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Abstract—In-network storage of data in Wireless Sensor Net-
works (WSNs) is considered a promising alternative to external
storage since it contributes to reduce the communication over-
head inside the network. Recent approaches to data storage rely
on Geographic Hash Tables (GHT) for efficient data storage and
retrieval. These approaches, however, assume that sensors are
uniformly distributed in the sensor field, which is seldom true in
real applications. Also they do not allow to tune the redundancy
level in the storage according to the importance of the data to
be stored. To deal with these issues, we propose an approach
based on two mechanisms. The first is aimed at estimating the
real network distribution. The second exploits a data dispersal
method based on the estimated network distribution. Experi-
ments through simulation show that our approach approximates
quite closely the real distribution of sensors and that our dispersal
protocol sensibly reduces data losses due to unbalanced data load.

Index Terms—Wireless Sensor Networks, Data Centric Stor-
age, Information Dispersal, Load Balancing.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) [6] are a recent tech-
nology suitable for unattended monitoring of a wide range of
environments, spanning infrastructures (such as factories or
public buildings), houses or even humans. In a WSN, a set
of low-power, inexpensive, embedded devices (called sensors
or nodes) spontaneously cooperate to construct a wireless
network to support their monitoring activities. Each sensor is
a microsystem combined with a radio interface that embeds a
set of transducers aimed at measuring different environmental
parameters. A special sensor, called sink, acts as a gateway
with the external networks, and it makes the sensed data
available to external users.

In the early approaches, WSNs implemented an external
storage scheme, for example using Directed Diffusion [12],
where all sensed data are sent to the sink to be stored and
analyzed outside the WSN. This scheme assumes that the
sink has a permanent connection with the network, and that it
performs most of the data analysis, while the role of the WSN
is limited to data acquisition. However, the external storage
approach is not feasible in applications where the WSN has an
intermittent connection with the sink. For these reasons, the
work described in [21] introduced the Data Centric Storage
model with Geographic Hash Tables (DCS-GHT), in which
data are stored within the WSN, for the sink to collect them
at a future time, maybe after aggregation or pre-processing.
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Comparing this approach to the external storage approach, the
authors observed that in-network storage contributes to save
sensors’ energy and to improve network lifetime. Since sensors
have limited memory capacity, the storage of all the sensed
data in the WSN may result impractical, however, with data
centric storage it is possible to aggregate data thus reducing
their size.

In this paper, we reconsider the DCS-GHT approach to data
storage in WSN. In this approach, each datum is associated
with a meta-datum; the meta-datum is hashed to a pair of
coordinates (x, y) on the WSN area and the datum is then
stored on the sensors forming a perimeter around (x, y).
DCS-GHT constructs the perimeter by means of a geographic
routing protocol [13], [9], [11]. We first deeply analyze the
behavior of DCS-GHT through simulation. In particular, we
analyze the effects of using a uniformly distributed hashing
on non-uniformly distributed sensors and the effects of using
perimeters comprising an unpredictable number of sensors.
Our results show that, even on uniformly distributed sensors,
the amount of stored data per sensor is extremely variable with
DCS-GHT, which may lead to data losses in overburdened
sensors. This phenomenon is even worse if the sensors are
not uniformly distributed. For this reason, we introduce a
novel approach, called Load Balanced Data Centric Storage
(LB-DCS), to the storage of sensed data in a WSN. In our
approach, sensors apply a distributed protocol to compute an
approximation f of their actual distribution. Then f is used
to bias the hash function in order to distribute coordinate
pairs according to network distribution (more data stored
on densely populated areas in the sensing field). Finally, a
datum is replicated according to a QoS level that depends
on the importance of the datum (as decided by the user).
We evaluate thoroughly our approach using simulations based
on NS-2 [19]. As compared with DCS-GHT our approach
guarantees a much better load balancing of storage and greatly
reduces the loss of data due to overburdened sensors. It should
be stressed that, although our approach can be applied to
network topologies which change dynamically due to sensors’
movements or failures, our proposal is thought for networks
with limited mobility. We are planning to extend this approach
to WSNs with higher mobility in our future work.

