R., Karp, B., Shenker, S.: On
the pitfalls of geographic face routing. In: Proc. of
ACM/SIGMOBILE DIAL-M-POMC 2005, Koln, Ger-
many. (2005)

[14] Newsome, J., Song, D.: GEM: Graph EMbedding
for Routing and Data-Centric Storage in Sensor Net-
works Without Geographic Information. In: Proc. of
the First International Conference on Embedded Net-
worked Sensor Systems, Los Angeles, (2003) 7688

[15] Bian, F,, Govindan, R., Schenker, S., Li, X.: Using hi-
erarchical location names for scalable routing and ren-
dezvous in wireless sensor networks. In: SenSys *04,
New York, (2004) 305-306

[16] Perkins, C.E., Bhagwat, P.: Highly dynamic
destination-sequenced distance-vector routing (DSDV)

for mobile computers. In: SIGCOMM 94, New York,
(1994) 234-244

[17] C. Bettstetter. On the connectivity of ad hoc networks.
The Computer Journal 47(4), (2004).

[18] L. Orecchia, A. Panconesi, C. Petrioli, and A. Vitaletti.
Localized techniques for broadcasting in wireless sen-
sor networks. In Proc. of DIALM-POMC ’04, New
York, (2004).

[19] Liu, J., Zhao, F., Petrovic, D.: Information-directed
routing in ad hoc sensor networks. In: WSNA *03: Pro-
ceedings of the 2nd ACM Int. Conf. on Wireless Sensor
Setworks and Applications, New York, NY, ACM Press
(2003) 88-97

[20] Arad, N., Shavitt, Y.: Minimizing recovery state in
geographic ad-hoc routing. In: Proc. of MobiHoc 2006,
Florence, Italy (2006) 13-24

[21] Caruso, A., Chessa, S., De, S., Urpi, A.: GPS free
coordinate assignment and routing in wireless sensor
networks. In: Proc. IEEE Infocom’05, Miami, (2005)

