MTCS 2001 Preliminary Proceedings

Timed Automata with Urgent Transitions

Roberto Barbuti and Luca Tesei !

Dipartimento di Informatica
Universita di Pisa
Corso Italia, 40
56125 Pisa - Italy

Abstract

In this paper we propose an extension to the formalism of timed automata by
allowing urgent transitions. A urgent transition is a transition which must be taken
within a fixed time interval from its enabling time. We give a set of rules formally
describing the behaviour of urgent transitions and we show that, from a language
theoretic point of view, the addition of urgency does not improve the expressive
power of timed automata. However, from a specification point of view, the use of
urgent transitions is crucial, especially in modular specification of systems.

Keywords: real-time systems, timed automata, modular specification,
parallel composition.

1 Introduction

Timed automata are widely recognized as a standard model for describing
systems in which the time plays a fundamental role [6,7]. Since their in-
troduction, timed automata have been widely studied from different points of
view [4,5,8,9], in particular for their possible use in the verification of real-time
systems [1,2,3,10,19,20,22].

Usually the expressiveness of timed automata is given in terms of accepted
timed languages, but, because of their use as a specification formalism, also
the ease to describe real-time systems must be taken into account. For this
purpose many extensions to the basic model have been proposed (see for ex-
ample [11,16,17,18,21]). All these extensions have been discussed with respect
to the expressiveness of the original model.

In this paper we present a further extension: timed automata with urgent
transitions. The notion of urgency in timed automata was already introduced

! Email: barbuti@di.unipi.it
2 Email: tesei@di.unipi.it
This is a preliminary version. The final version is considered for publication in

Electronic Notes in Theoretical Computer Science
L: wuw.elsevier.nl/locate/entcs

BARBUTI AND TESEI

in [13,14,15], where the urgency of transitions outgoing from a state is induced
by the impossibility (due to the failure of a condition) to stay in the state
while the time elapses. In this paper we consider a slightly different notion of
urgency. Urgent transitions are transitions which must be performed within
a given time interval starting from their enabling.

From the expressiveness point of view, both the approaches are suitable for
specifying timed systems. The approach in [13,14,15] allows, in some cases,
more general urgency conditions, while, in other cases, such as “as soon as
possible” transitions, our approach allows more general time constraints.

In this preliminary version of the paper we impose that at most one urgent
transition can exit from a state. We precisely define such a behavior by means
of an operational semantics.

We show that, from the language theoretic point of view, timed automata
and timed automata with urgent transitions are equivalent. This is proved by
defining a transformation from a timed automaton with urgent transitions to
a timed automaton which accepts the same language. However, the transfor-
mation is not a congruence with respect to parallel composition, thus it cannot
be applied to a component which is supposed to be used in different environ-
ments. Thus, the use of urgent transitions is fundamental for the modular
specification of systems.

2 Timed automata

We recall the definition of timed automata [7]. In the following, R is the set
of real numbers and R the set of non-negative real numbers. Q is the set
of rational numbers and Q7 is the set of positive rational numbers. A clock
takes values from RT. Given a set X of clocks, a clock valuation over X is
a function assigning a non-negative real number to every clock. The set of
valuations of X, denoted Vy, is the set of total function from X to R*. Given
v € Vy and § € RY, with v + § (resp. v — §) we denote the valuation that
maps each clock x € X into v(z)+0 (resp. v(z)—). Note that if there exists
x € X such that v(z) — 0 < 0, v(x) — ¢ is not a clock evaluation.

Given a set X of clocks, a reset v is a subset of X'. The set of all resets of
X is denoted by I'y. Given a valuation v € Vy and a reset 7, with v\y we
denote the valuation

0 ifzxeny
viz)ifx & v

Given a set X of clocks, the set ¥y of clock constraints over X are defined
by the following grammar:

v\n(z) =

Y =true | false | Y ANy | x#t

BARBUTI AND TESEI

where z,y € X', t € N is a natural number, and # is a binary operator in
{<,>,<,>,=}. Note that the negation operator is not needed because the
negation of an atomic constraint z#t (# different from =) can be expressed
as another constraint of the same kind. The negation of a constraint z = ¢ can
be expressed by x < ¢tV x > t. The disjunction can be simulated, as usual, by
duplicating the edges in the automaton. Actually, in this version of the work,
we do not allow more than one urgent action outgoing from a state, thus we
have a restriction on the constraints of such actions.

Clock constraints are evaluated over clock valuations. The satisfaction by
a valuation v € Vy of the clock constraint 1) € ¥y, denoted v |= 9, is defined
as follows:

v = true and v & false
vEU AL IfrEY AvEY
v = ot ff v(z)#t

Definition 2.1 [Timed automaton| A timed automaton 7" is a tuple
(Q,%,€,1,R,X), where: (@ is a finite set of states, ¥ is a finite alphabet of
actions, £ is a finite set of edges, I C () is the set of initial states, R C @) is
the set of repeated states, X is a finite set of clocks. Each edge e € £ is a
tuplein @ X Uy x 'y X X X Q.

If e = (q,%,7,0,q) is an edge, ¢ is the source, ¢’ is the target, ¢ is the
constraint, o is the label, vy is the reset.

