
Fundamenta Informaticae 46 (2001) 1–15 1

IOS Press

Timed Automata with non-Instantaneous Actions

Roberto Barbuti�

Dipartimento di Informatica, Università di Pisa

Corso Italia, 40 - 56125 Pisa - Italy

email: barbuti@di.unipi.it

Nicoletta De Francesco�

Dipartimento di Ingegneria dell’Informazione, Universit à di Pisa

Via Diotisalvi, 2 - 56126 Pisa - Italy

email: nicoletta.defrancesco@iet.unipi.it

Luca Tesei�

Dipartimento di Informatica, Università di Pisa

Corso Italia, 40 - 56125 Pisa - Italy

email: tesei@di.unipi.it

Abstract. In this paper we propose a model, timed automata with non-instantaneous actions, which
allows representing in a suitable way real-time systems. Timed automata with non-instantaneous
actions extend the timed automata model by dropping the assumption that actions are instantaneous:
in our model an action can take some time to be completed. We investigate the expressiveness of
the new model, comparing it with classical timed automata. In particular, we study the set of timed
languages which can be accepted by timed automata with non-instantaneous actions. We prove that
timed automata with non-instantaneous actions are more expressive than timed automata and less
expressive than timed automata with � edges. Moreover we define the parallel composition of timed
automata with non-instantaneous actions. We point out how the specification by means of a parallel
timed automaton with non-instantaneous actions is, in some cases, more convenient to represent
reality.

Keywords: real-time systems, timed automata, timed languages.

�Address for correspondence: Dipartimento di Informatica, Università di Pisa, Corso Italia, 40 - 56125 Pisa - Italy

2 R. Barbuti et al. / Timed Automata with non-Instantaneous Actions

1. Introduction

Transition systems have been intensively used as a model for specifying and verifying “real-life sys-
tems”. The representation of a system by means of a finite transition system allows reasoning easily
about qualitative properties of it, such as “safety” and “liveness” properties. When real-time systems
are considered, also quantitative timing properties must be taken into account, since the correctness of
the whole system may depend on the magnitude of different delays. For these systems, the specification
by means of classical transition systems is no longer satisfactory because time requirements cannot be
described within this model. A natural way to solve this problem is to add, to the usual model, a suitable
notion of time. Examples of this extension can be found in [11, 15].

Alur and Dill proposed the model of timed automata [6, 7]. Since their introduction, timed automata
have been widely studied from different points of view [4, 5, 8, 9], in particular for their possible use
in the verification of real-time systems [1, 2, 3, 10, 14, 16, 19]. Timed automata can be represented by
finite graphs augmented with a finite set of (real-valued) clocks. An edge is labeled by a symbol which
represents the action performed when the edge is taken. While actions are instantaneous, time can elapse
in states. An edge can reset to zero the value of a set of clocks, and, at any instant, the value of a clock
is equal to the time elapsed since the last reset on it. Any edge can be equipped with a constraint on the
value of clocks. An edge may be taken only if the current value of clocks satisfies its constraint.

When considering real systems, in many cases the events are not instantaneous, but have a duration.
In this paper we propose a model, timed automata with non-instantaneous actions, which extends the
timed automata model by dropping the assumption that actions are instantaneous: in our model an action
can take some time to be completed. The model allows specifying in a natural way systems in which the
actions have a duration. To model non-instantaneous actions, every edge of the automaton is equipped
with two constraints, a initiation constraint and a completion constraint. An edge can be taken when
its initiation constraint is satisfied by the current value of clocks, and it can be completed only when its
completion constraint is satisfied. Analogously, every edge is associated with a set of clocks which are
reset to zero when it is taken (initiation reset) and a set of clocks which are reset to zero when the action
is completed (completion reset). An event with a duration can be modeled, using timed automata, with
two actions, corresponding to the initiation and the completion of the event. But in this way the resulting
automaton has a different alphabet with respect to the original one, and the information that the event is
unique is lost.

The notion of timed language accepted by a timed automaton is redefined in the context of timed
automata with non-instantaneous actions. Different notions of language acceptance are defined in the
paper, which differ in the choice of when an action occurrence must be considered, either on its initiation
or on its completion. The different acceptance conditions correspond to different views of the system, on
which different properties can be considered: for example, some property may refer to the initiation of
an action and the completion of another one.

