Fixing the Java Bytecode Verifier by a Suitable Type
Domain

Roberto Barbuti
Luca Tesel
Dipartimento di Informatica
Universita di Pisa
Corso lItalia 40
56100 Pisa, Italy

{barbuti,tesei } @di.unipi.it

ABSTRACT

The Java Virtual Machine embodies a verifier which per-
forms a set of checks on bytecode programs before their ex-
ecution. The verifier performs a data-flow analysis applied
to a type-level abstract interpretation of the code. The cur-
rent implementations of the bytecode verifier present a sig-
nificant problem: there are legal Java programs which are
correctly compiled into a bytecode that is rejected by the
verifier. Also the more powerful verification techniques pro-
posed in several papers suffer from the same problem. In
this paper we propose to enhance the bytecode verifier to
accept such programs, maintaining the efficiency of current
implementations. The enhanced version is based on a do-
main of types which is more expressive than the one used in
standard verification.

1. INTRODUCTION

Java programs are compiled into an intermediate language
which is interpreted by the Java Virtual Machine (JVM) [7].
The intermediate language, which, following other authors,
we call JVML, is a language of bytecode instructions.

Since JVML programs can be loaded from the network, se-
curity problems may arise. For this reason, JVM embodies
a bytecode verifier which performs a set of checks on JVML
programs before their execution. The aim of these checks is
to prevent the execution of malicious or wrong code which
could corrupt the integrity of the host. The verifier per-
forms a data-flow analysis applied to a type-level abstract
interpretation of the JVM.

Given the importance of the bytecode verifier, a lot of re-
search efforts have been dedicated both to its formalization
and to study extensions able to accept larger classes of cor-
rect programs than the standard verifier does [4, 5, 6, 8, 9,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. SEKE ’02, July 15-19, Ischia, Italy. Copyright
2002 ACM 1-58113-556-4/02/0700 ...$5.00

Cinzia Bernardeschi
Nicoletta De Francesco
Dipartimento di Ingegneria dell'Informazione
Universita di Pisa
Via Diotisalvi 2
56100 Pisa, Italy

{c.bernardeschi,n.defrancesco}@iet.unipi.it

10, 12].

Despite these efforts, the bytecode verifier and its extensions
still present a significant problem: there are legal Java pro-
grams which are correctly compiled into a bytecode that is
rejected by the verifier. This problem has been pointed out
by Stérk and Schmid in [11], where examples of these pro-
grams are reported. Stdrk and Schmid propose to restrict
the rules for detecting legal programs of the Java compiler
such that these programs are no longer allowed.

In this paper we propose to enhance the bytecode verifier
to accept such programs, which are actually correct and not
dangerous. The verifier is defined by abstract rules based on
a domain of types which is more expressive than the one used
in standard verification. The domain is powerful enough to
certify a class of programs that is is strictly larger than the
one accepted by current implementations of the verifier. We
show how the proposed enhanced verifier correctly accepts
the programs presented in [11].

It is important to notice that the proposed extension of the
verifier maintains the efficiency of current implementations.
In fact the algorithm executed by the verifier is the same: in
particular subroutines are examined only once also if they
have multiple calling points. The improvement is essentially
due to the type domain we define.

2. BYTECODE VERIFICATION AND THE
PROBLEM OF SUBROUTINES

The result of the compilation of a Java program is a set of
class files. A class file is generated by the Java Compiler
from each class definition of the program. It is composed
of the declaration of the class and of a JVML bytecode for
each method of the class. The instructions of JVML are
typed: for example iload loads an integer onto the operand
stack, while aload loads an address. In Figure 1 we show a
restricted set of JVML instructions. Our aim is to address
the problem raised by the use of subroutines (see Section 2)
and it can be fully analysed using this fragment.

