Abstract Interpretation and Model Checking for
Checking Secure Information Flow in
Concurrent Systems

Nicoletta De Francesco
Dipartimento di Ingegneria della Informazione, Universita di Pisa, Italy
e-mail: n.defrancesco@iet.unipi.it

Antonella Santone
RCOST - Research Centre on Software Technology, University of Sannio,
Benevento, Italy
e-mail: santone@unisannio.it

Luca Tesei
Dipartimento di Informatica, Universita di Pisa - Italy
e-mail: tesei@di.unipi.it

Abstract. We propose a method to check secure information flow in
concurrent programs with synchronization. The method is based on the
combination of abstract interpretation and model checking: by abstract
interpretation we build a finite representation (transition system) of the
behavior of the program. Then we model check the the abstract transition
system with respect to the security properties, expressed by a set of
temporal logic formulae. The approach allows certifying more programs
than previous methods do. The main point is that we are able to check
more carefully the scope of indirect information flows.

1 Introduction and Overview

The secure information flow property [11] requires that information at a given
security level does not flow to lower levels. A program in which every variable
is assigned a security level has secure information flow if, when the program
terminates, the value of each variable does not depend on the initial value of the
variables with higher security levels. Let us suppose to have two security levels,
h and [, such that h is higher than /. Suppose that variable x has security level
and variable y has security level h. Examples of violation of secure information
flow are:

x:=y,

if y=0 then x:=1 else x:=0

if y=0 then =x:=1 else skip.
In the first case, there is a direct information flow from level h to level I, while,
in the second and third cases there is an indirect information flow: in both cases,
checking the final value of x reveals information on the value of the higher secu-
rity variable y. While direct information flow occurs with assignments, indirect

information flows are generated by branching commands, which in high level lan-
guages are if and while commands. Other violations of secure information flow
may occur when the behavior of the program depends on the high information
flow [24]. Consider the program: while y>0 do skip which terminates only if
y < 0: observing its termination reveals information on the value of y. Many
methods have been defined to cope with secure information flow in sequential
programs. Some of them are based on a static analysis [1, 3,12, 23], while others
are semantics based [5,16-18].

Concurrent programs are considered in [19,21,22], which present type systems
for certifying these programs. When considering parallel programs composed of
a set of synchronously communicating processes, handling indirect flows is more
difficult, due to the possible blocking of processes on synchronization points. In
fact in sequential languages, the scope of the indirect flow caused by a branching
command can be statically derived, since it coincides with the scope of the
command itself. When the command has been completely executed, the indirect
flow terminates, since the successive command is however executed, whatever
branch has been chosen before. For example the program (with y,w high variables
and x low variable):

if y=0 then w:=5 else skip; x:=4;
is correct, since the assignment to x occurs outside the high indirect flow. When
considering a concurrent language with synchronization, the calculation of the
scope of indirect flows is complicated by the fact that some synchronization may
not occur, and thus a process can be blocked or delayed, altering the control
flow of the program. Consider for example the following process, where x is the
only low variable and SYNC is a synchronization point:

if y=0 then SYNC else skip; x:=4; || ... (a)
There is a high indirect flow from the value of y to the final value of x: in fact, if
y # 0, then the final value of x is 4, while, if y = 0, the final value of x may be
equal to the initial value, if the synchronization cannot occur since no parallel
process is willing to communicate. Thus the indirect flow generated by the if
command extends till outside the command itself. Another problem to cope with
is that, due to synchronizations, an command ¢ may belong to an indirect flow
caused by a branching command belonging to another process, as occurs for the
assignment x:=4; in the following example:

if y=0 then SYNC else ... || ... SYNC; x:=4;

A solution to ensure secure information flow is to impose that no synchronization
can occur within any branching command with high guard [19], to be sure that
the command always terminates, and thus the scope of the indirect flow coincides
with that of the branching command. But this constraint is in many cases too
restrictive: for example, if the sequential process in (a) is put in parallel with
a process always willing to synchronize, then the final value of x is not affected
by the high indirect flow: in this case the indirect flow terminates with the
conditional command, like as in a sequential language. The point is that the
scope of indirect flows depends on the dynamic behavior of the program.