The semantics of a timed automaton 7' is given in terms of accepted timed
language. The definition of such a language is based on an infinite transition
system S(T) = (S,—), where S is a set of states and — is the transition
relation. The states S of S(T) are pairs (g,v), where ¢ € @ is a state of T,
and v is a valuation. An initial state of S(T) is a state (¢, v), where g € I
is an initial state of T" and v is the valuation which assigns 0 to every clock
in X. At any state ¢, given a valuation v, T can stay idle or it can perform
an action labeling an outgoing edge e. If T" stays idle, a transition is possible
to a state of S(T) where the state of T is the same, but the valuation has
been modified according to the elapsed time. If 7" moves along an outgoing
edge e = (q,%,7,0,q'), this corresponds to a transition, labeled by o, of S(7T')
from the state (g, v) to the state ¢, v\7y. This transition is possible only if the
current clock valuation respects the constraint 1 of e. The rules to derive the
transitions of §(T') are the following:

§ e RY (¢, ¢,v,0,¢) € E v EY
2.
(q,v) (g, v+ 6) (q,v) -5 (¢', ¥\7)

1.

Rule 1. represents the case in which 7" stays idle in a state and the time
passes, while Rule 2. corresponds to the occurrence of an action.

BARBUTI AND TESEI

Definition 2.2 [run, action sequence] Given a timed automaton
T=(Q,%,EI,R,X), a run of the automaton is an infinite sequence of states
and transitions of S(7T)

S0 L) S1 L) “en

where

- so = (q,v) where ¢ € I and v(z) = 0 for every x € X

- a state ¢ € R exists such that ¢ occurs infinitely often in the pairs of the
sequence {s;}

Note that, given a run s; — s; - . . ., for each 4, [; € (XURT). Let r be
a run.

- The time sequence t; of the time elapsed from state sy to state s; in 7 is
defined as follows:
to=0
0ifl; €
tiy1 =1; +
[; otherwise

- The event sequence of the events occurring during r, including the elapsed
times, is defined as follows:

(Lo, to) (I, t1) - ..
- The action sequence of r is the projection of the event sequence of r on the
pairs {([,)|l € £}

Definition 2.3 [timed word, timed language| Let ¥ be an alphabet. A timed
word over 3 is an infinite sequence of pairs (09, tg)(01,%1) . . . such that o; € 3,
and t; € R+, t; <t;+ 1, for all s.

A timed language over Y is a subset of the set of all timed words over .

Definition 2.4 [acceptance| Given a timed automaton 7' = (Q, %, &, I, R, X),
a timed word w over X is accepted by T if a run r of T" exists such that w = v,
where v is the action sequence of . The set of timed words accepted by T is
called the accepted language of T

Note that we use the Biichi acceptance condition for the runs.
A parallel composition is defined on timed automata. Here we recall the
definition given in [7].

Definition 2.5 [Product] Let 77 = (Q1, X1, &1, I1, A7) and
Ty = (Q2, X9, &, I, Ay) be two timed transition tables with X3 N Xy = (). The
product of T} and T3, denoted by T} || T3, is given as follows:

T1||T2 = <Q1 X QQ,El U 22,5,11 X IQ,RI, Xl U XQ)
where & is defined by:

BARBUTI AND TESEI

(i) Synchronization actions
Vo € XN X9, Vg1, ¥1,m,0,41) € E1,Y(q, V2,72, 0, ¢5) € &
& contains ((¢1, 2), Y1 A a2, 1 Uye, 0, (41, 43))

(ii) 7 actions
Vo € ¥1\X2,V(q,%,7,0,q") € E1,Vs € Qs
& contains ((q, s),¥,7,0,(¢,s))

(iii) T actions
Vo € Yo\X1,V(q,0,7,0,q4") € E,Vs € Q1
& contains ((s,q),¥,7,0,(s,q"))

This definition shows what we expect in parallel behaviors:

¢ Common symbols of the alphabets are synchronization actions. A synchro-
nization action can be executed if and only if all the component automata
involved can execute it. The action must be executed synchronously by all
of them.

* Other symbols can be executed by each component independently according
to its original specification.

Defining the set of repeated states, R, of a parallel composition according
to the Biichi acceptance condition requires a slight different construction with
a lot of details. We refer to [7] for this.

3 Timed automata with urgent transitions

In this section we extend the model of timed automata with a new feature
which is useful in the specification of a real-time systems. The idea is to
provide, in each state of the automaton, the possibility of labeling one of
the outgoing edges as urgent. Intuitively the labeled edge must be taken
with higher priority with respect to the others, provided that its constraint is
satisfied by the current clock valuation.

To be more precise, we introduce a constant ¢ € Q which represents the
length of a time interval in which an enabled urgent action must be executed.
The time interval is [t,t + £) where ¢ is the instant in which the constraint
associated to the urgent transition becomes satisfied by the current clock val-
uation.