We assume that each compiled method is a (finite) sequence
of instructions labeled by 0,1,2,... K—1. Moreover, N € IN
is the number of local registers required for the method,
max_stack_height € IV is the maximum height that the



iconst ¢ Push constant ¢ with type int onto the stack

inc Increment the integer value on top of the stack

iload x Push the integer value of register x onto the stack

istore z Pop off the stack an integer value and store it into local register x

astore x Pop off the stack an address and store it into local register x

ifeq L Pop a value off the stack and if the value is equal to 0, branch to L

goto L Jump to L

ireturn Pop an integer value on top of the stack and return it

jsr L Jump to address L and push the address of the following instruction onto the stack
retz Jump to the address stored in register «

Figure 1: Instruction set

Memory Stack Modified
int m1(boolean b) { iload 1 {l:int, 2:T, 3:T, 4T } 0
int i; ifeq A {l:int, 2:T, 3:T, 4:T} (int)
try { iconst 1 {l:int, 2:T, 3:T, 4:T} 0
if (b) istore 3 {Lint, 2:T, 3:T, 4:T} (int)
return 1; jsr L {1l:int, 2:T, 3:int, 4: T} 0
i=2; iload 3 {1l:int, 2:T, 3:int, 4:T} )
} finally { ireturn  {L:int, 2:T, 3:int, 4: T} (int)
if (b) A: iconst 2 {lint, 2:T, 3:T, 4:T} 0
i=3; istore 2 {Lint, 2:T, 3:T, 4:T} (int)
} jsr L {1l:int, 2:int, 3:T, 4:T} 0
return i; goto C {l:int, 2:T, 3:T, 4:T} 0
} L: astore4 {lint, 2:T, 3:T, 4T } (ret(L))
iload 1 {l:int, 2:T, 3:T, 4iret(L)} () {4}
ifeq B {1l:int, 2:T, 3:T, 4:ret(L)}  (int) {4}
iconst 3 {Lint, 2:T, 3:T, 4ret(L)} () {4}
istore 2 {l:int, 2:T, 3:T, 4:ret(L)}  (int) {4}
B: ret4 {1l:int, 2:T, 3:T, 4ret(L)} () {2, 4}
C: iload 2 {l:int, 2:T, 3:T, 4:T} 0
ireturn  error error

Figure 2: An example of try-finally compilation and verification

stack can have during the execution of the method, and
m € IN is the number of the parameters of the method.
These three constants can be calculated statically by the
compiler.

The bytecode is subject to a static analysis called bytecode
verification. A Java bytecode verification algorithm is pre-
sented in [7]. Almost all existing bytecode verifiers imple-
ment this algorithm. It performs a data-flow analysis ap-
plied to a type-level abstract interpretation of the virtual
machine. The types form a domain, where the basic types
(e.g. int,address,---) are unrelated and T is the top ele-
ment. The class types are related as specified by the class
hierarchy. In this domain T represents either the type of an
undefined register (not yet assigned) or an incorrect type.

The abstract interpreter executes JVM instructions operat-
ing over types instead of values. The goal of the verification
is to assign to each instruction ¢ a mapping M; from lo-
cal registers to types and a mapping St; from the elements
in the stack to types. These mappings represent the state
Si = (M;, St;) in which the instruction ¢ is performed, thus
S; is the state at the program point 7. For each instruc-
tion there is a rule that specifies the correct states in which
such an instruction can be executed and the state after its
execution. For example, a iload x instruction requires a
non-full stack and the int type associated to register x, and
its effect is to push int onto the stack. Note that a reg-

ister can have different types at different program points,
but it must be assured that the state after an instruction
must be compatible with the state required by the successor
instruction(s): for example, the state after the execution of
an ifeq L instruction at address ¢ must be compatible with
Si+1 and SL.

The rules are used in a standard fixpoint iteration using a
worklist algorithm: an instruction ¢ is taken from the work-
list and the states at the successor program points are com-
puted. If the computed state for a successor program point
j changes (either the state at ¢ was not yet computed or the
already computed state differs), j is added to the worklist.
The fixpoint is reached when the worklist becomes empty.
Initially, the worklist contains only the first instruction of
the bytecode. The initial stack and register types represent
the state on method entrance: the stack is empty and the
type of the registers corresponding to the parameters are
set as specified by the signature of the method. The other
registers hold the undefined type T.

