A Notion of Non-Interference for Timed
Automata

(EXTENDED ABSTRACT)

Roberto Barbutif, Nicoletta De Francesco!, Antonella Santonef, Luca Teseit

tDipartimento di Informatica, Universita di Pisa
Corso Italia, 40, 56125 Pisa - Italy
e-mail: {barbuti, tesei}@di.unipi.it
fax: +39-050887226

{Dipartimento di Ingegneria dell’Informazione, Universitd di Pisa
Via Diotisalvi, 2, 56126 Pisa - Italy
e-mail: {nicoletta.defrancesco, antonella.santone}@iet.unipi.it

fax: +39-050568522

Abstract

The non-interference property of concurrent systems is a security prop-
erty concerning the flow of information among different levels of security
of the system. If we suppose that the behavior of the system is divided
into a high security behavior and low security behavior, we say that the
system respects the non-interference property if the low-level behavior is
not affected by the high-level one. In this paper we discuss a notion of
non-interference for real-time systems, where the time is a crucial parame-
ter. We represent these systems by timed automata. The non-interference
notion we define depends on a number n representing a minimum delay
between high-level actions such that the system meets the above desired
behavior. Thus our non-interference notion is parametric with respect to
time delays between high-level actions.

1 Introduction

The non-interference property [6] of concurrent systems is a security property
concerning the flow of information among different levels of security of the sys-
tem. Let us suppose for simplicity that the security levels are two: high and low.
If we suppose that the behavior of the system is divided into a high security
behavior and low security behavior, we say that the system respects the non-
interference property if the low-level behavior is not affected by the high-level
one. In other words, if a system P acts in an environment where low-level and
high-level users are present, P is secure if the behaviors P offers to the low-
level users are the same as though the high-level users had never communicated
anything.

In this paper we discuss a notion of non-interference for real-time systems,
where the time is a crucial parameter. We represent these systems by timed
automata [1], which are a well-known formalism to describe time constraints on
the events of systems.

Consider a timed automaton T that models a speed-dependent real-time
system like an airplane control system. It has to control a lot of basic events
and has to respond with basic actions in order to maintain the flight stability.
These actions and events may be considered low-level actions and are always
activated. When the pilot decides, for example, to turn right, he uses the cloche
and this may be considered as a high-level action. Thus the system receives
high-level events separated by certain delays; it must respond to them and must
continue to catch and manage basic events. When this happens we say that
high-level actions delays magnitude does not affect the basic behavior of the
system.

The non-interference notion we define depends on a number n representing
a minimum delay between high-level actions such that the system meets the
above desired behavior. Thus our non-interference notion is parametric with
respect to time delays between high-level actions.

Section 2 recalls timed automata, Section 3 defines non-interference for timed
automata, Section 4 shows an example, and Section 5 discusses the results and
future work.

2 Timed Automata

In this section we recall the definition of timed automata [1]. In the following,
R is the set of real numbers and R* the set of non-negative real numbers. A
clock takes values from RT. Given a set X of clocks, a clock valuation over X
is a function assigning a non-negative real number to every clock. The set of
valuations of X, denoted Vy, is the set of total function from X to R*. Given
v € Vy and § € Rt, with v + § we denote the valuation that maps each clock
x € X into v(z) + 9.

Given a set X of clocks, a reset y is a subset of A'. The set of all resets of X
is denoted by I'y. Given a valuation v € Vy and a reset 7, with v\y we denote

the valuation
0 ifzey

\y(e) = viz) ifz gy

Given a set X' of clocks, the set Wy of clock constraints over X are defined
by the following grammar:

Y u=true | false | YA | VY | 2 | a#t | © — yFt

where z,y € X, t € RT, and # is a binary operator in {<,>, <, > =}.
Clock constraints are evaluated over clock valuations. The satisfaction by a
valuation v € Vy of the clock constraint ¢ € Uy is denoted by v = 9.

Definition 1 (Timed automaton) A timed automaton T is a tuple
(Q,%,E,I,R,X), where: Q is a finite set of states, ¥ is a finite alphabet of
actions, £ is a finite set of edges, I C @ is the set of initial states, R C @ is
the set of repeated states, X is a finite set of clocks. Each edge e € £ is a tuple
m@QXxX¥yxlyxXxQ.

If e = (q,¢,7,0,q") is an edge, q is the source, ¢’ is the target, ¥ is the
constraint, o is the label, v is the reset.