The rest of the paper is organized as follows. Section II
presents the related work and briefly describes DCS-GHT. Sec-
tion III introduces the LB-DCS protocol and its mechanisms
for density sampling, meta-data hashing, and data dispersal. In
Section IV, we evaluate the performance of LB-DCS by means
NS-2, and Section V draws the conclusions. Supplementary
material is available at http://ieeexplore.ieee.org.
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II. RELATED WORK

The Data Centric Storage (DCS) [21] defines a paradigm
where data is stored within the network itself. In particular,
each datum is associated to a meta-datum and the datum is
stored in a set of sensors that is a function of the meta-datum.

The first proposal of DCS in WSN is with Geographic
Hash Tables (DCS-GHT) [21]. In DCS-GHT, it is assumed
that the geographic coordinates of sensors are known, and that
each datum is described by a unique meta-datum. The set of
sensors selected to store a datum is computed by means of a
hash function applied to the corresponding meta-datum. This
function returns a pair of geographic coordinates fitting in the
area where the sensor network is deployed.

DCS-GHT exploits the primitive put for data storage and
get for data retrieval. The put primitive takes in input a
datum d and its meta-datum k. By hashing k, it produces
a pair of coordinates (x, y) and it uses the GPSR routing
protocol [13] to find the sensor closest to the coordinates (x, y)
(called home node), and a set of sensors (called home perime-
ter) forming a perimeter around (x, y) (the details of GPSR are
presented in Section II of the supplementary material). Then,
to enforce data persistence against sensors’ faults, the home
node requires the sensors in the home perimeter store a copy
of (k, d). The get primitive hashes the input parameter k (the
meta-datum) to obtain the coordinate (x, y), then, by means
of GPSR, it sends a request for the data with meta-datum k
to the point (x, y). When this request reaches the sensors in
the home perimeter around (x, y), they send back all the data
they store that correspond to k.

Although innovative, DCS-GHT presents a number of limi-
tations when deployed on real networks. It assumes a Uniform
distribution of sensors and uniformly hashes meta-data on
them. Moreover, if the WSN produces a large amount of
data associated to the same meta-datum, all such data will
be stored by DCS-GHT within the same home perimeter, thus
overloading sensors on that perimeter. To avoid this problem
DCS-GHT uses structured replication, which distributes data
with the same meta-datum more evenly in the WSN [21].
However, as observed in our previous work [4] and discussed
in Section III of the supplementary material, this is not enough
to ensure load balancing. In fact, the storage load can become
unbalanced even if meta-data are balanced and uniformly
distributed.

Along this trend of research many alternative DCS mech-
anisms have been proposed. They are similar to DCS-GHT
in the definition of the put and get primitives, but they
differ in the internal mechanisms used to implement routing,
data dispersal and storage. In particular CHR [5] organizes the
WSN into clusters of sensors in order to address scalability
issues related to routing and energy efficiency. GEM [18]
constructs a labeled graph spanning the network to assign
addresses to the sensors; this enables the routing of data by
using such addresses rather than on geographical coordinates.
LHR [8] bases routing on hierarchical location names of the
sensors that are manually assigned. RR [23] associates the
data to regions of the WSN rather than to single points in
order to relax the requirements for location accuracy. GLS [14]

provides cluster-based location services for locating data or
nodes in grids and, even if not related to WSNs, it implements
a geographic routing system relying on real-world geographic
location information to route its queries. DIM [15] implements
a geographic embedding of an index structure. It recursively
divides the plane to assign addresses to sensors, then it hashes
meta-data to that address space. Comb-needle [16] differs
from the other approaches since it does not use meta-data.
In Comb-needle, each datum is replicated on a number of
sensors belonging to a vertical stripe of the WSN deployment
area, and the retrieval is ensured since the queries are directed
to the sensors belonging to a horizontal stripe of the same
area. The positions and sizes of the stripes are optimized to
ensure that data can be retrieved efficiently.