Instructions that represent a merge point between control
paths, i.e. having more than one predecessor in the control
flow graph, have a particular treatment. The state at a
program point of this kind is taken to be the least upper
bound of the states after all predecessor instructions. If, for
example, register z has type int on a path and type T on
another path, the type of  at the merge point is T. The



P(i) = iconst ¢, S; = (Mj, St;), |St;| < max_stack_height
i+1€{0,1,...,K —1}
S[SiJrl = Si+1 ] (Mi, int.Sti)]
) P(i) = inc, S; = (M;,St;), St; = int.SHomet' i+1¢€ {0,1,...,K — 1}
inc S[S@.H =S U (Mi, int.St’)]

P(i) =iload x, S; = (M;,St;), |Sti| < max_stack height,

iconst

iload z€{1,2,...,N}, Mi(z)=int i+1€{0,1,...,K—1}

istore

S[SH_l = Si+1 (] (]Wi7 int.Sti)]

P(i) = istore z, S; = (M;,St;), St; = int.St'
it1e{0,1,.... K —1}

astore

S[Si.:,_l =S U4 (Ml[l' = int], St,)]

P(i) = astore x, S; = (M;,St;), St; = ret(L).St'
it1e{0,1,....K —1}

ifeq

S[Si.:,_l =S U4 (Ml[l' = ret(L)], St,)]

P(i) = ifeq L, S; = (M;,St;),
St; = int.St', i+1,L € {0,1,..., K — 1}

S[St := Sr U (M;, St’), Sit1:= Siy1 U (M;, St,)]
P(i) =goto L, S;=(M;,St;), Le{0,1,...,K —1}

jsr

gOto S[SL = SL ] (Ml,Stl)]

P(Z) = jerome L, Sl = (]Wi7 Sti),
|Sti| < max_stack height, L€ {0,1,...,K —1}

S[SL =5, U (Mi,ret(L).Sti)]

P(Z) =ret z, S = (Ml,Stl), Tr € {1,2,...,N},
M;(z) = ret(L), Static Return Points(L)= {{1,02,...,0}

ret 5[5, = Sy, U (Se_1 > Mz = T1,56)), St, =S¢, U(Se,—15 (M .= T1, 56,
ce S[p = S[p ] (Slp—l > (M@[x‘ = T], Stl))]

P(i) = ireturn, S; = (M;,St;), St; = int.St'

ireturn

S

Figure 3: The rules of the abstract interpreter

least upper bound of stacks and memories is done pointwise.
Note that the pointwise least upper bound between stacks
requires that the stacks have the same height. Otherwise
there is a type error.

Subroutines in JVML are code fragments that can be called
from several points inside the code of a method. The in-
struction to call a subroutine is jsr L and the one to return
from the subroutine is ret xz. They are used to compile
try-finally java constructs. Subroutines execute in the same
activation record of the method, and therefore can access
the local registers.

Subroutines complicate significantly bytecode verification by
data-flow analysis. For efficiency reasons, it is required that
the body of the subroutine is checked only once and not
separately for the different calling points. Let a subrou-
tine start at address L. The code of the subroutine is
statically analysed to find the return points'. Each return
point is the instruction following a jsr L instruction. The

!Note that since JVML bytecode is unstructured, subrou-
tines are not syntactically delimited, thus methods have
been defined to identify the code of a subroutine. We do
not consider a particular one, being our type domain com-
patible with all of them.

state at the first instruction of the subroutine (i.e. the
state Sr) is obtained by merging all the states after the
jsr L instructions. Now consider an occurrence of jsr L
at address ¢ and its successor instruction at ¢ + 1. Con-
sider the state S; = (M;, St;) at ¢ and the state Sye¢ =
(Myet, Strer) after the execution of the instruction ret z
returning from the subroutine. The state at the program
point ¢ + 1, S;4+1, is computed as follows: St;+1 = St and
M1 (z) = M;et(z) if z is modified by the subroutine
i+ M;(z)  otherwise