We investigate the expressiveness of the new model, comparing it with classical timed automata. A
main result of the paper is that timed automata with non-instantaneous actions are more expressive than
timed automata and less expressive than timed automata with � edges.

Afterwards, we define the parallel composition of timed automata with non-instantaneous actions,
and we show how a classical example of use of timed automata as a specification language [7] can be
more suitably modeled by a parallel timed automaton with non-instantaneous actions.

R. Barbuti et al. / Timed Automata with non-Instantaneous Actions 3

2. Timed automata with non-instantaneous actions

Starting from the notion of timed automata we introduce, in this section, a new class of automata. In the
following �� is the set of non-negative real numbers. A clock takes values from ��. Given a set �
of clocks, a clock valuation over � is a function assigning a non-negative real number to every clock.
The set of valuations of � , denoted �� , is the set of total function from � to ��. Given � � �� and
Æ � ��, with � � Æ we denote the valuation that maps each clock � � � into ���� � Æ. Given a set
� of clocks, a reset � is a subset of � . The set of all resets of � is denoted by �� . Given a valuation
� � �� and a reset �, we define that the valuation ������ � � if � � � and ������ � ���� if � �� �.
Given a set � of clocks, the set �� of clock constraints over � are defined by the following grammar:
� ��� ���	 �
��
	 � � � � � � 	 � �
� � �	� � �� �	�, where �� � � � , � � ��, and 	 is a binary
operator in �����
�����. Clock constraints are evaluated over clock valuations. The satisfaction by
a valuation � � �� of the clock constraint � � �� is denoted by � �� �.

Definition 2.1. (Timed Automaton)
A timed automaton � is a tuple ���
� � � ����� �, where: � is a finite set of states,
 is a finite alphabet
of actions, � is a finite set of edges, � � � is the set of initial states, � � � is the set of repeated states,
� is a finite set of clocks. Each edge 	 � � is a tuple in � ��� � �� �
� �. In the following, �
denotes the class of all timed automata.

Definition 2.2. (Timed Automaton with non-Instantaneous Actions)
A timed automaton with non-instantaneous actions � is a tuple ���
� � � ����� �, where: � is a finite
set of states,
 is a finite alphabet of actions, � is a finite set of edges, � � � is the set of initial
states, � � � is the set of repeated states, � is a finite set of clocks. Each edge 	 � � is a tuple in
���� � �� �
��� � �� ��. If 	 � ��� ��� ��� �� ��� ��� ��� is an edge, � is the source, �� is the
target, �� and �� are the initiation constraint and the completion constraint, respectively, � is the label,
�� and �� are the initiation reset and the completion reset, respectively. The class of all timed automata
with non-instantaneous actions will be denoted by � .

The semantics of a timed automaton with non-instantaneous actions � � ���
� � � ����� � is an infi-
nite transition system ���� whose states are of two kinds:

� a pair ��� ��, where � � � is a state of � and � � �� is a valuation;

� a pair �
��
� �������� �� where � �
, � � �� , � � �� , � � � and � � �� . These states represent

the execution of action � after its initiation.

For an action �, there are two particular time instants, the initiation of the action and the completion
of the action, which may occur at different times. Following the notation of [17] we use the notation � �
and � � for these two events. The transitions of ���� are labeled either by a real number representing
the elapsed time, or by an initiation or a completion of an action in
. The rules to derive the transitions
of ���� are the following:

���
Æ � ��

��� ��
Æ
����� � � Æ�

���
��� ��� ��� �� ��� ��� ��� � � � � �� ��

��� ��
��
���

��
� ����������� ���

��

4 R. Barbuti et al. / Timed Automata with non-Instantaneous Actions

�
�
Æ � ��

�
��
� �������� ��

Æ
���

��
� �������� � � Æ�

���
� �� �

�
��
� �������� ��

��
����� ����

Rule ��� represents the case in which the automaton stays idle. If � moves along an outgoing edge
	 � ��� ��� ��� �� ��� ��� ���, this corresponds to a transition of ���� from the state ��� �� to the state
�
��
� ����������� ���

�� in which � is initiated (Rule ���). Note that this state records the completion con-
straint and the completion reset of 	, to be considered for the completion of �. In this state, some time
can elapse: in this case ���� reaches a state where � continues to be executed, but the valuation of
clocks is modified according to the elapsed time (Rule �
�). When the execution of � terminates, �
reaches a new state (the target of) with a new valuation of the clocks, given by the completion reset of
	 (Rule ���).