In this paper we propose a method to check secure flow in concurrent programs
based on the combination of abstract interpretation and model checking [20]: by
abstract interpretation we build a finite representation (transition system) of the
behavior of the program, representing all possible executions. Then we model
check the abstract transition system against a set of temporal logic formulae ex-
pressing the security properties. In particular, we inspect the behavior of indirect
flows by checking if and when indirect flows terminate.

2 The security properties

We consider concurrent programs consisting of a number of independently ex-
ecuting sequential processes with private memory. Processes may communicate
each other by sending/receiving messages on a set of one-way channels. Each
channel is private to two processes. The communications are synchronous: pro-
cesses synchronize by explicit sending and receiving primitives, which are defined
in the CSP [13] style, as follows:

ale: to send the expression e over the channel a;

a?z: to receive a message from the channel a and save it into the variable z.
Let us now define the syntax and semantics of our concurrent language with
synchronization. The language is a usual high level language.

We assume a set of constant numbers, ranged over by k, a countable set Var
of variables ranged over by z,y,..., and a countable set of channel names,
ranged over by a, b,.... We assume that all simple commands (assignments,
sending/receiving of messages, skip command) are labeled by a set £ C IV of
labels, ranged over by .

exp u=k|z|exp op exp
simple_com = skip | x :=exp | a’z | alexp
com = i : simple.ccom | if exp then com else com

while exp do com | com;com | {com}
com | proc||proc

proc

where op stands for the usual arithmetic and logic operations. We denote by P,
ranged over by p, the set of processes generated by proc.

The concrete semantics of the language is given by means of an operational
semantics, defining a labeled transition system. V is the domain of values, M =
Var — V is the domain of memories, ranged over by m. The states are a subset
of @ = P x M: each state is a pair (p,m) of a process and a memory. p can
be also A and in that case (A,m) represents a state in which no action can be
executed. The actions are the domain A = LU (£ x £) U {7}, ranged over by a:
each action is either i) a label of a simple command different from a sending and
receiving command, or ii) an ordered pair of labels labeling two matching sending
and receiving command (defined on the same channel), or iii) the evaluation of
a condition (action 7).

Assign (e,m) —expr k
(i:2:=e,m) =\ mlk/z])

Ifirue (e, m) —>eapr true
(if e then c; else ca,m) — (c1,m)
Iffalse (e,m) —rezpr false
(if e then c; else ca,m) — {c2, m)
Skip
(i : skip,m) —— (A, m)
While;, e (e, m) —rezpr true
(while e do ¢ ,m) —> (c;while e do c ,m)
Whileqse (e,m) —>ezpr false
(while e do c,m) — (A, m)
Seq, (c1,m) "\ m') Seq, {(c1,m)—"{(ci,m’)
{c1;c2,m) = (ca,m') {c1;¢2,m) = (c}; c2,m')
Com (e,m) —>eapr k
(all - llr = a?eall -+ [t : ales ;] -+ [len, m) =5
(eall---lleill -~ llell - - - llen, mlk/2])
Par (ci,m) —= {(c;,m) citr:iale, ¢; £r:a’z
(el leill -+ llen, m) —
(eall -~ lleill - - - llen, m')

Table 1. Concrete Semantics Rules

The semantics is given by the rules in Table 1, which define a relation — C
Ox Ax Q. If (n,a,q2) € — we write qq -5 ¢». The relation —eapr C
(exp x Q) x V is used to compute the value of the expressions. With m[k/z] we
denote the memory m' which agrees with m on all variables, except for z, for
which m/(z) = k. In the following, if § € A* and 6 = a1, ..., an, n > 1, we write

p LN p' to mean p —% - 22 p'. For the empty sequence A of actions, we have

that p A>p, for every p € P. Moreover, (p, m) -/ means that no p', m', a exist
such that (p,m) = (p',m').