All these approaches neither consider non-uniformly dis-
tributed WSN, nor consider QoS and load balancing in the
storage. The works in [7], [20] consider non-Uniform WSN,
however their focus is on connectivity problems and broadcast
protocols. Effects of non-uniformity in WSN data storage
are taken into account in our preliminary works [2], [4]. In
particular, [4] introduces a dispersal strategy that exploits a
non-uniform hash function and that introduces the concept
of QoS in the storage. However, it assumes that the network
distribution is known a priori and it does not use any strategy
to infer the actual distribution of the sensors. This fact is
particularly limiting considering that the network distribution
may change due to sensor faults. The works in [2] builds over
[4] by introducing a primitive mechanism for the estimation
of the density of the network. However this mechanism is
intended only as a setup of the network and it is assumed that
the network density does not vary with time. In this paper, we
remove this assumption by introducing a mechanism for the
on-demand estimation of the network density.

III. A NOVEL PROTOCOL FOR DATA CENTRIC STORAGE

In our previous study [4], we observed that DCS-GHT is
subject to load unbalance due to the fact that it relies on the
home perimeters for data replication. Since the size of the
perimeters can be extremely variable, this greatly affects the
storage load of the sensors, that is also extremely variable.
In Section III of the supplementary material, we show that
this load unbalance results in consistent data leakages, both in
Uniform and Gaussian distributed WSN.

This ill behavior of DCS-GHT is mainly due to three
underlying assumptions:
• the density of the sensors is supposed to be known, hence

DCS-GHT does not provide any means to inspect the
network density;

• network density is supposed to be constant all over the
WSN area, hence the hash function used by DCS-GHT to
map meta-data to WSN area locations is a usual uniform
hash function;

• there is no stress on load balancing, hence DCS-GHT
selects all the sensors on the home perimeters for data
storage, regardless of their size. Consequently, the set of
sensors selected for the storage of a data can be very large
or very small, without any means to control the size of
this set.
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Fig. 1. WSN partitioning in squared regions.

The goal of coping with load balancing and non-Uniform
WSNs led us to the design of Q-NiGHT [4], [3], that uses
a generalized hash function to select the home node and that
does not resort to a home perimeter to select the nodes that
store data. Moreover, our seminal work [2] used a primitive
technique to sample and distribute the actual WSN density.
This section proposes a more organic approach, called Load
Balanced Data Centric Storage (LB-DCS) to overcome the
limitations of previous DCS systems. LB-DCS exploits three
novel mechanisms to address the issues presented above. In
particular:
• a density estimation protocol that provides the sensors

with a network density estimation f to be used in the
hashing function of meta-data in the put and get
protocols;

• a hashing module that uses a generalized hash function
biased with f ;

• a storage protocol that enforces QoS in the selection of
the sensors for data storage.

Summarizing, a put operation first acquires information
on the actual sensor density in the WSN (as described in
III-A), then it selects a home node in a load balanced way (as
described in III-B), and finally it selects a set of nodes close
to the home node, whose size is the QoS of the meta-datum at
hand (as described in III-C). Similarly, a get operation first
acquires information about the sensor density (as described in
III-A), then it directs the query towards the home node of the
meta-datum, which is computed using the same generalized
hash function used by the put operation (as described in
III-B).

A. Sampling density, and providing it to the sensors

This subsection describes how we can estimate network
distribution and provide it to the sensors needing it. In general,
we can have static networks, in which sensors do not move
during the network lifetime and dynamic networks, in which
density varies over time. For static networks, once density is
computed it remains the same for all the network lifetime.
In the case of dynamic networks, the lifetime of the network
is divided into epochs of fixed time length. The density of
the network is estimated at the beginning of each epoch and
when an epoch expires all the density data are considered
obsolete. The length of an epoch is system dependent and it
may vary according to the network usage, to environmental
conditions, to sensor mobility etc. In the rest of this section,

we detail the protocol assuming a static network, intending that
all the steps needed to perform the network density sampling
should be repeated at the beginning of each epoch. On the
other hand, each sensor uses a timer to understand when an
epoch is finished and to discard outdated data accordingly.

To the purpose of estimating sensor density, the WSN is
divided into n × n non overlapping square regions of side p
(without loss of generality we assume that the WSN area is
a square). The point at the center of a region is called watch
point, and the sensor closest to a watch point acts as a sentinel
for that region. An example of division of the WSN area into
9 regions is shown in Figure 1. Here, we spot with a black
circle the center of each region (the watch-point) and with a
”+” each sensor.