The semantics of a timed automaton 7' is an infinite transition system
S(T) = (S,—), where S is a set of states and — is the transition relation.
The states S of S(T') are pairs (g,v), where ¢ € @) is a state of T, and v is a
valuation. An initial state of S(T") is a state (g,v), where ¢ € I is an initial
state of 7" and v is the valuation which assigns 0 to every clock in X. At any
state ¢, given a valuation v, T' can stay idle or it can perform an action labeling
an outgoing edge e. The rules to derive the transitions of S(T") are the following;:

deRT (¢,,7,0,¢') €E,v E ¥
(@.v) S@gr+0) 2 (gr) 2 v\

Rule 1. represents the case in which T stays idle in a state and the time
passes, while Rule 2. corresponds to the occurrence of an action.

1.

Definition 2 (run, action sequence) Given a timed automaton
T=(Q,%,E I R,X), arun of the automaton is an infinite sequence of states

and transitions of S(T) so = s, — ... where
- s0 = (q,v) where ¢ € I and v(x) =0 for every x € X

- a state g € R ewxists such that q occurs infinitely often in the pairs of the
sequence {s;}

Note that, given a run sy - s, % ..., for each i, l; € (XURT). Letr be
a rum.

- The time sequence t; of the time elapsed from state so to state s; in r is
defined as follows:

to=0
0 ifl;eX

biv1 =i+ l; otherwise

- The event sequence of the events occurring during r, including the elapsed
times, is defined as follows: (lo,to)(l1,t1)...

- The action sequence of 7 is the projection of the event sequence of r on
the pairs {(I,t)|l € X}

Definition 3 (timed word, timed language) Let ¥ be an alphabet. A timed
word over ¥ is an infinite sequence (o,t) = (0o,t0)(01,t1)..., where o; € X,
t€RY andt; <t;+1, foralli=0,1,....

A timed language over X is a subset of the set of all timed words over X..

Definition 4 (acceptance) Given a timed automaton T = (Q,%,E,I, R, X),
a timed word w over X is accepted by T iff there exists a run r of T such that
w = v, where v is the action sequence of r. The set of timed words accepted by
T is called the accepted language of T and is denoted by L(T).

Note that we use the Biichi acceptance condition for the runs [1]. Moreover,
we say that two timed automata T} and T» are equivalent if L(T1) = L(T>) and
we write 17 ~ 15

Automata with e edges are defined in the same way, but with a special
action, the non-observable action €, belonging to ¥. Thus some transitions
of the semantic automaton S(7') can be labeled by €, and they are called e
transitions. When defining the accepted language for an automaton with €
edges, we must consider the action sequences as the the projection of the event
sequences on the pairs {(I,t)|l € ¥ — {e}}.

The design of complex systems can be simplified by modeling subsystems
with different timed automata and considering, for the whole system, the prod-
uct of them. The product operation is a syntactic operation between timed
automata.

Definition 5 (Product) Let Ty = (Q1,%1,&1, 11, R1, X1) and
Ty = (Q2,%2,E, I, Ry, Xo) be two timed automata with X1 N Xo = (0. The
product of Ty and Ty, denoted by Ty || Tz, is the following timed automaton:

T||To = (Q1 X Q2,1 UXs,E, I X Iy, Ry X Ry, X1 U &)

where & is defined by:

1. Synchronization actions
Vo € E1 N 227V(q17"/}1771707 qi) € glav(QZ7¢277270-7 qé) € 52
& contains ((q1,q2),%1 A2, 11 U2,0,(91,9))

2. T, actions
VYo € $1\X2,V(q,¥,7,0,¢") € £1,Vs € Q2
& contains ((q,s),v,v,0,(q,s)

3. Ty actions
VYo € ¥o\X%1,V(q,¢,7,0,q") € E2,¥s € Q1
& contains ((s,q),¥,v,0,(s,¢"))

Thus, the product automaton behavior is the interleaving of the components
behaviors where actions with the same name are executed synchronously.

3 Non-Interference for Timed Automata

Non-interference for concurrent non-real-time systems has been modeled in pro-
cess algebras using bisimulation equivalence (see, for example, [8, 3, 4, 7]): if
the actions of a system P are divided into high-level and low-level ones, the
system respects the non-interference property if its behavior in absence of high-
level actions is equivalent to its behavior, observed on low-level actions, when
high-level actions occur. To compare the two behaviors we check equivalence of
two processes obtained from P: in the first one high-level actions are forbidden,
in the second one they are hidden. Different notions of bisimulation equiva-
lence are used to model different notions of non-interference. These have been
reformulated in [5] in a real-time setting using a discrete time process algebra.

In this paper we use timed automata approach to real-time systems modeling
to define a new notion of non-interference. This is based on high-level actions de-
lays magnitude and on equivalence of timed automata. Given a natural number
n, we say that high-level actions do not interfere with the system, considering
a minimum delay n, if the system behavior in absence of high-level actions is
equivalent to the system behavior, observed on low-level actions, when high-level
actions can occur, but the delay between any two of them is greater than or equal
to n. Thus, if the environment of the system does not offer high-level events
separated by less than n time units and the property holds, there is no way for
low-level users to detect any high-level activity. The main improvement respect
to the untimed notion of non interference is that time is observable and the
property captures those systems in which the time delay between high-actions
cannot be used to construct illegal information flows from high-level to low-level
users.