A timed language is a set of timed words. A timed word over an alphabet
 is an infinite sequence
��� �� � ���� ������� ��� � � �, where �� �
 and ������ � � � is an infinite sequence of non-decreasing time
values associated to the symbols ������ � � � . A timed word ��� �� is accepted by a timed automaton if
there exists a path in the automaton, labeled by ������ � � � , such that any edge labeled by �� is taken at
time ��, and satisfying some acceptance condition. The timed language accepted by a timed automaton
� is denoted by ��� �, and ��� � denotes the set of timed languages acceptable by automata in � .

As for timed automata with alphabet
, the languages accepted by timed automata with non-instantaneous
actions � � ���
� � � ����� � are timed languages over
. The difference is that here we have dif-
ferent acceptance notions: we can choose, for each action � �
, if we want to consider the time of
its initiation or the time of its completion. If, for some action �, we choose to consider its initiation,
� is considered as occurring when � � occurs, and � � is ignored, while, if we choose to consider its
completion, � is considered as occurring when �� occurs, and �� is ignored.

Given � �
, let us denote by ��� �� � �� � �� and ��� �� � �� � �� the set of initiations and
completions of the actions in �, respectively.

Definition 2.3. (Run, Selected Sequence)

Given a timed automaton with non-instantaneous actions � � ���
� � � ����� �, a run of the automa-

ton is an infinite sequence of states and transitions of ����
�
����
�

���� � � � such that
� � ��� ��,
� � � and ���� � � for every � � � , and a state � � � exists such that � occurs infinitely often in the
pairs of the sequence �
��. Note that we use the Büchi acceptance condition for the runs [7].

� The time sequence ������ � � � of the time elapsed from state
� to state
	 in � is defined as follows:

�� � � and ���� � �� �

���
��

� if �� �

�� otherwise

� The event sequence of the events occurring during �, including the elapsed times, is defined as
follows: ���� ������� ��� � � �

� Given a partition
 � ��� ��, � �� �
 and � �� � �, the ��� �� selected action sequence of �
is the projection of the event sequence of � on the pairs ���� ���� � � � � � ��.

R. Barbuti et al. / Timed Automata with non-Instantaneous Actions 5

Definition 2.4. (Selected Acceptance, Initiation Acceptance, Completion Acceptance)
Let� � ���
� � � ����� � be a timed automaton with non-instantaneous actions, and ��� �� a partition
of
.

� A timed word � over
 is ��� �� selected accepted by � if a run � of � exists such that, for all
� � �� �� � � , � � ����� �� ����� ��, where � is the ��� �� selected action sequence of � and
����� �� denotes the sequence � in which every symbol � �� � � is substituted by � (analogously
for ����� ��). The set of timed words ��� �� selected accepted by � is called the ��� �� selected
accepted language of � and is denoted by �
��������.

� A timed word � over
 is initiation accepted by� iff it is �
� �� selected accepted by N. We shall
use ����� for �

��������, to denote the initiation accepted language of � .

� A timed word � over
 is completion accepted by � iff it is ���
� selected accepted by N. We
shall use ����� for �

��������, to denote the completion accepted language of � .

The class of timed languages selected (for any ��� ��), initiation and completion accepted by automata
in � is denoted by �
�� �, ���� �, ���� �, respectively.

3. Expressive power of the model

We now prove that the power of timed automata with non-instantaneous actions is greater than that of
timed automata (without � edges).

Example 3.1. Consider the automaton �� in Figure 1a. The initiation accepted language � is the set of
all timed words ��� �� � ���� ������� ������� ��� � � � , such that each �� � �!� !���, for all natural numbers
!, and either �� � � and �� � !� �, or �� � " and �� � �!� ! � ��.

x=1, {x}, a, true, {} 0<x<1, {}, b, x=1, {x}

q0 q0 q1
true, {x}, c, x>0, {y}

true, {}, c, x<1 0<y, {y}

(a) (b)

Figure 1. Automata �� and ��

Example 3.2. Consider the automaton �� in Figure 1b. The completion accepted language � is the set
of all timed words ��� �� � �#� ����#� ����#� ��� � � � , such that �� � ����, and there exists � � � such that
� � �� � �� � �� �, for all !.