Note that p should be large enough to ensure that the
sentinels are not in the radio range of each other, otherwise
the same neighbor could be reported in two different regions.
For large WSNs, p will be, in general, much larger than the
sensors transmission range r.

The election of a sentinel in a region assures that the sentinel
is closer than r/2 to the watch-point and it works as follows.
First, each sensor computes its distance from the watch-point
of the region where it belongs. This can be easily done if
we assume each sensor knows the size of the WSN area and
the side p of each region. Then, each candidate sentinel (i.e.
each sensor closer than r/2 to the watch-point of its region)
broadcasts its coordinates and its id to all its neighbors. As all
candidate sentinels are within distance r, they all receive the
coordinates and id of the other candidates and compute the
closest one. If two or more candidates have the same distance
from the watch-point the smaller id wins.

After the election, each sentinel broadcasts a request to its
neighbors to count them. The number of neighbors is then
used as an estimation of the local density in the region. Either
proactive or reactive mechanisms can be used to deliver the
estimates computed by sentinels. We consider one proactive
protocol (Broadcast), and two reactive protocols (Stripes and
FatStripes).

In Broadcast, each sentinel sends its estimate to all the
sensors in the network. This is done once for all at the startup
of each epoch.

In reactive protocols, when a sensor needs to perform a
put/get operation it queries all the sentinels in the WSN to
get their local density estimation. We can reach each sentinel
by sending a message towards the watch-point of its region
using GPSR. If the closest node is a sentinel it replies with its
local density estimation; otherwise (i.e. if it is farther than r/2
from the region watch-point) it sends back a negative answer
and the corresponding region is assumed to have local density
equal to zero.

In Stripes, each sensor along the unicast route back from
a sentinel caches the density estimation received (Figure 2).
When a query for a sentinel arrives to a sensor, it first checks
its cache. If an entry for that sentinel is present, the sensor
sends back the cached density to the querying node without
forwarding the query any further. Otherwise, it sends the
request towards the sentinel using GPSR.

FatStripes is a step forward in optimization with respect to
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Fig. 2. Nodes that cache WSN density when Stripes is used.

Fig. 3. Nodes that cache WSN density when FatStripes is used.

Stripes. As depicted in Figure 2, in Stripes only the relay nodes
of GPSR cache the estimation received on the way back from
a sentinel. However, all the nodes in the transmission range
have actually spent energy to receive density information, even
if they did not participate actively in the protocol. FatStripes
uses this observation to cache density information also on the
passive receivers as in Figure 3. We can observe that caching
stripes are now larger than with Stripes, thus increasing the
probability of a hit during a query. Note that the use of caches
reduces the number of messages required in the protocol at the
price of devoting some memory to cache density estimates on
each sensor. If an estimate is stored in b bytes and recalling
that n2 is the number of sentinels, we need n2 × b bytes of
memory to cache estimates on each sensor. As the accuracy of
the global estimate increases with the number of sentinels, for
each application there is a trade-off between the memory used
for caching and the accuracy required for density estimates.

Once a sensor has collected estimates for densities from
all sentinels, it needs to figure out the density of the entire
network. Here, we propose a simple algorithm to ‘rebuild’
density from samples.

The rebuilding algorithm acts in two steps. The first step
computes an initial approximation for sensor density in each
region. The second step refines the density approximation
taking into account approximations in neighbor regions.

Since we have n2 regions, we denote with wij the density
estimate provided by the sentinel in region ij (1 < i, j < n),
and with d′ij and dij the density approximations for region
ij computed by the first step and by the second step of the
algorithm, respectively.

The first step computes each d′ij as

d′ij =
wij∑
ij wij

This first approximation works quite nicely if sentinels
know a close estimate of the number of nodes in their
region. However, it can be misleading at least in two opposite
situations:

TABLE I
RejectionHash:

h(k, f):
Requires: A key k and a function f .
Produces: A coordinate pair (x, y).

i = 0
while(true) {
(x, y, z) = Hash(k + i)
i = i+ 1
if z < f(x, y)

return (x, y)
}

• false zeroes: if a region has got very sparse nodes near
the watch-point and a concentration of many nodes along
the border it can report a 0 or very low density which is
not representative of the whole region.