For the sake of simplicity, in this paper procedures and other language features
are not included. Moreover we assume that each sequential process is deter-
ministic. This means that in each state of the concrete semantics at most one
transition involving a sequential process is enabled.

We assume, for simplicity, to have a set S = {I, h} of two security levels, ordered
by [T h. Given a process p, the set of variables occurring in p is partitioned into
low level an high level ones. More precisely, a program P is a triple (p, L, H)
where p is a process, and L and H are the high and low variables of p, respectively
(HNL=0). Given ¢,7 € S, o L 7 denotes the least upper bound of o and 7.

We now define the secure information flow property, which describes the fact
that information with high security level is kept secret. This notion is elsewhere

called non-interference [23]. First, we need the following definition, which states
when two memories agree on all low variables.

Definition 1. Let L C Var and my,ms € M.
my =g, ma if and only if Vo € L, my(x) = ma(x)

Definition 2 (secure information flow). Let P = (p, L, H) be a program. P
is secure if and only if Ymy, my € M such that my = mo

if (p,m1) 2 (p1,m}) = and (p,ma) 5 (py,mb) = then m} =1, mb,
where 6,7y € A*.

A secure program has the property that, if it terminates starting with two mem-
ories which agree on the value of the low variables, then the resulting memories
also agree on the value of the low variables, regardless the initial value of the
high variables. This means that the initial value of the high variables does not
influence the final value of the low variables in all executions. Note that this
definition considers only terminating executions: even if a program is secure,
its termination may be influenced by the high information flow. For example,
the programs (with y high variable) if y=1 then (while true do skip) and
while y=1 do skip have an insecure information flow: observing the termina-
tion of the program reveals that y was not 1. This information flow is called
covert flow [24]. The following property expresses this fact.

Definition 3 (secure termination).
A program P = (p,L, H) has secure termination if and only if Ymi,ms € M
such that m; = msa:

(pma) = (pr,miy) -/~ implies (p,ma) > (pa,mb) 4~ where 8,y € A*.

3 Abstract interpretation

Abstract interpretation [9,14] is a method for analyzing programs in order to
collect approximate information about their run-time behavior. It is based on a
non-standard semantics, that is a semantic definition in which simpler (abstract)
domains replace the standard (concrete) ones, and the operations are interpreted
on the new domains. The purpose of abstract interpretation is to correctly ap-
proximate the concrete semantics of all executions in a finite way, keeping only
the information concerned with the analysis of a given property. Here we consider
abstract interpretation of operational semantics. The abstract semantics of a pro-
gram is a finite abstraction of the concrete one: the labels of the transitions are
the same, but each concrete state is approximated by its command part, i.e. both
values and memories are forgotten, since we are interested in the control flow of
the program. The labels of the transitions are the same as in the concrete seman-
tics, since we need to know what commands may be executed and their order,

and the beginning and termination of the branching commands. Note that, when
dealing with conditional or iterative commands, the abstract transition system
has multiple execution paths due to the loss of precision of abstract data. The
abstract domains are £8 = L, A7 =AM I ={}, Q" =Pix Mi=Px {}=7P
Every constant value £ € V and every memory is abstracted to “-”, and each
state (p,m) is abstracted in p. The abstract semantics is shown in Table 2: its
rules are obtained by simplifying the corresponding rules of the concrete seman-
tics, used on the abstract domains. (- op - = - and -[k/z] = -). The transition
relation of the abstract semantics is denoted by —1C P x Ax P. Note that, for
if commands both rules If;,,. and If f4;5. apply, since true and false are both
abstracted to “.”. The same occurs for while commands. Given a program P,
we denote by A(P) the abstract transition system defined by the abstract rules.

The following theorem states that the abstract semantics includes all possible
execution paths of a program.

Theorem 1. Let P = (p,L,H) be a program and mog € M. For each path

o

(p,mo) =% (p1,m1) —= ... there exists a path p — p, &h ... in A(p).

Note that A(p) is finite for each program P = (p, L, H). Since loop nesting levels
are finite and in a sequence of commands only the leftmost command is acted
on, thus the number of different commands which may occur in the abstract
states is finite.