Theorem 3.1. �� ��� � � ���� �, �� ��� � � ���� �

6 R. Barbuti et al. / Timed Automata with non-Instantaneous Actions

Proof:
To show that ��� � � ���� � and ��� � � ���� �, we give a construction that, given a timed automaton
� , builds a timed automaton with non-instantaneous actions � such that ��� � � ����� � �����.
Given � � ���
� � � �� ��� �, the corresponding timed automaton with non-instantaneous actions is the
automaton � � ���
� ��� �� ��� ��, where � � � � ���
 � 	 � �� and for each 	 � ��� �� �� �� ��� � � ,
� � contains ��� �� � � ��
�� �� �
 � �� �� ���. We assume that � � ��
 � 	 � �� � �.

All actions of � are forced to be instantaneous. This is done by resetting the dedicated clock �
 at
the initiation of the transition 	 and requiring that �
 � � at the termination of 	. So � acts as � in all
runs, and hence ��� � � ����� � ����� no matter the given selection for � .

To show that the class ��� � is a strict subset of ���� � (���� �), consider the timed automaton with
non-instantaneous actions�� (��) in Figure 1a (1b). The language initiation accepted by this automaton,
 � (�), is equal to the one accepted by the timed automaton with � edges shown in Figure 2a (2b). This
language cannot be accepted by any timed automaton without � edges [12]. !

q0

x=1, ,{x} εx=1, a, {x}

0<x<1, b, {}

q1 q0
true, , {x}

x<1 0<y, c, {y}

0<x, c, {y}
q1

ε
q2

(a) (b)

Figure 2. A timed automaton for �� and a timed automaton for ��

Proposition 3.1. �� ���� � �� ���� �, �� ���� � �� ���� �.

Proof:
Sketch. The proof is based on the fact that the language � (�), initiation (completion) accepted by
the automaton �� (��), cannot be completion (initiation) accepted by any timed automaton with non-
instantaneous actions. !

Proposition 3.2. ���� � � ���� � � �
�� �.

Proof:
Sketch. The proof is based on the fact that the language �� �, ���� "�� �#�� accepted by the automaton
�� in Figure 3a, can be neither initiation nor completion accepted by any timed automaton with non-
instantaneous actions. !

We now prove that timed automata with non-instantaneous actions are less expressive than timed
automata in which � (non-observables) transitions are used. The latter class will be denoted by �� [12].
Let us start defining a transformation for a single automaton with non-instantaneous actions � .

Definition 3.1. (Simulator Automaton)
Let � � ���
� � � ����� � be a timed automaton with non-istantaneous actions. The simulator au-
tomaton of � is a timed automaton �� defined as follows: �� � ����
 � �
 �� � �� ����� � where
�� � � � ��
� 	 � �� and for all 	 � ��� ��� ��� �� ��� ��� ��� � � , � � contains ��� ��� ��� � �� �
� and
��
� �

�� ��� ��� ���.

R. Barbuti et al. / Timed Automata with non-Instantaneous Actions 7

q0 q1

true, {x}, c, x>0, {y}

0<x<1, {}, b, x=1, {x}

x=1, {x}, a, true, {}x=1, {x}, a, true, {}

0<x<1, {}, b, x=1, {x}

q2

true, {}, c, x<1 0<y, {y}

q0

x=0, a, {x} x=2, ,{x}ε

(a) (b)

Figure 3. Automaton�� and an automaton for �����

The simulator automaton �� simulates all runs of � retaining both initiation symbol and termination
symbol for each action. Its actions are instantaneous and represent initiating instants and terminating
instants of non-instantaneous actions of � .

Definition 3.2. (Relabeled Simulator Automaton)
Let � � ���
� � � ����� � be a timed automaton with non-instantaneous actions and �� its simulator
automaton. Let ��� �� a partition of
.

Consider the renaming function $����� �
� �
���
 � ��� such that

$��������� �

�
� if � � �

� if � � �
$��������� �

�
� if � � �

� if � � �

The relabeled simulator automaton of � , denoted by �������, is the simulator automaton �� where
for all 	 � � � the transition label � of 	 is renamed by $��������.

Note that the relabeled simulator automaton of � has an alphabet
 � ��� and belongs to ��.

Theorem 3.2. �
�� � � �����.