Choosing this notion of urgency allow us to define precisely the behavior of
urgent actions. The intuitive idea “urgent transitions must be taken as soon
as possible” introduces some problems when applied in a model with a dense
time domain. Consider a state of a timed automaton in which the current
value of clock z is in [0,1] and there is an outgoing urgent transition with a
clock constraint x > 1. Letting the time to elapse, at which time would the
urgent transition be executed? It is not possible to answer precisely to this
question since the time domain is dense. To avoid this problem we introduced
the constant ¢ and the interval [0, £) the action must be executed within. The

7

BARBUTI AND TESEI

choice of a right-open interval is also related to the denseness. Suppose, now,
¢ = 1. If we chose an interval [0, /] the upper bound of the interval within
the urgent transition must be executed would not be precisely defined. This is
because the lower bound is not precisely defined. The right-open interval allow
us to express the upper bound as z < 2. If the transition has a constraint in
the form of z > 1 then the upper bound is expressed by z < 2. The denseness
also imposes the constant ¢ be greater than 0. The choice ¢ = 0 could be
interpreted as “immediately”, but this leads to the problem discussed above.
However, since £ € Q", it can be chosen as small as we want. In other words,
the “as soon as possible” limit behavior can be approximated with arbitrary
precision.

If the constraint of the urgent transition is already satisfied when a state
is entered then the interval starts at the instant in which the state is entered.
We have chosen this approach for a uniform treatment of urgent transitions.

Note that the specification of ¢ could be local to each urgent transition.
For the sake of simplicity we discuss the case in which ¢ is a global parameter.
The case of local specification can be caught by a slight modification of the
definition, the semantics and the transformation.

If a state has no urgent outgoing edges then the behavior is the usual one
of timed automata. This also happens when a state is entered and the urgent
transition is not enabled.

Moreover, when an urgent transition is enabled in a state, the unique way
to continue the run is to execute it, both while the associated constraint is
satisfied and within the interval specified above.

Definition 3.1 [Timed automaton with urgent transitions] Let £ € Q" be a
constant. A timed automaton with urgent transitions 7Yt is a tuple
(Q,%X,E,U,I,R, X), where: @ is a finite set of states, 3 is a finite alphabet of
actions, & and U are finite sets of edges, the non-urgent and the urgent ones,
I C @ is the set of initial states, R C @) is the set of repeated states, X is a
finite set of clocks. Each edgee € EUU isatuplein Q X Uy xTpy xXxQ. U
is the set of urgent transitions. To impose that at most one urgent transition
can exit from a state we require that (qi,v1,71,01,4)), (q2, V2, V2,09, ¢5) € U
iff g1 # go.

The class of all timed automata with urgent transitions will be denoted by

TL.

In the following the superscript £ could be omitted and, when this happens,
it should be considered implicitly defined.

For timed automata with urgent transitions 7 we define an infinite transi-
tion system S(TY) = (S,, —) as for timed automata. The states S, are triples
(q,v,9,) such that ¢ € Q is the current state of the automata T, v is the
current clock valuation and ¢, € Rt U {0} is a number recording the time
elapsed since the state ¢ has been entered. The rules to derive the transitions
of S(T¥) are the following:

BARBUTI AND TESEI

0 eRTF

(Time) 5
(q,v,64) —(q, v+ 6,0, + 0)

(¢, Y,7,0,¢) €&, vi=y, (=3q, Yu, Yus0u,q,) €EU)
(q,v,6,) —(q',v\7,0)

(¢,0,7,0,¢)€E, viEY
(Non-Urgent 2) (¢ %u; Yus Ous @) €U, (30. 0 <6 <Gy Av —6 | 1hy)
(¢, v,04) (¢, v\, 0)
(Qa wu77ua0u:ql) € Z/{, v ‘: wua (V - E bé wu \ 611 < K)
(¢,v,6¢) (¢, ¥\, 0)

(Non-Urgent 1)

(Urgent)

Rule (Time) lets the time elapse in a state and updates both the clock
valuation and the time elapsed in the state.

Rule (Non-Urgent 1) is used when 7, is in a state without outgoing
urgent edges. In this case the behavior is the same as timed automata. Note
that when a new state is entered the time elapsed is set to 0.

Rule (Non-Urgent 2) manages the case in which 7, is in a state with
a (unique by definition) urgent transition. The “-~3” condition in the rule
requires that the urgent transition has never been enabled since the current
state was entered. If this is false the rule is not applicable.

Rule (Urgent) executes an urgent action o. The condition (v — £ [~
YV 0, < {) ensures that an urgent transition is taken either before a time ¢
is elapsed after its enabling time, or the time elapsed in the state is less than
£. Without this guard an urgent transition could be fired after the expiry
time expressed by £. This would not be sound with respect to the notion of
urgency.

Note that if S(7},) is in a state in which an urgent transition can be ex-
ecuted by the rule (Urgent) it cannot be postponed until its constraint be-
comes false. This because the “~3” condition of rule (Non-Urgent 2) will
never be true and the run could not proceed.

The notion of run for a timed automata with urgent transitions is defined
in the same way as for timed automata using the transition system S(7,).
Similarly for the accepted timed language.

Example 3.2 Figure 1 shows an example of a timed automaton with a urgent
transition, indicated by the letter u. In this example we consider £ = 1. The
automaton can execute the action b when the value of the clock x is in the
interval (0,1]. When the value of = becomes greater than 1, b cannot be
performed any longer and the urgent action ¢ must be executed. Moreover,
because of the urgency, a must be performed while the value of z is in the

9

BARBUTI AND TESEI

interval (1,2].