Assign Skip
— ——
itrxi=e— A i:skip— X
Iftrue Iffalse
if e then c; else co L>n c1 if e then c; else co ;>n [
While;, e Whileqse
while e do ¢ — c;while e do ¢ while e do ¢ - \
Seq; Y Seq, < ayf ch
—
C1;C2 = e C1;C2 = ;e
Com
it ¥
cill - llr: aaeill - It - ales el - llen —
all--llell - llejll - - llen
Par ci = ¢ ci#r:ale, ci#r:a’lr
j
all--feill - llea — ,
cll---lleill - -~ llen

Table 2. Abstract Semantics Rules

4 Model checking the abstract semantics

In the model checking framework, systems are modeled as transition systems and
requirements are expressed as formulae in temporal logic. A model checker then
accepts two inputs, a transition system and a temporal formula, and returns
“true” if the system satisfies the formula and “false” otherwise. In this work
we use the selective mu-calculus logic [4], which is a variant of mu-calculus [15]
and differs from it in the definition of the modal operators. The syntax of the
selective mu-calculus is the following, where K, R C A, while Z ranges over a
set of variables:

pu=tt|[££| Z| oV |dNG| o= 0| [Klro | (K)rO|vZ.¢|nZ.¢

The satisfaction of a formula ¢ by a state s of a transition system, written s = ¢,
is defined in the usual way for V, A and = operators. [K|g ¢ and (K) g ¢ are the
selective modal operators and their meaning is the following:

[K]g ¢ is satisfied by a state which, for every performance of a sequence of
actions not belonging to R U K, followed by an action in K, evolves in a
state obeying ¢.

(K)g ¢ is satisfied by a state which can evolve to a state obeying ¢ by
performing a sequence of actions not belonging to R U K followed by an
action in K.

As in standard mu-calculus, a fixed point formula has the form uZ.¢ (vZ.¢) uZ.¢
is the least fix-point of the recursive equation Z = ¢, while vZ.¢ is the greatest
one. A transition system T satisfies a formula ¢, written T' |= ¢, if and only if
s |= ¢, where s is the initial state of T'. A program P satisfies ¢ if A(P) |= ¢.

In the sequel we use the following formula which expresses the property that an
action « eventually occurs.

eventually(a) = pZ = (=) tt A[—a] Z

We need some notations and definitions. The control flow graph, G(P), of the
program represents the dependencies among the simple commands of the pro-
gram: G(P) is the directed graph having as nodes the labels of the commands,
and where the edges are defined as follows: G(P) contains the edge (4, j) if and
only if a) 7 and j belong to the same sequential process and the command labeled
by j can be immediately executed after the command labeled by i; or b) ¢ and
Jj are two matching sending/receiving or receiving/sending commands.

The following function level : exp — S statically computes the security level of
an expression occurring in P.
level (k) =1

lifezel
level(z) T\ hifzeH

level(ey op es) = level(ey) U level(ez)

To handle indirect flows, we need to represent in the abstract transition system
where an implicit flow begins and where it ends. To clearly emphasize these
points, we suppose that each if and each while command is preceded and
followed by a skip command. Given a program P, we define the following actions
sets which are subsets of A. Let 0 € S.

L_ASSIGNY (o) = {z | occurs in P, z € L, level(e) = a}
L.COMMPF (o) = { (1,7) and occur in P, x € L, level(e) = 0}

The set L_ASSIGNY (o) contains the labels of all assignments of an expression
with level o to a low variable, while L.COM M?¥ (o) contains the actions corre-
sponding to all synchronizations in which the value of an expression with level
o is stored into a low variable.

We use also the set

L_ASSIGNY = L_ASSIGN? (1) U L_ASSIGN¥ (h)
of all assignments to a low variable and
L.COMMY =L.cOMMY (1)U L.COMM? (h)

of all communications involving a low variable.

To discover illegal direct flows we check the following selective mu-calculus for-
mula:

direct = N\oep_assiane (nyur_comme () (o £

The formula direct means that no assignment of a high expression to a low
variable can occur. Now let us consider indirect flows. We use the following sets
of actions.