• over reporting: if a region has got very sparse node near
the borders and the majority of the nodes near the watch-
point, it can report a much higher density than the real
one.

To cope with these two problems, in the second step we
compute the final approximation dij as a weighted mean of
approximations computed in the first step for region ij and for
its neighboring regions. The idea is to trust more d′ij than the
neighbor approximations, thus if region ij has m neighbors
and we denote with Nij the set of indices of neighbors regions,
the second step computes the final approximation dij as:

dij =
m ∗ d′ij +

∑
i′,j′∈Nij

d′i′j′

2 ∗m
The approximation of the network distribution is defined as

the matrix D = (dij)n×n of the estimated distributions.
Relative merits of Broadcast, Stripes, and FatStripes and ef-

fectiveness of rebuilding algorithm are assessed in Section IV.

B. Load balancing the choice of the home node

This subsection describes the hashing module that is em-
ployed by the DCS system to map each meta-datum to the
sensor that acts as the home node for it. Traditional approaches
are prone to load unbalance, since standard hash functions
distribute the home nodes uniformly over all the WSN area,
and hence sensors in crowded regions are assigned a smaller
number of meta-data.

On the other hand, once the network distribution is known,
it is possible to use a generalized hash function to distribute
home nodes, thus scattering data approximately with the same
distribution of the sensors. This way the home node density
is proportional to density of sensors in each region, and the
mean number of meta-data assigned to each sensor tends to
be balanced over the WSN.

A generalized hash function h(k, f) is intuitively a pseudo-
random number generator, that receives in input a probability
distribution (the network distribution f ) and a seed (the meta-
datum k) and produces an output coordinate (x, y). The use of
a pseudo-random number generator ensures that different keys
are mapped w.h.p. on pairs that are not correlated to each other.
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The pseudo-code for the hash function used in this module
is described in Table I. It uses a strategy similar to the one
used in the rejection method [17] to produce random numbers
following any probability distribution in a limited domain. The
probability function f is normalized such that the maximum
value of f is 1, then a triple (x, y, z) is generated uniformly at
random, (x, y) being a valid coordinate in the WSN area and
z ∈ [0, 1]. If z < f(x, y), the coordinate (x, y) is accepted
and returned. Otherwise other triples (x, y, z) are generated
until z < f(x, y). The number of iterations of this method is
in principle not limited, however in all of our experiments the
method has ended in a few iterations.

Clearly, the probability of some value (x, y) to be returned
by the generalized hash function is proportional to f(x, y)
(that is, to the network distribution in (x, y)), hence load
balancing the number of assigned meta-data over the sensor
nodes.

Note also that f can be obtained directly from matrix D.
In particular, letting ij be the region that contains the point
(x, y), f is obtained as f(x, y) = dij . Hence to store f is
sufficient to store the matrix D of n2 values, one for each
region. The memory overhead of the sensor grows linearly
with the number of watch-points (corresponding to the number
of regions), because in the worst case each sensor has to cache
the estimated density produced by each watch-point. However,
as discussed in Section IV-A, the error in the density decreases
rapidly with the number of watch-points, thus a limited number
of regions (in our simulations around 25) is sufficient to attain
a good trade-off between the precision of the protocol and the
memory overhead.

C. Enforcing QoS in the storage
Similarly to DCS-GHT, LB-DCS is built atop GPSR and

it offers the primitives put and get for data storage and
retrieval. The put primitive takes three parameters: a datum
d, its meta-datum k, and a QoS parameter q that expresses
the level of dependability required for the datum d. The
parameter q may be expressed using different metrics and
ranges according to the particular redundancy technique used.
In our case, since we use data replication as redundancy
technique, q expresses the required number of replicas of the
datum d. In particular q ranges in [1, qmax] where qmax is
the maximum number of replicas admitted. Note however that
other redundancy techniques are also possible. For example,
[1] investigates the use of erasure codes in data centric storage.

Let s be the source node of a put(d, k, q) operation.
s first computes (x, y) = h(k, f) as the destination of the
packet Pp=<(x, y),<d, k, q>>. The packet in turn is sent
to the destination using GPSR. As in DCS-GHT, we call
home node the sensor H (of coordinates (xH , yH)), which is
geographically nearest to the destination coordinates. Thus, H
receives the packet as a consequence of applying GPSR. Upon
the reception of packet Pp, H begins the dispersal protocol,
which selects a set of q sensors (called the replica set) to
store the replicas of (k, d). The replica set includes H and it
is unique for a given key k.