This solution generates a problem. Figure 2 shows a Java
method m1 which is accepted by the Sun’s java compiler,
but its compiled bytecode (shown in the second column) is
rejected by the verifier, since it fails to type the instruc-
tions [11]. The figure also shows the typing assignment to
the instructions produced by the Sun’s verifier and the reg-
isters modified by the subroutine. Note that in the figure
address types are represented by ret(L): the type of return
addresses from the subroutine L. The subroutine starting
at address L is called from two jsr instructions: at the
first jsr register 3 has type int and register 2 has type T,
while, at the second call, register 2 has type int and regis-
ter 3 has type T. Thus the body of the subroutine is ab-
stractly executed starting from a memory which is the least



> unt int | ret(L) | unt_int | untret(L) [ T
unt unt int | ret(L) | unt_int | unt_ret(L) | T
int int int | ret(L) int T T
ret(L) ret(L) int | ret(L) T ret(L) T
unt_int unt_int int | ret(L) | unt_int T T
unt_ret(L) || unt_ret(L) | int | ret(L) T unt_ret(L) [ T
T T int | ret(L) T T T
Figure 4: Full definition of the > operator.
Memory Stack Modified
int m1(boolean b) { iload 1 {1:int, 2:unt, 3:unt, 4:unt} 0
int i; ifeq A {1:int, 2:unt, 3:unt, 4:unt} (int)
try { iconst 1 {l:int, 2:unt, 3:unt, 4:unt} 0
if (b) istore 3 {1:int, 2:unt, 3:unt, 4:unt} (int)
return 1; jsr L {1:int, 2:unt, 3:int, 4:unt} 0O
i=2 iload 3 {1:int, 2:unt_int, 3:int, 4: T} 0
} finally { ireturn {1:int, 2:unt_int, 3:int, 4: T} (int)
if (b) A: iconst 2  {l:int, 2:unt, 3:unt, 4:unt} 0
i=3; istore 2 {l:int, 2:unt, 3:unt, 4:unt} (int)
} jsr L {1:int, 2:int 3:unt, 4:unt} 0
return i; goto C {1:int, 2:int, 3:unt, 4:T} 0
} L: astore 4 {l:nt, 2:unt_int, 3:unt_int, 4:unt} (ret(L))
iload 1 {1:int, 2:unt_int, 3:unt_int, 4:ret(L)} () {4}
ifeq B {1:int, 2:unt_int, 3:unt_int, 4:ret(L)}  (int) {4}
iconst 3  {1:int, 2:unt_int, 3:unt_int, 4:ret(L)} () {4}
istore 2 {1l:int, 2:unt_int, 3:unt_int, 4:ret(L)}  (int) {4}
B: ret4 {1:int, 2:unt_int, 3:unt_int, 4:ret(L)} () {2, 4}
C: iload 2  {1l:int, 2:int, 3:unt, 4:T} 0
ireturn {1:int, 2:int, 3:unt, 4:T} (int)

Figure 5: An example of verification using our abstract interpreter

upper bound of the two calling points, that is Mz (1) = int,
M (2) = M1 (3) = Mr(4) = T. Note that there is a path
from L to the last instruction of the subroutine B: ret 4
where register 2 is not modified and another path from L
to B in which 2 is assigned an integer value. Hence, at in-
struction B the paths are merged and register 2 holds the
type int UT = T. Since 2 belongs to the registers modified
by the subroutine, it is assigned T in the memory for each
instruction following the calls. Thus it holds T at instruc-
tion goto C and also at instruction at address C, where an
error is signaled, since T cannot be loaded. For 3 there is no
problem, since it is not modified by the subroutine, and thus
it has type int at the first return point (where it is used).
Actually the code could be considered correct since 2 holds
int at the first jsr and in the subroutine it is assigned int
on one branch and it is not modified on the other one. Thus
the type of register 2 after the call could be correctly int .