1P (o) = { (i,4)

‘i : skip; if e then c¢; else ¢y; ¢ skip‘ occurs in P, }

level(e) = o

WHILEY (o) = {(i’j)

‘i : skip;whileedo ¢ j: skip‘ occurs in P,
level(e) = o
For each if (while) command with a condition with level o, IF'¥' (o) (W HILEY (o))

contains the pair of the labels of the skip commands immediately preceding and
following the if (while) command.

DEPP (i) ={j | j € L_LASSIGNY and there is a path from i to j in G(P) }

U (4,7) | (4,7) € LLCOMMY and there is a path
from 4 to j and from i to r in G(P)

Given a label i, DEPY (i) contains the labels of all assignments or communica-
tion actions involving a low variable that follow the command labeled by i in
every execution. If 7 is the action immediately preceding a conditional or itera-
tive command, the execution of the actions in DEPF (i) could be influenced by
the indirect information flow beginning at i. An action k in DEPF (i) does not
belong to the indirect flow beginning at ¢ only if a) it does never occur before
the termination of the conditional command; and b) if it occurs, the conditional
command must always terminate in all executions. An action not in DEPY (i),
instead, is performed asynchronously with respect to the conditional command
and thus is not influenced by the indirect flow. The following formula expresses
this fact.

indirectif =
Njyerreny Nacpppe vZ-lio ([algy ££ A ((a)e v8 = eventually(j)) A Z)

The meaning of the formula indirect_i f that, whenever an if command with an
high guard begins, ([i]p with (i,j) € IFF(h)), a) no assignment o € DEPF (i)
to a low variable depending on that if command is performed until the end
of the if is reached ([a]; ££); and b) if such an action is performed ({(a)p tt),
then the command must terminate in whatever execution (eventually(j)). Note
that for sequential programs condition a) would be sufficient to guarantee that
« is not influenced by the indirect flow. Instead, in parallel programs, the scope
of the indirect flow caused by a conditional command propagates beyond the
syntactic scope of the command, unless the command itself always terminates.
Analogously, the indirect flow caused by while commands is checked by the
following formula:

indirect_while = /\(i,j)EWHILEP(h) /\aEDE'PP(i) vZ. [Z]@ ([a]{J} ff A Z)

The meaning of the formula indirect_while is: whenever a while command with
high guard begins ([i]g), no assignment to a low variable depending on that while
command can be performed, until the while command terminates ([o](;} ££).

Let us now consider covert flows that arise from nontermination. A covert flow
of this kind can occur when the termination/nontermination of the program
depends on some high information flow generated by some while command.
This occurs when a while command with an high condition is executed: the
termination/nontermination of the program depends on an high value. Another
case is when a while command (with a guard of whatever level) belongs to the
scope of the information flow caused of an if command with high guard. In
this case the the while command (that can cause nontermination) may be or
may be not executed, depending on the high guard of the if command. The two
situations are checked by the following two formulae.

no-while = /\(i,j)EWHILEP(h) [1]o ££

no-while_in_i f = /\(m)eIFP(h) /\(k,t)eWHILEP(l)UWHILEP(h),IcEDEPP(i) ¥

where

¢ =vZ.[ilo ([Klyjy ££ A ((k)g tt = eventually(j)) A Z)

no_while guarantees that the guards of all while loops have low level, while
no_while_in_if says that in the scope of all if commands with high guard no
while commands is allowed.

4.1 Examples

Cousider P, = (p1,{z},{y,w}) and P> = (p2,{z},{y,w}) where p; and p, are
defined as follows:

p1 = (1:skip;if y =0 then 2: a’w else 3 : skip; 4: skip; 5:z:=4) || 6: b!2
p2 = (1:skip;if y =0 then 2 : a’w else 3 : skip; 4: skip; 5:z:=4) || 6: al2

The program P; is not secure: checking the final value of the low variable x
reveals information about the high variable y. The abstract transition system
of p; (shown in Figure 1) does not satisfy the “indirect_if” property, which is
expressed by the following formula:

I/Z.([1]p (Bliay fEA ((B)p tt = eventually(4))) A Z)

In A(p;) the end of the if command (labeled with 4) occurs before the assign-
ment to the low level variable z (labeled with 5 and belonging to DEPF1(1)),
but it does not occur in each execution. We instead accept as correct the second
program, since the conditional command always terminates. It holds that A(ps)
(shown in Figure 1) satisfies the security formulae.