X > O’ X > 1,
L (e
(x) tx
Fig. 1. An automaton with urgent transitions, 7}

4 The expressive power of timed automata with urgent
transitions

In this section we show that, from a language theoretic point of view, the
expressive power of timed automata with urgent transitions is equivalent to
the one of timed automata. This is shown by providing a transformation which
preserves the accepted language. Because timed automata are special cases
of timed automata with urgent transitions, the transformation is only given
starting from the latter ones.

In the next section we show that the transformation is not compositional,
thus, for specification purposes, the use of urgent transitions is fundamental.

4.1 The region form of a timed automata

Let T! be a timed automaton with urgent transitions. We give a transforma-
tion that builds a timed automata accepting the same timed language.
Note that if £ = § with a and b natural numbers, it is always possible to

transform a Tu% automaton to an isomorphic one 7' by multiplying all the
constants in the clock constraints by b. So we can assume without loss of
generality that ¢ is a positive natural number. For the sake of simplicity we
assume in this section that £ = 1, but the transformation can be easily defined
for any positive natural number.

Given a set of clocks X, a clock region, as defined in [7], is an equivalence
class of clock evaluations such that, given two clock evaluations v and v/
belonging to it, for every clock constraint ¢, v = ¢ iff v/ = ¢. Note that,
given a timed automaton 7" and a set of clocks X, the clock regions are finite.
Let us denote such a set by Reg(7T, X). We denote the equivalence class of
a clock evaluation v as [v]. A clock region a € Reg(7, X) can be uniquely
identified by specifying, for every clock z € X, one clock constraint of the set
Co={zx=clc=0,1,...,c,}U{c—1<zx<clce=1,2,...c; } U{x > ¢}
where ¢, is the greatest constant to which x is compared in the constraints of 7'.
Moreover, for every pair of clocks x and y such that we specified c—1 <z < ¢
and d — 1 < y < d, for some ¢, d, an inequality of type fract(x)#fract(y)

10

BARBUTI AND TESEI

where # € {<,=, >} must be specified. Here fract(z) is the fractional part
of the value of clock x.

Given a clock region « € Reg(7, X) and z € X’ we denote by Rr(a,x) the
unique clock constraint in C, specifying a.

In [7] it is shown how to construct, given a clock region o € Reg(T, X),
the ordered set of clock regions that are time successors of a. We denote such
set by succ(a). The order <, of the clock regions in the set succ(a) is total
and such that o <, o' iff o/ is a time successor of a.

Given a clock region o € Reg(7T,X) and a reset v C X, we denote by
[v — 0] the clock region such that, for all 2 € v, the constraint in « for z is
substituted by z = 0.

In the following we need a transformation of clock constraints ¢ which gives
a logically equivalent constraint min(v) such that it does not contain redun-
dancies. Essentially the transformation drop from % the atomic constraints
which are implied by others, yielding a minimal conjunction of constraints. In
other words, for each clock z € X, there is only one constraint in min(¢) of
the forms = = ¢, z#tc, c#x#'d or c#z, where #,#' € {<,<}. Let us denote
by select(min(%)),z) such unique constraint.

The following definition describes a first transformation, in region form,
of a timed automaton with urgent transitions. To this purpose a state of
the transformed automaton records both the state of the original one and
the equivalence class (clock region) of the values of clocks when the state is
entered.

Definition 4.1 Let T, = (Q,%,&,U,I, R, X) be a timed automaton with

urgent transitions.

The corresponding timed automaton in region form,

Tr=(Q", %, U, I",R", X)

is defined as follows:

- the states in Q" and R" are of the form (g, &) where ¢ € @ and « is a clock
region,

- the states in I" are of the form (g, [p]) where ¢ € I and vy(z) = 0 for all
reX

- (g, @), min() A N\yer Br, (@, 2),7,0,(¢', [y = 0]a)) € E" (resp. U") iff
(q,%,7,0,¢") € € (resp. U), a € Reg(T,, X), and " € succ(a).

Note that the new states are built exactly as the ones of the region au-
tomaton as defined in [7].

This construction differs from the one for region automata because con-
straints and resets are maintained on the edges. These constraints are modified
in order to force the corresponding edge to enter only one of the time succes-
sor clock regions (in the sense that for other regions the constraint is always
false).

It is important to note that a timed automaton with urgent actions in
11

BARBUTI AND TESEI

region form may not meet the requirement that at most one urgent transition
can exit form the same state. This is not a problem because this automaton
is intended as an intermediate state in the transformation.

Example 4.2 In Figure 2 it is shown the automaton of Figure 1 in region
form, denoted by T)". Note that the constraints explicitly shows the time
successor clock region to which they refer. Note that all the edges with a false
constraint have been removed and, in the states, there is only the [x = 0]
region because both the original edges reset x.

x>1,b, {x}
0<x<l, U 1<x,
b, {x} - {x}
x=1,b, {x}

Fig. 2. Automaton T\

4.2 Making the urgent transitions £ consistent

The second step of the transformation will adapt the constraints of the urgent
transitions of 7, making them consistent with the semantics we gave in Sec-
tion 3. More precisely clock constraints are adapted according to the behavior
expressed by the rule (Urgent). In this step we consider only the urgent
actions and neglect the other ones which remain unchanged. The third step
will adapt these according to the semantics.