The dispersal protocol is iterative and uses the concept of
ball. Given the home node H of coordinates (xH , yH), we

denote with B(xH ,yH)(r) the ball centered in (xH , yH) of
radius r, that is the set of sensors that are within a Euclidean
distance r from (xH , yH). Thus:

B(xH ,yH)(r) = {sensors of coordinate(x, y) :
|(xH , yH), (x, y)| < r}

Sensor H then sends a request for storage to all the sensors
within the ball. In turn, when a sensor in the ball receives
the request for storage of Pp, it acknowledges the request
to H . H accepts the q − 1 acknowledgments received from
the nearest sensors, it confirms them, and disregards the
others. The confirmation requires an extra packet sent by H .
Sensors receiving the confirmation keep the data while the
others disregard them after a timeout. If H receives q′ < q
acknowledgments, then it executes another iteration of the
dispersal protocol with r = 2r in which it considers only the
sensors in B(x′,y′)(2r) − B(x′,y′)(r). The dispersal protocol
stops as soon as q sensors have been hired or the outermost
perimeter has been reached. In the special case where at
least q − 1 sensors are in the transmission range of H , H
computes the set of the sensors in B(xH ,yH)(r), inserts their
identifiers into the request for storage, and only these sensors
acknowledge the request for storage and store the datum;
this way, not only the dispersal protocol performs only one
iteration, but the number of acknowledgments generated is
limited to q−1. It can be observed that our dispersal protocol
is based on a geo-multicasting protocol [22].

The complexity of the put protocol clearly depends on the
choice of r as this determines the number of iterations made
to successfully place the q replicas. However, since we know
the distribution of sensors f , for any given home node H of
coordinate (xH , yH) and q it is possible to fix r in such a way
that, with high probability, at least q sensors belong to the ball
B(xH ,yH)(r).

When a sensor s′ of coordinates (x′, y′) executes get(k),
it first computes (x, y) = h(k, f), and sends a query packet
Pg=<(x, y),<(x′, y′), k>> by means of GPSR. If the network
topology is not changed since the execution of the put for
the same meta-datum (i.e. the sensors have neither moved
nor failed) then GPSR guarantees that the query packet will
eventually reach the sensor closest to (x, y), i.e. the sensor H
that was selected by the put protocol. Note however that in
some cases the packet may reach another sensor in the replica
set before reaching H . In any case, either H or the sensor in
the replica set of k receiving the query packet will respond
to s′ by sending back all the stored data that match with the
meta-data k.

However, if some sensors have failed, GPSR may fail to
reach H and the other sensors in the replica set. Nevertheless,
LB-DCS can ensure the retrieval of a data stored with QoS
parameter q provided that up to q − 1 sensors in the WSN
have failed and that the WSN is still connected (and hence
the success of the get(k)). In particular, we analyzed the
cases which may prevent the retrieval of a data stored with
QoS parameter q when up to q − 1 sensors have failed,
and, by simulation, we proved that these cases are extremely
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unlikely. This result is discussed in detail in Section VI of the
supplementary material.

Note that the capability of LB-DCS to retrieve stored data
is also affected by sensors’ mobility that may significantly
change the network topology. To deal with mobility we
consider the use of a Periodical Refresh Protocol (PRP) similar
to the one introduced in [21]. Section IV of the supplementary
material discusses the application of PRP to LB-DCS and its
performance.

IV. SIMULATION

This section presents the simulation results on the cost and
the performance of the density sampling protocols (Subsection
IV-A), on the performance of the rejection hash technique
in the dispersal of data in WSN with Uniform and Gaussian
distributions (Subsection IV-B) and on the cost of the put and
get protocols of LB-DCS and DCS-GHT (Subsection IV-C).
To this purpose we have implemented both LB-DCS and DCS-
GHT in the NS-2 simulator [19].

A. Simulations on density sampling

This section presents the simulation results on the error in
the approximation of the network density computed by LB-
DCS and on the cost of Broadcast, Stripes and FatStripes
protocols.