Consider now P; = (ps,{},{y}), where p3 is defined as follows:
1: skip; if y = 1 then {2: skip; while true do 3 : skip;4 : skip}
else 5 :skip; 6 : skip

This program has a covert flow: observing the termination of the program reveals
that y was not 1. The abstract transition system of ps, shown in Figure 1, does
not satisfies the “no_while_in_if ” property, which is expressed by the following
formula:

¢ =vZ. 1) ([2e) ££ A ((2)g tt = eventually(6)) A Z)

10

Fig. 1. The abstract transition systems of p1, p2 and ps

4.2 Correctness

We now sketch the proof of the correctness of our method. The following lemma
ensures that, if the abstract transition system of a program satisfies the property
“direct”, then no assignment to a low variable of an high expression is performed.

Lemma 1. Let P = (p,L,H) be a program. Suppose that A(p) = direct. For
each path: p BLIN p', € A*, it holds that:
Va occurring in 8, a & (L_LASSIGNY (h) U L.COM MY (h)).

The following lemma ensures that, if the abstract transition system of a program
satisfies the properties “indirect_i f” and “indirect_while”, then inside the scope
of each indirect high flow no assignment to a low variable is performed.

Lemma 2. Let P = (p,L, H) be a program. Suppose that A(p) = indirectif A

B
indirect_while. For each path: p oing p', such that (i,j) € A,0,7 € A* and
(i,§) € IFF(h) or (i,j) € WHILET(h) it holds that:

for each o occurring in v, a« € DEPT (7).
The next lemma states that, if the abstract transition system of a program
satisfies the property direct A indirectif A indirect-while, then two execu-

tions, starting from two memories which agree on the value of the low variables,
produce the same sequence of assignments to each low variable.

Lemma 3. Let P = (p,L,H) be a program. Suppose that A(p) E direct A
indirectaf A indirect_while. Consider my,ms € M such that my =5 ms.
V& € L and for all two paths:

(pym1) 2 (g,my) 4= and (p,ms) — (g, mb) 4~

it holds that: 6 l.= v |z, where, given § € A*, 0 |, is the projection of § on
the actions « such that either « =i and i : © := e occurs in P or « = 1,75 and
i:a?x occurs in P.

11

The following theorems hold:
Theorem 2. Let P = (p, L, H) be a program.
A(p) | direct A indirectif A indirect.while = P secure.

Proof Sketch. Consider my,ms € M such that:

5 _
my =r ma, <p7m1> — <Q7mll> 7L> and<p7 mZ) L> (qam’2> 7L> .
We have to prove that m} = m,. By Theorem 1, A(p) contains the paths

i
p LN q and p iﬁ q. By Lemma 3, for each x € L it is § |,= 7 . The proof
then follows by Lemma 1.

Theorem 3. Let P = (p, L, H) be a program.
A(p) |E no_while N no_whileiiniif = P has secure termination.

Proof Sketch. From Theorem 1 and the above lemmas.

5 Implementation

To evaluate the feasibility of the proposed method, we implemented it using
the LOTOS Reduction tool (LR tool for short) developed by the authors [10].
The LR tool integrates the Concurrency Workbench of North Carolina (CWB-
NC) [7,8] with the selective mu-calculus logic. The Concurrency Workbench
of North Carolina (CWB-NC) is a verification environment including several
different specification languages. The specifications can be checked for different
equivalences, and different logics can be used to express properties. In the CWB-
NC the verification of temporal logic formulae is based on model checking.