The problem is that the standard verifier does not distin-
guish between a typing incompatible with int at all (e.g.
an address) and a typing compatible with it. The domain of
types seems to be too poor: the type T for a register = at the
program instruction ¢ represents three situations that could
be handled in different ways: 1) a type of an unset register;
2) an error, when T derives from the least upper bound of
two incompatible types; 3) a type of a register which, at a
merge point ¢, is assigned on some program paths and is un-
touched on the other ones. In the next section we propose
a solution where the domain of types is extended to contain
a different type for each different situation. These types be-
have in a different way when they are composed with the
return types from the subroutines.

3. A MORE PRECISE VERIFICATION

Figure 6 shows the type domain of the abstract interpreter
on which the enhanced verifier is based. The bottom repre-
sents a completely undefined type. The type unt abstracts
the values that have not been initialized, but that belong
to the memory of an instruction which has already been
considered in a fixpoint iteration. It is used to represent sit-
uation 1) described in the preceding section. T represents a
contradictory type (resulting from the merge of incompat-
ible types). It corresponds to situation 2). For each Type
T, the type unt_T means that the register, at a merge point,
has been assigned with a value of type T on some program
paths and has not been touched on the other paths (see
situation 3)). For simplicity, in the figure we have shown
only one return address type, ret(L) (that is, we consider
only a subroutine). If we have more than one return address
type (corresponding to have several subroutines), for each
one of them there is, in the domain, a different ret(L) and
unt_ret(L) type.

The operator U used in the rules of the abstract interpreter
is the least upper bound operator of the new domain applied
to memories and stacks pointwise.

The initial state is defined only on the program point 0, the
address of the first instruction. In the initial state the first
m local registers of My are initialized to the actual types of
the parameters of the method. The remaining registers are
set to unt. The stack Sty is the empty stack. We use the
usual notation (s.St) for a stack with top element s and the
remaining part St. The execution proceeds following the
worklist fixpoint algorithm.



T

/N

unt_int unt_ret(L)

LN

unt int ret (L)

1L

Figure 6: The abstract type domain.

There is a rule for each instruction of the program: it oper-
ates on the pair (M;, St;) at the program point ¢ producing
the pair (M, St;) at the program point [, where [ is the label
of a successor instruction of 7 (taking into account jumps, of
course). As usual, at any iteration an instruction ¢ is selected
from the working list, and the corresponding rule is applied
to the current state at the program point i, (M;, St;). It
yields a new state S’ on which the process iterates. The it-
eration stops when a fixpoint is reached, i.e. the working list
is empty. It is important to remark that, in order to check
the subroutines only once, the rules must be applied in a
suitable order, how the standard verifier does. Note that
we use the notation S[S; := S7"*“] to denote a new state
obtained by S by updating the state at the program point
i by S;“. Let P be a function assigning to each number
1€{0,1,..., K —1} the i-th instruction. A rule is activated
if P(i) equals the instruction handled by the rule and all
other premises are satisfied.

The rules of the abstract interpreter are shown in Figure 3.
iconst pushes a constant value onto the stack. The abstract
interpreter generates the stack of the successor instruction
i + 1 by pushing the type int onto the stack; it is required
that the push does not overflow the stack. In the subse-
quent instruction (with index ¢ 4+ 1) memory and stack are
assigned to the least upper bound of the old values and the
ones coming from the abstract execution of ¢. Note that
if the state S;4+1 at the program point 7 + 1 does not ex-
ist yet, Si4+1 U (M;, int.St;) simply results in (M;, int.St;).
inc requires a stack with top element int. iload x requires
that the register « has type int, and pushes int onto the
stack. istore x and astore x store an integer or an address,
respectively, from the stack to a register. ifeq L requires
an integer on the stack. The abstract interpreter executes
both branches of conditionals and updates both successor
program points (L and ¢ + 1). Both goto L and jsr L
jump to L, thus the program point L is updated; moreover,
jsr L pushes onto the stack the type of the return address,
i.e. ret(L). The execution of ret z modifies the memory
and the stack of all the instructions immediately following
the various jsr L instructions. The set of the addresses of
such instructions, which we call Static_Return_Points(L),
can be computed statically. The memory and the stack of
each instruction at these addresses is calculated from the
memory and the stack both of the correspondent calling in-
struction and of the ret itself, using the > operator. We
define (M, St) > (M',St') = (M > M',St') where M > M’
is obtained by applying pointwise the operator > only to
registers which have been modified in the subroutine. Fig-
ure 2 shows the definition of the > operator in the abstract
type domain. Each entry of the table is the resulting of the