Proof:
Sketch. First we show that �
�� � � �����. Consider a timed automaton with non-instantaneous actions
� � ���
� � � �� ��� �, and a partition ��� �� of
. Let �� be the simulator automaton of� and �������

be the relabeled simulator automaton of � . It can be shown that �
�������� � ����
������ obtaining that

any timed automaton with non-instantaneous actions can be simulated by an automaton in ��.
To show that the class �
�� � is a strict subset of ����� (and then also ���� � and ���� � are so, by

Proposition 3.2) consider the timed automaton in �� shown in Figure 3b. The language accepted by this
automaton,
�
�, is the set of all timed words ��� �� � ��� ������ ������ ��� � � � , such that each �� is an
even natural number and ��
 ����, for all !.

This language cannot be selected accepted by any automaton in � . !

As a consequence, our model can be put at an intermediate level between timed automata and timed
automata with � edges.

8 R. Barbuti et al. / Timed Automata with non-Instantaneous Actions

Automata with periodic clock constraints, defined in [13], also have an expressive power between
timed automata and timed automata with � edges. They contain constraints which are based on regularly
repeated time intervals. However, their power is not comparable with the power of our model. In fact
the aim of automata with periodic clock constraints is that of model periodic behaviors, while we model
actions that have a duration.�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�
�
�

�����
��� ��

�
�� � ���� � ���� ���� �

Figure 4. Inclusion among language classes

With automata with periodic clock constraints it is possible to model the timed automaton (with �
edges) of Figure 3b for
�
�, which we are not able to model. On the other side, automata ��� �� and
�� cannot be modeled with periodic clock constraints.

The inclusion among language classes is given in Figure 4, where ����� is the class of languages
accepted by timed automata with periodic clock constraints.

We can apply to timed automata with non-instantaneous actions the verification techniques, based on
model checking, usually applied to timed automata [3, 10, 16, 19]. To perform this task, we first specify
the time of occurrence of every action and then translate the timed automaton with non-instantaneous
actions into a timed automaton with � edges, as shown in the proof of Theorem 3.2.

4. Parallel Composition

In this section we define the semantic of a parallel composition of timed automata with non-instantaneous
actions.

Let �� � ����
�� ��� ��� ������ and �� � ����
�� ��� ��� ������ be two timed automata with
non-instantaneous actions such that �� ��� � �. The parallel composition of �� and �� is denoted by
��� " ���.

The semantic is a transition system ���� " ��� whose states are pairs #$�� $�% in which $� is a state
of the transition system ����� defining the semantic of �� and $� is a state of the transition system
�����. An initial configuration is #$�� � $

�
�% in which the components are initial states of ����� and

����� respectively.
To save notation let us define a function &	
�� �
��
� � ���� ��� ���� ���� such that &	
����� �

�% � ��� �� � � �
��. This function returns a non-singleton if applied to a synchronization action,
otherwise it returns a singleton containing the index of the automaton the argument belongs to.
The system evolves starting from an initial configuration using the following rules.

&���
Æ � ��

#�
�� ���� �
�� ���%
Æ
��#�
�� �� � Æ�� �
�� �� � Æ�%

R. Barbuti et al. / Timed Automata with non-Instantaneous Actions 9

&���
&	
����� � '� '(� '� �$	 � ��	 � �	�� ��	 � �

�
	 � �

�
	 � �� �

�
	 � �

�
	 � �

�
	� � �	 � �	 �� ��

	�

#$�� $�%
��
��#$��� $

�
�%

where for all (� ��� ��, $�	 �

�
$	 if (�� '

�
��
� ���

� ��
�
� ��

�

��
� �	��

�
	� if (� '

&�
�
&	
����� � '� '(� '� �$	 � �

��
� ���

� ��
�
� ����

� �	�� �	 �� ��
	�

#$�� $�%
��
��#$��� $

�
�%

where for all (� ��� ��, $�	 �

�
$	 if (�� '

��	� �	���	 � if (� '

Rule &�� represents the case in which both the two automata stay idle while the time passes. Rule
&�� describes the situation in which a set of automata initiate, at the same time, an action �. This
set is ��� �� if � is a synchronization action. If &	
����� is a singleton, only one automaton proceeds
according to its own behavior. Rule &�
 describes the case in which a set of automata in parallel, or a
single, complete an action �. Note that synchronization non-instantaneous actions must be initiated and
terminated in the same instants by the two automata.