Let T be a timed automaton over the alphabet . We suppose that X is
partitioned into two disjoint sets of actions H and L: H is the set of high-level
actions, while L is the set of low-level ones.

To observe the behavior of an automaton 7T in absence of high-level actions,
we can compose 1" in parallel with an automaton, from now on called Inhibg,
that does not allow the execution of high-level actions.

The automaton Inhiby is shown in Figure 1, where the arc represents a
set of edges, one for each action in H, with the same constraint and reset. In

x_inhib <0, H, {}
~()

Figure 1: Inhiby

x_interf = n

true, H, {x_interf}
—(i0 - @ H, {x_interf}

Figure 2: The structure of Inter fj

the product T'||Inhiby, where high-level actions are the only synchronization
actions, the component T cannot have a transition labeled by ¢ € H because
his partner in synchronization, Inhibg, never performs high-level actions. Thus
only low-level actions are executed.

We have that L(T'||Inhibg) contains all basic behaviors of T, i.e. all timed
words obtained by runs in which high-level actions do not occur.

Consider the automaton Inter fj; in Figure 2. As in the automaton Inhibg,
each arc represents a set of edges, one for each action in H. This automaton
allows the execution of high-level actions only when separated by at least n time
units. Given an automaton T, the product of T' with Interft, T||Interfy,
allows to observe the set of all behaviors of 7" where high-level actions occur at
times separated by an interval whose length is greater than, or equal to a given
minimum delay n.

Before giving the definition of n-non-interference, we need the following op-
eration, which, applied to an automaton 7', gives an automaton having the same
behaviors of 7', but high-level actions are considered non-observable.

Definition 6 (hiding of high-level actions) LetT be a timed automaton over
an alphabet ¥ = (H,L). We denote by T/H the automaton obtained by T by
replacing each edge e = (q,¢,v,0,q") of T, with o € H, with ¢ = (¢,¢,7,€,¢').

Now we can define formally the intuitive notion of non-interference given
above.

Definition 7 (n-non-interference) Let T be a timed automaton over an al-
phabet ¥ = (H, L), and n € IN. High-level actions do not interfere in T, with a
minimum delay n, if and only if

(T||Interfi)/H = T|/Inhibg (1)

The definition above requires that 7" has a structure such that basic behaviors
do not change whenever high-level actions are recognized in successive steps
separated by at least n time units.

3.1 Timed languages characterization

In this section we characterize the notion of non-interference defined in the
previous section using timed languages. First, consider the restriction of a
timed language to low-level actions.

Definition 8 (restriction to low-level actions) Let I be a set of timed words
over an alphabet ¥ = (H,L). I|r, is the subset of I where all elements are timed
words on L:

I, = {(o,t) € I |Y(04,t;) € (0,t). 0; € L}
The following proposition holds:

Proposition 1 Let T be a timed automaton over an alphabet ¥ = (H,L). Then

The restriction to consider only high level actions separated by at least n
time units is defined as follows.

Definition 9 (n-delay restriction) Let I be a set of timed words over an
alphabet ¥ = (H,L). Letn be a natural number. I}, is the subset of I containing
all timed words in I such that the delay between any two actions in H is at least
n:

IIT‘LI = {(O',t) el | V(O’i,ti),(a'j,tj) S (O',t).) 75]'/\0'1‘,0']‘ e H=> |t,' —tj| > n}

Proposition 2 Let T be a timed automaton over an alphabet ¥ = (H,L). Then
LTy = L(T||Inter fit).

The hiding of high-level actions is expressed as follows.

Definition 10 (hiding of high-level actions) Let I be a set of timed words
over an alphabet X = (H, L). For every w = (o,t) in I there is a correspondent
element w' in I/H such that w' is the projection of the sequence w on the pairs

{(o,t)|o € L}:

UH:{“

Proposition 3 Let T be a timed automaton over an alphabet ¥ = (H,L). Then
L(T)/H = L(T/H).

!

w = (o,t) € I and W' is the projection of the sequence w
on the pairs {(o,t)|oc € L} }

The following proposition states that the above characterization correctly
expresses n-non-interference.

Proposition 4 Let T be a timed automaton over an alphabet ¥ = (H, L), and
n € IN.