For each simulation run, 100 WSNs are randomly generated,
and the three protocols (Broadcast, Stripes and FatStripes) are
run on them to evaluate the error in the density estimation and
the messages exchanged by these protocols. The simulation
iterates the runs until the outputs of the simulator reach a
99% confidence interval that is less than 1%. We report here
the main results obtained with 200 sensors with a transmission
range of 25m in a WSN area of 100 × 100m2, and network
density (expressed as the average number of neighbors per
sensor) equal to 39. Note that we obtained similar results for
different sizes of the WSN area and/or network density.

In Figure 4, we show the errors measured by approximating
a Uniform, Gaussian and Hill distribution when varying the
number of regions used. We measure the error using the
Mean Square Error (MSE), a scalar quantifying the distance
between the real distribution and the distribution computed by
the rebuilding algorithm. If we denote with DR = (dRij)n×n
the matrix of real region densities (and we recall that D =
(dij)n×n is the matrix of the estimated region densities), the
MSE is defined as the average of the square of the errors on
each region, MSE(D) =

∑
ij(dij−dR

ij)
2

n2 . The error is under
0.0035 with 9 regions and falls under 0.0001 with 25 regions.
A detailed evaluation of the error due to the rebuilding of a
Gaussian distribution with 10× 10 regions is given in Section
V of the supplementary material.

Figure 5 compares the behavior of Broadcast, Stripes, and
FatStripes in terms of the average number of messages gener-
ated, with respect to different numbers of sensors that query
the sentinels. Since Broadcast is proactive, its performance
is independent of the number of sensors’ requests: all the
sensors receive the sentinels’ data ahead of time, so no real
“request” is generated. Stripes has a good behavior when a
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Fig. 5. Number of messages sent, against number of sensors that requested
WSN density, 100× 100m2 WSN area, 200 nodes.

small number of sensors ask for WSN density, but it suffers
from its “unicast” communication when most of the sensors
request this information. On the other hand, FatStripes gets
the best of both worlds, since it is reactive and hence it is
cheap when a few sensors query the sentinels, but it fully
exploits the broadcasting characteristic of the physical medium
to disseminate density information as much as possible. Hence,
when many sensors request density information, most of them
already have it because of the communication performed by
past requests.

A detailed evaluation of the number of sent and received
messages of Broadcast, Stripes, and FatStripes can be found
in Section V of the supplementary material.

B. Simulating rejection hash

The simulation results presented in this section are aimed
at evaluating the data leakage of LB-DCS and to compare it
with the data leakage of DCS-GHT, which is analyzed in detail
in Section III of the supplementary material. Data leakage
occurs when a sensor serves too many put operations and it
saturates its memory. In the simulations, we consider WSNs
deployed in a square area of 200 × 200m2, a transmission
range of 10m, and network densities (expressed as average
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number of neighbors per sensor) in the range [7, 30]. The
simulations consider both Uniform and Gaussian distribution
of the sensors. In the case of LB-DCS, we also set the QoS
parameter q = 7.

We assume sensors with storage capacity of 512KB (as it is
the case of the Crossbow Mica family [10]). For each network
generated in the experiments, the simulator executes a number
of put operations for each sensor, each one accounting for
8 bytes (i.e. each put operation requires the storage of 8
bytes of data in each sensor in the home perimeter or in
the replica set). In these simulations, we assume that each
sensor produces a total of 2, 100 put operations during its
lifetime, i.e. each sensor produces an amount of data to be
stored that corresponds approximatively to 1/30 of its memory
capacity. We assume that, once a sensor is requested to store
a new datum but its memory is full, it drops an older datum.
This means that once a sensor reaches its maximum storage
capacity it starts dropping data whenever it is requested to
store new data.

With these settings, we performed the following experiment.
In each simulation run, the simulator generates a new network
(according to the chosen network distribution), it simulates all
the put operations, and it computes the number of sensors
that do not leak data and the total quantity of data lost. The
simulation iterates until the average number of sensors that
leak data and the average number of lost data reaches a 99%
confidence interval that is less than 1%.