Let us remark that the notions of run and acceptance are analogous to the ones for timed automata
with non-instantaneous transitions, the only difference being that at least a repeated state for each au-
tomaton must be infinitely repeated in a run according to the Büchi acceptance condition.

The definition above can be extended to the case of),) � � automata simply adding components
to the states of the transition system and extending the function &	
�� to handle common symbols of)
automata. That is the function applied to a symbol returns the set of all indexes of automata that must
synchronize on the symbol.

5. An example of specification

We consider the example of an automatic controller which opens and closes a gate at a railroad crossing.
This example was originally presented in [18], and it was used in [7] to show the specification and
verification capabilities of timed automata. For simplicity we assume that one unit of time corresponds
to a minute.

The automaton modeling the train is shown in Figure 5a. The automaton starts in state
�. When
approaching the railroad crossing, the train sends a (instantaneous) signal, approach, to the controller.
Note that the signal approach belongs to both the alphabet of the train and of the controller, thus the two
automata must synchronize on it. The train sends the signal approach at least 4 minutes before it enters
the crossing. The train takes at least 1 minute to pass through the railroad crossing (action crossing).
Note that, because this action is non-instantaneous, in [7] it was modeled by two actions, in and out,
simulating the initiation and completion of it. After the signal approach is sent to the controller, the
signal exit is sent within 8 minutes.

The gate is modeled by the automaton in Figure 5b. The synchronization with the controller is
ensured by the instantaneous signals lower and raise. When the gate receives the signal lower, it starts to
close the gate within 1 minute, and the closing action takes between 1 and 2 minutes. The gate responds
to the signal raise by opening the gate with the same delays.

10 R. Barbuti et al. / Timed Automata with non-Instantaneous Actions

true, {w},

s1
x = 0, {}

(a)

y = 0, {}

y = 0, {}

(b)

u = 0, {}

(c)

s0

s2

w = 0, {}
x < 8 and

 exit,
x > 4, {w},

crossing, w > 1, {}

true, {x}, approach,
s0

s3

up,

s2

s1
true, {y}, lower,

y < 1, {z},y <1, {z},

1 < z < 2, {} 1 < z < 2, {}

down,

true, {y}, raise,

s0

s3

u = 1, {},

raise,

u = 1, {}

s1

lower,

u = 1, {},

u = 1, {}

true, {u}, approach,

s2
true, {u}, exit, u = 0, {}

Figure 5. Train, Gate and Controller

Finally, Figure 5c shows the controller. When the controller receives the signal approach from the
train, it sends, exactly after 1 minute, the signal for closing the gate. With the same delay it sends the
signal raise after receiving the signal exit. Note that all the signals are forced to be instantaneous by
asking for the value of the clocks to be the same at their initiation and completion.

The whole system is obtained by the parallel composition of the three automata.
We would like to remark that our specification allows us to state properties which better describe

real constraints than timed automata. As an example, let us quote a property which was checked on the
train/gate system in [7]. Such a property is a safety one: “Whenever the train is inside the gate, the
gate should be closed”. Using parallel timed automata with non-instantaneous actions we can state finer
properties. For example we could be interested in verifying the following two ones:

1. “Whenever the train approaches the gate, the gate closes, and when the train initiates to cross the
gate, the action of closing it should be completed”.

2. “Every time, after the train crosses the gate, the gate must open, and the action of opening the gate
should be initiated only when the train has completed the action of crossing it”.

Both the properties could be expressed as conditions on the language accepted by the parallel compo-
sition ����!) " *��	 " �+)��+��	�� by specifying that, for property 1., the selected accepted words
should refer to the initiation of crossing and to the completion of down, while for property 2. they should
refer to the completion of crossing and to the initiation of up.

6. Simulation for Effectiveness

In this section we define a simple construction that, given a parallel composition & � ��� " ��� of
timed automata with non-instantaneous actions and a partition ��� �� of its alphabet
, builds a timed
automaton with � edges recognizing exactly �
������& �. This is done in order to make the parallel compo-
sition effective: properties can be checked on the timed automaton resulting from the construction and,
for this, verification techniques and developed tools for timed automata can be used [3, 10, 16, 19].

Let & � ��� " ��� is a parallel composition of timed automata with non-instantaneous actions.