T is n-non interfering iff L(T)%/H = L(T)|w

x0 =2, begin_ctrl, {} ‘ x0 =1, cloche, {x1}

x0=4, end ctrl, {}

x0> 2,
reset, {x0}

Figure 3: Automaton T": a simplified airplane control

4 An example

In this section we consider a simple airplane control T' (Figure 3) and study
its non-interference properties. The system periodically executes, at predefinite
instants, a set of operations to control flight stability. The control operations
begin with action begin_ctrl and end with action end_ctrl. State sI is an ab-
straction for the control operations, which require 2 time units to be completed.
One time unit before entering each control cycle the system can catch an input
action from the pilot; in this simple case we consider only a single input action
cloche we imagine modeling cloche movements. When cloche occurs, the system
handles it and then continues to manage control actions. Let begin_ctrl and
end_ctrl be low-level actions and cloche, reset be the high-level actions.

At first consider the behavior of 7" when the high-level action cloche is dis-
abled (i.e. the moves of T' || Inhiby); this consists in a simple cycle between
states s0 and sI where transitions are separated by exactly 2 time units.

Thus L£(T || Inhibg) contains a single timed word

(begin_ctrl,2)(end_ctrl,4) - - - (begin_ctrl, 2 + 4i)(end_ctrl,4(i + 1)) - - (2)

Consider, now, the general behavior of the system, i.e. all actions are enabled
with no restrictions. When cloche occurs, the system moves to state s2. When
the system is in s2 it is handling the cloche action. This operation requires one
time unit, and then the system returns to the initial state. While being in s2,
the system can catch other cloche actions going to state s3. If the time needed
to handle them exceeds the time interval between two basic control cycles, it
is necessary to postpone the beginning of the successive control cycle (action
reset).

Intuitively, the cloche actions interfere with the basic system behavior only
if they are too close to each other. In this case their handling could require a

delay such that the times in which the basic control cycle is performed will be
modified (the reset action is executed). To see this formally with our automaton
approach to non-interference consider a natural number n and the automaton
T || Inter fit. If n = 0, the reset action could be executed and consequently the
system in which high-level actions can occur without restrictions on their relative
delays does not satisfy our non-interference definition. If, instead, n > 1, only
one cloche action occurs between two successive control cycles, and it is managed
without affecting the basic behavior. Thus, for each n > 1, (T || Inter f)/H
generates the single timed word (2) which in turn is the unique timed word
generated by T || Inhiby. From Proposition 4 we conclude that high-level
actions do not interfere in 7" with a minimum delay n > 1. On the other hand,
if n = 0 there is interference.

5 Discussion

In order that the theory we have developed can become useful in practice, we
must check the equivalence of automata. Checking equivalence of two timed
automata implies checking inclusion in both directions of the respective rec-
ognized languages. It is well known that for general timed automata language
inclusion is undecidable. However, the language inclusion problem can be solved
if we use deterministic automata [1] or event-clock automata [2]. To make the
method effective also in the general case, we are following two directions. On
one side we are studying weaker notions of non-interference which are checkable
on general timed automata. On the other side, we are investigating sufficient
conditions on the structure of the automata allowing deciding language inclu-
sion required for non-interference checking. This direction is promising since the
automata that have to be compared have a very similar structure derived from
the initial automaton T'. We plan to develop a checkable sufficient condition to
n-non-interference requiring a reasonable structure for automaton 7.

References

[1] R. Alur, D.L, Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126, 183-235, 1994.

[2] Alur, R., Fix, L. and Henzinger, T.A. Event-Clock Automata: A Deter-
minizable Class of Timed Automata. Theoretical Computer Science, 204,
1997.

[3] R. Focardi, R. Gorrieri. Automatic Compositional Verification of Some
Security Properties. In Proceedings of Second International Workshop
on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’96). Lecture Notes in Computer Science 1055, 167-186, 1996.

[4]

[5]

R. Focardi, R. Gorrieri. The Compositional Security Checker: A Tool for
the Verification of Information Flow Security Properties. IEEE Transac-
tions on Software Engineering, 23(9): 550-571, 1997.

R. Focardi, R. Gorrieri and F. Martinelli Information Flow in a Discrete-
Time Process Algebra In Proceedings of 13th IEEE Computer Security
Foundations Workshop (CSFW’00), (P. Syverson ed.), IEEE press, Cam-
bridge, England, July 2000.

J.A. Goguen, J. Meseguer. Security Policy and Security Models. In Pro-
ceedings of the 1982 IEEE Symposium on Security and Privacy, pp- 11-20.
IEEE Computer Society Press, 11-20, 1982.

P. Y. A. Ryan, S. A. Schneider. Process Algebra and Non-Interference. In
Proceedings of 12th Computer Security Foundations Workshop (CSFW’99).

A.W. Roscoe, J.C.P. Woodcock, L. Wulf. Non-Interference Through De-
terminism. Journal of Computer Security, 4(1), 1996.