type on the row > the type on the column. Note that the
operator is not commutative. The type 71 > 7 is the type
that a modified register, having type 71 at the calling jsr
instruction and type 7 at the ret program point, should
have, after the ret, to achieve a correct typing. We remark
that int > unt_int = int and this fact allows solving the
subroutine problem, as explained before. If we have two
types, ret(Li) and ret(L2), they are considered incompat-
ible, hence, for example, it would be ret(L1) > unt_ret(L2)
=T.

If, at an iteration, there is no applicable rule, then the algo-
rithm stops and signals an error. Formally, we should add
the value error as a possible state and add rules to prop-
agate the error. Moreover we should consider also a state
following the ireturn instruction which records whether an
error occurred on it. For the sake of clarity we leave the
handling of errors implicit.

In Figure 5 we show how our rules correctly assign types to
the program on which the verifier fails.

4. CONCLUSIONS

In [1] we have completely developed an abstract interpre-
tation approach to verification, formally proving that the
interpreter we define here is an abstract semantics based on
a concrete collecting semantics of Java bytecode. There we
state the usual correctness results of abstract interpretations
2, 3].

We remark that we do not propose a more powerful verifica-
tion technique, like as in [5, 9], allowing to certify recursive
or polymorphic subroutines. We only show how to fix a prob-
lem of the verifier by introducing a richer type system, and
maintaining the standard verification algorithm, with the
same complexity. We remark that other extensions do not
resolve the subroutine problem.

5. REFERENCES
[1] Barbuti, R., Bernardeschi, C., De Francesco, N. and
Tesei, L. Enhancing the Java Bytecode Verifier by
Abstract Interpretation. Internal Report Dipartimento
di Informatica, Universita di Pisa, 2002.

[2] Cousot, P. and Cousot, R. Abstract Interpretation: a
unified lattice model for static analysis of programs by

construction of approximation of fixpoints. In Proc. of
POPL’77. ACM Press, 238-258, 1977

[3] Cousot, P. and Cousot, R. Constructive versions of
Tarski’s fixed point theorems. Pacific Journal of
Mathematics, 82(1):43-57, 1979.

[4] Freund, S. N. and Mitchell, J. C. A Formal Framework
for the Java Bytecode Language and Verifier. ACM
Conference on Object-Oriented Programming
Systems, Languages & Applications, 1999.

[5] Hagiya, M. and Tozawa, A. On a New Method for
Dataflow Analysis of Java Virtual Machine
Subroutines. Static Analysis Symposium ’98, LNCS
1503, Springer, 1998.

[6] Leroy, X. Java bytecode verification: an overview. In
Proceedings of CAV’01, Springer LNCS 2102, 2001.



[7]

[8]

[9]

[10]

[11]

[12]

Lindholm, T. and Yellin, F. The Java Virtual Machine
Specification. The Java Series, Addison-Wesley, 1999.

Nipkow, T. Verified Bytecode Verifiers. FOSSACS
2001, LNCS 2030, Springer, 2001.

O’Callahan, R. A Simple, Comprehensive Type
System for Java Bytecode Subroutines. ACM
Symposium on Principles of Programming Languages,
1999.

Qian, Z. Standard fixpoint iteration for Java bytecode
verification. ACM Transactions on Programming
Languages and Systems 22(4):638-672, 2000.

Stark, R. F. and Schmid, J. The problem of bytecode
verification in current implementations of the JVM.
Technical Report, Department of Computer Science,
ETH Ziirich, 2000.

Stata, R. and Abadi, M. A type system for Java
bytecode subroutines. ACM Transactions on
Programming Languages and Systems, 21(1):90-137,
1999.