Let (g,) be a state of 7, such that in state ¢ of T, there was an out-
going urgent transition e, = (q,%,7,0,q'). The latter became, in T, a set
of transitions £¢ = {({(¢, a),min(y)) A \,cx Br, (0", 2),7,0,(¢, [y = 0]a")) €
U™ | o € succ(a)}. Note that « is the clock region when (g,) is entered
by T and all the outgoing urgent transitions EZ are labeled by the same ac-
tion. We adapt the clock constraints of these to handle the expiration time
expressed by /, i.e. to force the action to be executed within £ time units from
the instant it becomes enabled.

There are three possible cases.

- First, min(v) is implied by «, that is, if v € a then v = . In other words
the urgent action is already enabled when the state is entered. Here we
simply add to each transition in E¢ a new constraint imposing that the
time elapsed in the state be less than ¢ = 1. To do this we add in 7] a new

12

BARBUTI AND TESEI

clock variable for each state. Whenever a state is entered the correspondent
clock is reset, so it can be used in the constraints of outgoing edges as a
measure of the time elapsed in the state.

- Second, min(t) is equivalent to false or it is consistent, but it will never
be true letting the time to elapse from a. For the latter case consider, for
instance, a = [t = 1Ay =2]and ¢ =z < 1 Ay > 2. In this case we do
nothing.

- Third, min(¢)) is not implied by « and will be implied by a time successor
of a. In this case we have to ensure that, starting from the instant in which
min(1)) will become true, the transition will be taken within ¢ time units.
This case requires some new notation and definitions. Using the total order
<, defined in the set succ(a) we can determine, as the time elapses, the
first clock region in which min(¢)) will be true. Let us denote this clock
region by fst_succ(a,min())) = minyesucc() (¢ = min(¢)). Moreover
we can establish the immediate predecessor, according to the total order, of
a clock region ¢ in the set succ(a). Let use denote this by prec(«’). Note
that if o/ is the minimum in succ(a), then its predecessor is c.

Definition 4.3 [Set of Crucial Clocks] The set

cruc(a,min(y))) = X — {z € X | Ry, (prec(fst_succ(a,min(y))),z) =
select(min(¢),z)} contains the only clocks that determine the truth of the
constraint min(¢) in the region fst_succ(o,min(v))).

Let us explain the concept of “crucial” by an example.

Example 4.4 Let min(y)) be 0 < 2 < 2A1 <y <3. fais[z=0A0<
y < 1] then fst_succ(a,min(y))) = [1 < y < 2A0 < z < 1,fract(y) >
fract(z)] and prec(fst_succ(a,min(¢)))) = [y = 1A0 < z < 1]. In
prec(fst_succ(a,min(¢)))), the value of clock = implies the atomic constraint
select(min(¢)),z) = 0 < z < 2, so x is not crucial for min(¢)) becomes true.
Thus, we have cruc(o,min(v))) = {y}.

If ais [y =1Az=0] then fst_succ(a,min(y))) =[1 <y<2A0<z <
1,fract(y) = fract(z)] and prec(fst_succ(o,min(¢))) is « itself. Here both
x and y are crucial clocks.

Note that the set of crucial clocks always contains at least one element. If
this were not true, the clock region prec(fst_succ(«,min(¢))) would implies
min(¢)). But, by definition, fst_succ(c,min(¢)) is the minimum clock region
that implies min(¢)) and prec(fst_succ(a,min(e)))) is strictly less than it
using the order defined in succ(a) U {a}. A contradiction.

The constraint select(min(¢)),z), given any crucial clock z, can be used
to determine a constraint that force the urgent action to be executed within
¢ =1 time units from it became enabled. To do this we add to any transition
in E? the additional constraint add(c, min(¢))) constructed as follows. Given
a crucial clock z (we can choose any one):

13

BARBUTI AND TESEI

* add(a,min())) is (z < ¢+ 1) if select(min(t)),z) is either (z = ¢) or
(¢ < z#td) or (z > ¢). Here ¢ < d and # € {<, <}.
* add(a,min(v)))) is (z < c+ 1) if
select(min(¢)),z) is either (¢ < z#d) or (¢ < z). Here ¢ < d and
e {<, <}
Adding add(c,min(%))) to all transitions in E? we ensures that the urgent
action will be executed according to its semantics.

Definition 4.5 Let 77 = (Q",X,E",U",I",R",X) be a timed automaton
with urgent transitions in region form. The ¢-consistent version of it, (1), i
the timed automaton (Q", X, E",U;, I", R", X") where X" = X U {z,|q¢ € Q"}
and U" is constructed as follows:

* (g, 00,V Nzigay < byU{zgant, o, (d,a)) € & iff
(g, @), ¥, 7,0,(¢,) €U and (a = ¥),

+ (g,), min(min()AAcy Br. (o, 2)Aadd(0,min(1))), YUz (.}, 0, (0)
e & iff
(g, @), min(Y)AA e x Br, (@, 2), 7,0, (¢, [y = 0]a")) € U", o € Reg(Ty, X)),
o' € succ(a) and (o %)

4.8 The quiet version of a timed automaton with urgent transitions

Now, in order to achieve the desired behavior, in each state of ¢7, we have to
turn off all the originally non-urgent outgoing transitions when at least one of
the edges obtained by the originally urgent transition is enabled. This is the
third transformation step.