The result of these simulations is that with LB-DCS a
negligible fraction (less than 0.00001) of the nodes leaks some
data, and that a negligible fraction (less than 0.00001) of the
data is lost. On the contrary, the fraction of data lost by DCS-
GHT is around 0.7 (more details are available in Section III of
the supplementary material and in [4]). This means that, under
this respect, LB-DCS significantly outperforms DCS-GHT.

Further simulations were thus performed to understand the
reasons of this behavior. The additional simulations evaluate
the average load of the sensors in WSNs with network density
equal to 14 and both Uniform and Gaussian distribution.
Figure 6 and 7 report, for different values of the load on the x
axis, the average number of sensors that have that storage load
in the cases where the sensors are distributed according to a
Uniform distribution or to a Gaussian distribution, respectively.
The load on the x axis represents the number of data stored
by a sensor normalized with respect to the data that a sensor
produces. In particular, a sensor with load equal to 1 stores
the same amount of data it produces (i.e. approximately 1/30
of its memory capacity).

The results of the two cases are similar. In particular, DCS-
GHT shows a great load unbalance (a significant number of
sensors have a heavy load).

On the other hand, LB-DCS evenly distributes the load
according to the estimated network distribution due to the
rejection hash. In particular, with Uniform distribution most
of the sensors have a limited load (around 7 data), and the
average number of sensors that have the higher load (which
in this case is of 17 data) is very small (about 0.05). Similarly,
in the case of Gaussian distribution, most of the sensors have
a limited load (around 8 data), and the average number of
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Fig. 6. Stored data per node for LB-DCS, Uniform distribution of sensors.
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Fig. 7. Stored data per node for LB-DCS, Gaussian distribution of sensors.

sensors with a high load (which in this case is of 18 data) is
very small (about 0.5).

C. Cost of the put and get operations

This subsection evaluates the cost of the put and get
operations of DCS-GHT and of LB-DCS in terms of MAC
layer send and receive operations.

In these simulations, we used the same parameters as in
Section IV-B: WSN area of 200 × 200m2, communication
range of 10 meters, WSN density in the range [7, 30], and
QoS parameter of LB-DCS set to q = 7. Each simulation
run iterates 1000 put operations, each followed by a get
operation on the same meta-datum. The simulator reports the
average number of packet forwarded and received by the
sensors for each operation. The simulation runs are repeated
until the simulator outputs reach a 99% confidence interval that
is less than 1%. The simulator also reports on the correctness
of each pair of put and get operations, in particular it
computes the number of get operations that were unable
to retrieve the values stored with the corresponding put.
However, in our simulation experiments the get was always
successful.

The simulation results on the cost of the put and get
are reported in figures 8 and 9. In particular, Figure 8 reports
the number of MAC-level send for the storage and retrieval
operations of DCS-GHT and of LB-DCS, respectively, while
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Figure 9 reports the number of MAC-level receives. From the
simulations, it results that the put operation is more expensive
than the get operation. This happens because once the put
request has reached the home node, it should also reach all
the nodes in the home perimeter (in the case of DCS-GHT) or
in the replica set (in the case of LB-DCS), which can be quite
large depending on the DCS scheme used and on the desired
redundancy of the data. Furthermore, it is seen that the put
operation is less expensive with LB-DCS than DCS-GHT, due
to the smaller cost incurred by the dispersal protocol, while
the cost of get is almost the same for the two protocols.

V. CONCLUSIONS

DCS systems are very effective in implementing an in-
network data storage and retrieval system, since they require
only unicast communications. However, existing approaches
disregard issues related to load balancing of the sensors
and QoS. In this paper, we have addressed such aspects by
proposing a new DCS system, LB-DCS, that relies on three
mechanisms: a network density estimation protocol, a rejection
hashing technique that produces pairs of coordinates by taking
into account the real network distribution, and a dispersal
protocol that enforces QoS and load balancing. The simulation
results show that our approach significantly balances the
storage load on the sensors and it adapts to different network

distributions. As future directions, we believe that having the
opportunity of estimating on the fly the distribution of the
sensors may be exploited also in a better balancing of the
routes and in the evaluation of the coverage of the sensing
tasks. Future work includes also the extension of our approach
to release the assumption of limited mobility of the sensors.
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