1. Construct the simulator automata ��� � ��� of ��� �� respectively (see Section 3).

R. Barbuti et al. / Timed Automata with non-Instantaneous Actions 11

2. Construct the parallel composition of timed automata �� � ���� " ���� [7].

3. Apply the relabeling function $����� defined in Definition 3.2 to the labels of the transitions of ��

obtaining the automaton ������� with � edges.

Theorem 6.1. �

������& � � ����

������. !

Clearly, if we have more than 2 automata the construction extends naturally to the general case. First, do
step 1 and step 2 for the automata �� and ��. This yields an automaton & �. Do step 1 for the successive
automaton �� and construct the parallel composition of &� and ��� . Iterate until all automata have been
considered and, finally, do step 3.

References

[1] Aceto, L., Bouyer, P., Burgueño, A. and Guldstrand Larsen, K. The Power of Reachability Testing for Timed
Automata. Proc. Foundations Software Technology and Theoretical Computer Science, Springer LNCS 1530,
245–256, 1998.

[2] Aceto, L., Burgueño, A. and Guldstrand Larsen, K. Model Checking via Reachability Testing for Timed
Automata. Proc. TACAS, Springer LNCS 1384, 263–280, 1998.

[3] Alur, R., Courcoubetis, C. and Dill, D.L. Model-Checking in Dense Real-time. Information and Computa-
tion, 104, 2–34, 1993.

[4] Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D.L. and Wong-Toi, H. Minimization of Timed Transition
Systems. Proc. CONCUR 1992, Springer LNCS 630, 340–354, 1992

[5] Alur, R., Courcoubetis, C. and Henzinger, T.A. The Observational Power of Clocks. Proc. CONCUR 1994,
Springer LNCS 836, 162–177, 1994.

[6] Alur, R. and Dill, D.L. Automata for Modelin Real-time Systems. Proc. ICALP’90, Springer LNCS 443,
322–335, 1990.

[7] Alur, R. and Dill, D.L. A Theory of Timed Automata. Theoretical Computer Science, 126, 183–235, 1994.

[8] Alur, R., Fix, L. and Henzinger, T.A. Event-Clock Automata: A Determinizable Class of Timed Automata.
Theoretical Computer Science, 211, 253-273 (1999).

[9] Alur, R. and Henzinger, T.A. Back to the Future: Towards a Theory of Timed Regular Languages. Proc.
FOCS 1992, 177–186, 1992.

[10] Alur, R. and Henzinger, T.A. A Really Temporal Logic. Journal of ACM, 41, 181–204, 1994.

[11] Alur, R., Itai, A., Kurshan, R.P. and Yannakakis. M. Timing Verification by Successive Approximation.
Information and Computation, 118, 142–157,1995.

[12] Bérard, B., Petit, A., Diekert, V. and Gastin P. Characterization of the Expressive Power of Silent Transitions
in Timed Automata. Fundamenta Informaticae, 36, 145–182, 1998.

[13] Choffrut ,C. and Goldwurm, M. Timed Automata with periodic Clock Constraint. Int. Report 225-98, 1998.

[14] Henzinger, T.A. and Kopke, P.W. Verification Methods for the Divergent Runs of Clock Systems. Proc.
Formal Techniques in Real-Time and Fault-Tolerant Systems, Springer LNCS 863, 351–372, 1994.

[15] Henzinger, T.A., Manna, Z. and Pnueli, A. Temporal Proof Methodologies for Timed Transition Systems.
Information and Computation, 112, 273–337, (1994).

12 R. Barbuti et al. / Timed Automata with non-Instantaneous Actions

[16] Henzinger, T.A., Nicollin, X., Sifakis, J. and Yovine, S. Symbolic Model Checking for Real-Time Systems.
Information and Computation, 111, 193–244, 1994.

[17] Jahanian, F. and Mok, A.K. A Graph-Theoretic Approach for Timing Analysis and its Implementation. IEEE
Transactions on Computers, 36, 961-975, 1987.

[18] Leveson, N. and Stolzy, J. Analyzing Safety and fault Tolerance using Timed Petri Nets. Proc. Theory and
Practice of Software Development, Springer LNCS 186, 339–355, 1985.

[19] Yovine, S. Model Checking Timed Automata. Lectures on Embedded Systems, Springer LNCS 1494, 114–
152, 1996.