Let e = ({g, @), ®,7,0,{(¢',&)) be a non-urgent outgoing transition from a
state in ¢7;'. We map e in some transitions e’ = ({(¢, @),y A 0,7,0,{(¢, o)) of
the new automaton where 6 is the constraint that will become false when at
least one of the outgoing urgent transitions of a state in ¢7,, becomes true.

Definition 4.6 Let i be a constraint without redundancies over a set of
clocks X. The upper opening O(1) of 1 is obtained by deleting from 1) all the
constraints of the form x < cand z < ¢, and by substituting all the constraints
of the form x = ¢ by =z > ¢, for all z € X. Clearly this definition requires
constraints of the form c#a#d, # € {<, <}, to be considered as c#z A z#d.

The upper opening of the disjunction of all urgent edges constraints (with-
out redundancies), outgoing from a state in ¢7), describes a right-infinite
time interval to the beginning of which a urgent transition must be taken.
The negation of this disjunction must be added to all the constraints of non-
urgent edges of 7, outgoing from the same state.

The negation of a complex formula can introduce disjunction of constraints.
We denote by DNF™ an operation that, given a constraint which contains nega-
tions, push the negation operator inside, using the logical axioms for —, A, V,

14

BARBUTI AND TESEI

until it is applied to atomic constraints. Then it transforms the negations of
these constraints to the correspondent positive ones (x = ¢ will be translated
into x < ¢V ¢ < z). Finally, it transforms the formula in disjunctive nor-
mal form. It returns the set containing all the conjunctive components of the
formula.

Definition 4.7 Let (1] = (Q",X,E",U;,I", R", X") be the {-consistent ver-
sion of a timed automaton with urgent transitions in region form 7. The
quiet version of it, 7", is the timed automaton (Q", X, & =U; UE', I", R" X"
where £’ is constructed as follows:

((q, OJ), YAG, YU {x(q’,a’)}a g, <q,> a/l>) €& iff
(g, a),%,7,0,(¢;a')) € 7, and
¢ € DNF*(=(V, O(min(¢y))) for all ((g, @), Yu, Yu; 0w, {¢", ")) € Uy .

Example 4.8 Figure 3 shows the automaton 7" which is the quieted version
of the automaton 7} of Figure 1. Note that the constraint z > 1 on the edge
for b has been modified to 1 < x A x < 1 by the last transformation. Thus,
being always false has been removed. In figure, the clock z,,—q is omitted
because it is useless in this case.

O0<x<l, l<x<=2,
b, {x} a, {x}
x=1,b, {x}

Fig. 3. Automaton T''"
The transformation allows to state the following result.

Proposition 4.9 Let T, be a timed automaton with urgent transitions, T)
the corresponding timed automata in region form and T" its quiet version. T,
and T" accept the same timed language.

5 Using timed automata with urgent transitions as a
specification formalism

In the previous section we defined a new feature for the timed automata spec-
ification formalism. After that we showed how to compile a timed automaton
with urgent transition into a standard timed automaton.

Indeed, a specification formalism needs a way to define systems as a com-
position of components. For timed automata this mechanism is the parallel

15

BARBUTI AND TESEI

composition of Definition 2.5. The parallel composition of timed automata
with urgent transitions is defined in the same way, but the following remarks:

* the urgency of a transition of a component with a synchronization action o
extends to the transition obtained using the rule (i) of Definition 2.5 even
if the transition of the partner was not urgent

 the urgency of a transition of a component extends to the transition obtained
by the rules (4i) and (¢i) of Definition 2.5

« if the interleaving of actions leads to a reachable state with more than one
outgoing urgent transition, then the composition is not possible.

The latter restriction follows from the limitation we gave in Definition 3.1.
We plan to extend our definition to manage multiple outgoing urgent transi-
tions. Most of the future work will concern the definition of a precise behavior
in that case.

It is easy to see that the transformation defined in the previous section is
not a congruence with respect to parallel composition. In other words if we
have two timed automata, 7, and 72, with urgent transition the automaton
T} || T2, when defined, is not equivalent, in general, to 77 || T4 (the standard
parallel composition of the quiet version of them).

This fact makes the transformation not feasible for modular specifications,
i.e. it must be applied to the whole system (the parallel composition of all
components).

Fig. 4. Automaton 7!

Consider the automaton 7' of Figure 4, the automaton 7} of Figure 1
and the parallel composition 7! || T''. The action a, being a synchronization
action, can be performed only when the value of the clock x is greater than
2. Thus b can be performed when the value of z is in (0,2]. Using the quiet
version of T'! (Figure 3) in the parallel composition leads to a wrong behavior:
T' || T!' cannot perform the action a.

5.1 An example

In this last section we show a simple example. In Figure 5 is given the specifi-
cation of a scheduler. The scheduler assigns resources to two processes, P1 and
P2, alternatively. To each process the resources are assigned for 2 time units.
If, during the elaboration of a process, an interruption occurs, it must be han-
dled immediately. This is specified by considering the interruption handling a

16

BARBUTI AND TESEI

urgent action. It is important to note that, because of urgent transitions, the
scheduler behaves in the correct way independently from the environment in
which will be introduced. The interruption handling will preempt all the non-
urgent transitions of the environment thus preserving the intended behavior
of the scheduler.

x =2, switch, {x}

x =2, switch, {x}

X <2, X <2,
done, done,

{ {

true,
int,

{}

Fig. 5. A simple scheduler

6 Related works

The notion of urgency for timed formalisms has been studied in the past.