The LR tool allows verifying selective mu-calculus formulae on specifications
defined using the Basic LOTOS specification language [6]. Basic LOTOS is a
process algebra by means of which it is possible to describe the behavior of
concurrent processes, concentrating on communications between processes. It
includes commands for synchronous communication and parallelism. CWB-NC
performs LOTOS programs by building a transition system representing the
behavior of the program that is all possible execution paths.

The implementation of our methodology is as follows:

1. The program P to be checked against security is translated into a LOTOS
program LOTOS(P) representing only the skeleton of the program: values
are substituted by security levels and only branch points and communication
points are considered. The translation is straightforward. It ensures that the
semantics of LOTOS(P), as defined by the CWB-NC, is isomorphic to the
abstract semantics of P as defined in Section 3.

12

2. The sets ASSIGN,DEP,IF,... defined in Section 4 are built by statically
examining the program P.

3. The security mu-calculus formulae defined in Section 4 are specialized for
LOTOS(P) with the actual action names.

4. Finally, the formulae are checked on LOTOS(P).

For example, consider the program P, in Section 4.1, LOTOS(P,) is the follow-
ing:

process P2:= Q0 |[(2_6)]1] Q1
where
QO := 1; (tau; 2_6; exit [] tau; 3; exit) >> 4; 5; stop)
Q1 := 2_6; stop

endproc

The actions of LOT'OS(P2) coincides with the actions of P»: there is an action for
each label, if the label does not correspond to any communication primitive, and
an action for each pair of labels corresponding to two matching sending/receiving
events. They are composed by means of the sequentialization operator “;” and
the choice operator “[1”. The program specifies a process P2 which is the par-
allel composition of two processes: QO and Q1. The process Q0 composes, with
the sequentialization operator “;”, the simple command labeled by 1, the if
command and the simple commands labeled by 4 and 5. The the translation of

the if command is
(tau; 2_6; exit [] tau; 3; exit)

which means that, after a nondeterministic internal choice (tau action) obtained
by using the choice operator “[1”, the process can perform the actions 2.6, or
the action 3. The action 2_6 is a communication between Q0 and Q1. The process
exit represents successful termination; it is used by the enabling (>>) operator:
T1 >> T2 represents the sequentialization between the two processes T1 and T2.
The process stop cannot perform any move. The process Q1 can perform only
the communication action 2_6 and then becomes the process stop.

The “indirect_i f” property is expressed by the following selective mu-formula:

vZ.([Uo ([5lray ££ A ((5)o tt = eventually(4)) A Z)

Figure 2 shows the user interface of the LR tool. We write the LOTOS speci-
fication of P2 in the LOTOS Program box and the selective mu-calculus formula
in the Selective mu-calculus box. The CWB-NC environment can be called
by clicking the CWB-NC button. The translation of the formula to mu-calculus,
which is the logic used in CWB-NC, is automatically performed by clicking the
SMC->MC button).

13

win2

13

I— Form = max Z. ([11{}([5]1{4}££f /\ (<5>{}

Prop Form = max Z. (max V1 = [1]((ma

process P2[1= Q0 |[(2_6)]1| Q1
endproc

process QO[1= 1; (tau; 2_6; exit [] tau;
3; exit) >> 4; 5; stop)

Fig. 2. The user interface of LR tool

Note that the translation of the formulae is in the format of the CWB-NC tool:
a formula has the form prop id = ¢, and recursive formulae are given with the
least (min) and greatest (max) fix-point operators.

The CWB-NC tool builds the transition system for P2 which is isomorphic to
the abstract transition system shown in Figure 1; this transition system can be
used to check the property. It holds that P2 satisfies ¢ (i.e., the “indirect_if”

property).

6 Related work and Discussion

In [19] a comparative overview is given of the existing works on security in multi-
threaded programs. The same work concentrates on the problems arising when
synchronization is of concern. It proposes a secure type system for multi-threaded
shared memory programs with synchronization. This type system certifies more
programs than the previous works [2]. The method is compositional. With our

14

approach we are able to certify more programs (for example the program P, of
Section 4.1), at the price of a greater complexity. In fact model checking suffers
of the state explosion problem, especially with parallel programs. The use of the
selective mu-calculus [4] helps in partially reducing this problem: in fact this
logic was defined to simplify the automaton to be model checked, where the
simplification is driven by the formula to be checked.

