A Self-organizing XML P2P Database System

Giovanni Conforti Giorgio Ghelli Paolo Manghi
Carlo Sartiani

Dipartimento di Informatica - Università di Pisa

Topics

- XPeer: a data management system
 - **OXML** data
 - p2p architecture
 - self-organizing
 - zero-administration

Presentation Outline

- system architecture
- oquery processing & query algebra
- **onclusions**

System Architecture

Introduction

- on open-ended and dynamic network
- a p2p hybrid architecture
 - peer nodes
 - super-peer nodes
- self-organizing and tree-shaped overlay network
 - opeers: leaves
 - super-peers: internal nodes
 - adaptation to changes in the network topology or in the workload

Main Issues

- keeping track of network topology changes
- keeping track of changes in local data
- orouting queries over the network

Peer Nodes

- peers are autonomous and may carry heterogeneous data
 - free local updates
- peer content is described by a treeshaped schema
 - tree-guide
- peer nodes also execute query plans returned by the super-peer layer
- peer nodes may replicate the content of other nodes and cache the result of previous queries

Tree-Guide

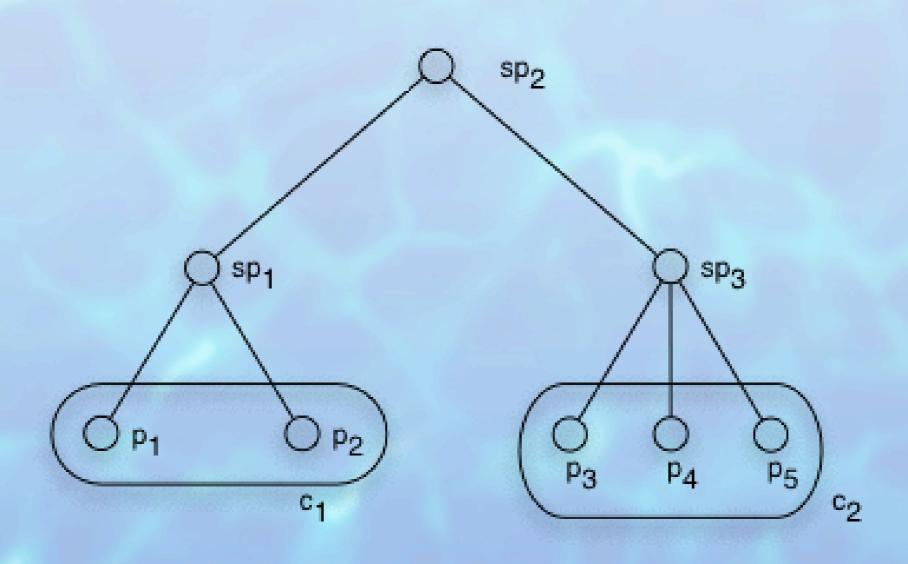
```
<market>
   <buildings>
      <building>
         <desc> Marvelous luxury house in the Hamptons </desc>
         <location> Hamptons </location>
         <price> 1600000 </price>
      </building>
      <building>
         <desc> Very nice flat in the Upper East Side </desc>
         <location> Upper East Side, Manhattan </location>
         <price> 1350000 </price>
                                                                                market
         <type> comdo </type>
      </building>
      <building>
                                                                                buildings
         <desc> Elegant luxury house in the countryside </desc>
         <location> Greensboro </location>
         <price> 1700000 </price>
                                                                                building
      </building>
   </buildings>
</market>
                                                               location
                                                                                        price 
                                                                             note
                                                                                          [1350k,1700k]
```

Peer Clusters

- peer nodes are organized into clusters
- peer clusters are formed on a schema-similarity basis
 - tree similarity
- each cluster is managed by a superpeer node

Super-Peer Nodes

- super-peer nodes are still peer nodes
- O super-peer tasks:
 - query compilation
 - replica management
 - O cache management


More on Super-Peers

- super-peers maintain schema information
 - the list of the schemas of their peers
 - the union of these schemas
- this information is used for compiling queries
 - twig matching

Super-Peer Groups

- super-peer nodes are organized into groups
- Super-peers having the same father in the hierarchy form a group
- groups are intended to
 - o increase the robustness of the system wrt node or network failures
 - guide the query compilation process

Overlay Network Example

Network Evolution

- Ocluster splitting
- group splitting
- Ocluster/group merge
- vertical extension/contraction
- network re-joining

Query Processing & Query Algebra

Query Processing

- **Othree phases**
 - algebraic translation: performed locally by the submitting peer
 - Olocation assignment compilation: performed by the super-peer network
 - query execution: coordinated by the submitting peer

Query Algebra

- extension of an existing algebra for queries over XML data
- new features
 - locations, modeling peer contents and replicas
 - freshness parameters
 - **absolute time T**
 - replication constraints

Query Algebra Example

The XQuery binding:

```
for $b in input()//building
let $d in $b/desc
```

Becomes:

Conclusions

- the system is being implemented
- future issues
 - ocorrectness and completeness of queries
 - of formal representation of the distributed state in p2p systems