In [12] the urgency of actions has been investigated in the process algebra
field with the concept of discrete time.

A closer approach to ours can be found in [13,14,15]. There the states of a
timed automaton are associated with time progress conditions (TPC). TPC
are state conditions which specify that the time can progress at a state by ¢
only if all the intermediate times ¢', 0 < §' < ¢, satisfy it.

T PC are computed from deadlines. Deadlines are clock constraints associ-
ated to transitions in addition to the usual constraints (which, in this setting,
are called guards). The defined class of timed automata is called Timed Au-
tomata with Deadlines (T AD).

Given a state ¢, its T PC is intuitively computed as follows. Consider the
set I = {i | t; is a transition outgoing from ¢} of indexes of transitions from
q. The TPC of g, ¢4, is obtained as the negation of the disjunction of the
deadlines, d;, of all the transitions from ¢, ¢, = =/, d;. In a state of a run,
(g,v), the time can progress by ¢, (¢, v) i>(q, v+96),it VY <dv+0 ¢

Given a transition in a TAD, with guard v and deadline d, we can found
in [14] the following remark.

“The relative position of d with respect to § determines the urgency of the
action. For a given 6, the corresponding d may take two extreme values: first,
d = 0, meaning that the action is eager and, second, d = false, meaning that

17

BARBUTI AND TESEI

the action is lazy. A particularly interesting case is the one of a delayable
action where d is the falling edge of a right-closed guard § (cannot be disabled
without enforcing its execution).

The condition d = § guarantees that if time cannot progress at some state,
then at least one action is enabled from this state. Restriction to right-open
TPC guarantees that deadlines can be reached by continuous time trajectories
and permits to avoid deadlock situations in the case of eager transitions. For
instance, consider the case where d = 6 = x© > 2, implying the TPC = < 2,
which s not right-open. Then, if x is initially 2, time cannot progress by any
delay 6, according to above definition. The guard 1) is not satisfied either,
thus, the system is deadlocked.”

This limitation is very intuitive: if the eager transition has a left-open
guard, the time at which it can be fired is undefined. Using our concept of
urgent transition we avoid this problem because the transition can be fired in
the interval [0, £). On the other hand to fire “as soon as possible” a transition
with a left-closed guard, say 2 < z, we have only to change it in 2 = z.

Example 6.1 Let us use our notion of urgency to model a producer-consumer
system that is considered in [15]. The partners are supposed to communicate
with a zero-length buffer. Figure 6(a) and 6(b) show the producer and the
consumer respectively.

The producer in state 1 is producing a new item. This process requires a
time that is between [, and u, time units. When in state 3, the producer can
communicate with a handshake in the time interval [I;, u;] to send an item.
Conversely the consumer in state 2 can communicate with a handshake in
the time interval [I, u.] to receive an item. When in state 4 the consumer is
consuming the item needing a time between [, and u. time units. Note that
actions produce and consume represent the end of the correspondent processes.
Also note that handshake is a urgent action for both the components. The
parallel composition is shown in Figure 7. In [15] authors use both different
notions of compositions of guards and deadlines to obtain different behaviors
of the whole system. Here we study how these behaviors can be simulated in
our model varying the constraint ¢ for the handshake action in Figure 7 and
the urgency parameter /.

The first behavior to consider is the usual one coming from standard par-
allel composition. The constraint 1y is the conjunction of the components
handshake-transition constraints. The parameter £ in this case is max((u;, —
I,), (u,—Iz)), i.e. the length of the largest interval expressed in the components
behavior. The system can execute the handshake only if both clock x and y are
in the intervals expressed in the specification of components. This behavior,
as observed in [15], could be too restrictive since it may cause deadlock.

To relax this condition we can set the constraint v of Figure 7 to z >
I, Ny > l.. Now the upper bounds are not considered and, starting from the
instant in which the constraint becomes satisfied, the action has to be executed

18

BARBUTI AND TESEI

¢

<x<u <

Ip< . pSxSuy leSY<u, le<Y<u,
produce handshake consume handshake
(x} (x) {y} {y}
& ey
(a) (b)

Fig. 6. A Producer-Consumer system: the components

<x=<u

lp p lp < X < Llp
produce produce
consume
{x} {x}

(3.2) Jg

= (1,4)

y, handshake, {x,y}

Fig. 7. A Producer-Consumer system: parallel composition

within £ time units. We set £ to min((u,, — 1)), (u;, — I.)). This ensures that at
most one of the upper bounds can be violated. This behavior is similar to the
one specified in [15] by a deadline z = u;, Ay > u, V y = u, Az > u;,. There
the handshake can be postponed as long as one of the intervals is not violated,
but when the end of this interval is reached the action becomes urgent and
must be executed. Clearly, since in the current approach we can specify only
one outgoing action for each state, our model is a slight more restrictive. As a
matter of fact, if the shortest interval is the one associated to clock y and the
clock values are such that the first constraint satisfied is y > [/, then, when
the constraint ¢ becomes true (i.e. x > [becomes true), the action must be
executed before the upper bound associated to y (actually it should wait until
T = u,) because we definitely chose £ = (u; — ;). A similar remark can be
done considering the choice of £ = (u;, —[).

There is another synchronization scheme for this example that authors in
[15] call “best-effort”, that is “either no upper bound is violated if possible,
or the transition is executed as soon as possible”. To express a similar scheme
we use the constraint ¢ = x > [, Ay > [as above and a constant £ as small
as we want to precisely approximate the “as soon as possible” behavior. In

19

BARBUTI AND TESEI

this example this is precisely definite since the constraint ¢ =z > [, Ay > [
uses the operator >. Indeed, the action should be executed when x = l;) or
y = I/ (depending on which one becomes true after). In this version of the
work we always have to consider the approximation, even for precisely definite
behaviors (i.e. those with operators “>” and “="). However, note that by
using the approximation we can manage also the constraints in which is used
the operator > in place of >.

7 Conclusion

In this paper we introduce a notion of urgency for timed automata. We com-
pare it with other approaches to urgency, in particular the one of [13,14,15].

In this version of the paper we introduce the limitation that no more than
one urgent transition can exit from a state. We plan to remove this limitation
in future works.

References

[1] Aceto, L., Bouyer, P., Burguefio, A. and Guldstrand Larsen, K. The Power
of Reachability Testing for Timed Automata. Proc. Foundations Software
Technology and Theoretical Computer Science, Springer LNCS 1530, 245-256,
1998.

[2] Aceto, L., Burgueno, A. and Guldstrand Larsen, K. Model Checking via
Reachability Testing for Timed Automata. Proc. TACAS, Springer LNCS 1384,
263-280, 1998.

[3] Alur, R., Courcoubetis, C. and Dill, D.L.. Model-Checking in Dense Real-time.
Information and Computation, 104, 2-34, 1993.

[4] Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D.L. and Wong-Toi, H.
Minimization of Timed Transition Systems. Proc. CONCUR 1992, Springer
LNCS 630, 340-354, 1992

[5] Alur, R., Courcoubetis, C. and Henzinger, T.A. The Observational Power of
Clocks. Proc. CONCUR 1994, Springer LNCS 836, 162-177, 1994.

[6] Alur, R. and Dill, D.L. Automata for Modelin Real-time Systems. Proc.
ICALP’90, Springer LNCS 443, 322-335, 1990.

[7] Alur, R. and Dill, D.L. A Theory of Timed Automata. Theoretical Computer
Science, 126, 183-235, 1994.

[8] Alur, R., Fix, L. and Henzinger, T.A. Event-Clock Automata: A Determinizable
Class of Timed Automata. Theoretical Computer Science, 211, 253-273 (1999).

[9] Alur, R. and Henzinger, T.A. Back to the Future: Towards a Theory of Timed
Regular Languages. Proc. FOCS 1992, 177-186, 1992.

20

BARBUTI AND TESEI

[10] Alur, R. and Henzinger, T.A. A Really Temporal Logic. Journal of ACM, 41,
181-204, (1994).

[11] Barbuti, R., De Francesco, N. and Tesei,L. Timed Automata with non-
Instantaneous Actions To appear in Fundamenta Informaticae.

[12] Bolognesi, T. and Lucidi, F. Timed Process Algebras with Urgent Interactions
and a Unique Powerful Binary Operator. REX Workshop 1991, Springer LNCS
600, 124-148, 1992.

[13] Bornot, S. and Sifakis, J. Relating Time Progress and Deadlines in Hybrid
Systems. HART 1997, Springer LNCS 1201, 286-300, 1997.

[14] Bornot, S., Sifakis, J. and Tripakis, S. Modeling Urgency in Timed Systems.
COMPOS 1997, Springer LNCS 1536, 103-129, 1998.

[15] Bornot, S. and Sifakis, J. Modeling Urgency in Timed Systems. To appear on
Information and Computation.

[16] Choffrut ,C. and Goldwurm, M. Timed Automata with periodic Clock
Constraint. Int. Report 225-98, 1998.

[17] Demichelis,F. and Zielonka, W. Controlled Timed Automata Proc. CONCUR
98, Springer LNCS 1566, 455-469, 1998.

[18] Gupta, V., Henzinger, T.A. and Jagadeesan, R. Robust Timed Automata.
Proc. HART 97, Springer LNCS 1201, 331-345, 1997.

[19] Henzinger, T.A. and Kopke, P.W. Verification Methods for the Divergent Runs
of Clock Systems. Proc. Formal Techniques in Real-Time and Fault-Tolerant
Systems, Springer LNCS 863, 351-372, 1994.

[20] Henzinger, T.A., Nicollin, X., Sifakis, J. and Yovine, S. Symbolic Model
Checking for Real-Time Systems. Information and Computation, 111, 193-244,
1994.

[21] Lanotte, R., Maggiolo-Schettini, A. and Peron, A. Timed Cooperating
Automata Fundamenta Informaticae, 43, 96-107, (2000).

[22] Yovine, S. Model Checking Timed Automata. Lectures on Embedded Systems,
Springer LNCS 1494, 114-152, 1996.

21