In [21] a type system is presented which resolves similar problems for a multi-
threaded language with shared memory.

The restriction to deterministic processes has been made to point out more
clearly the main argument of the work, i.e. checking indirect flows in concurrent
programs. Adding non determinism does not introduce new problems. As a future
work we intend to remove the restriction and adapt the model to handle local
and global nondeterminism.

An advantage of the abstract interpretation + model checking approach is flex-
ibility: once defined a suitable abstraction, several properties can be checked
using the corresponding formulae. As a future work, we are going to describe in
selective mu-calculus the other security properties defined in the literature.

References

1. M. Abadi, A. Banerjee, N. Heintze, J.G. Riecke. A Core Calculus of dependency.
Proceedings 26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages Conference, San Antonio, Texas, USA, 1999, pp. 147-160.

2. G. R. Andrews, R. P. Reitman. An axiomatic approach to information flow in
programs. ACM Transactions on programming languages and systems, 2(1), 1980,
pp. 56-76.

3. J. Banatre, C. Bryce, D. L. Métayer. Compile-time detection of information flow in
sequential programs. Proceedings European Symposium on Research in Computer
Security, LNCS 875, Springer Verlag, 1994, pp. 55-73.

4. R. Barbuti, N. De Francesco, A. Santone, G. Vaglini. Selective mu-calculus and
Formula-Based Equivalence of Transition Systems. Journal of Computer and Sys-
tem Sciences, 59(3), 1999. pp. 537-556.

5. R. Barbuti, C. Bernardeschi, N. De Francesco. Abstract Interpretation of Oper-
ational Semantics for Secure Information Flow. Information Processing Letters,
2002.

6. T. Bolognesi, E. Brinksma. Introduction to ISO Specification Language LOTOS.
Comp. Networks and ISDN Systems, 14, 1987. 25-59.

7. R. Cleaveland, S. Sims. The NCSU Concurrency Workbench. In Proceedings of
the Eighth International Conference on Computer-Aided Verification (CAV’96),
Lecture Notes in Computer Science 1102, 1996. 394-397.

8. The Concurrency Workbench of North Carolina home page.

URL http://www4.ncsu.edu/eos/users/r/rance/ WWW /ncsu-cw.html.

9. P. Cousot, R. Cousot. Abstract interpretation frameworks. Journal of Logic and
Computation, 2, 1992, pp. 511-547.

10. N. De Francesco, A. Santone. A Tool Supporting Efficient Model Checking of
Concurrent Specifications. Microprocessors and Microsystems, 25(9-10), 2002. pp.
401-407.

15

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. D. E. Denning, P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7), 1977, pp. 504-513.

N. Heintze, J.G. Riecke. The Slam Calculus: programming with Secrecy and In-
tegrity. Proceedings 25th ACM Principles of Programming Languages Conference,
San Diego, USA, 1998, pp. 365-377.

C.AR. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, NJ. 1985.

N. D. Jones, F. Nielson. Abstract interpretation: a semantic based tool for program
analysis. in S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (Eds.), Handbook of Logic
in Computer Science , Vol. 4, Oxford University Press, Oxford, 1995, 527-636.

D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27, 1983. pp. 333-354.

K.R.M. Leino, R. Joshi A semantic approach to secure information flow. Science
of Computer Programming, 37(1), 2000.

M. Mizuno, D. A. Schmidt. A security flow control algorithm and its denotational
semantics correctness proof. Formal Aspects of Computing 4, 1992, pp. 727-754.
A. Sabelfeld, D. Sands. A PER model of secure information flow in sequential
programs. Proceedings 8th European Symposium on Programming, ESOP’99,
LNCS 1576, Springer-Verlag, 1999, pp. 40-58.

A. Sabelfeld, D. Sands. The impact of synchronization on secure information flow
in concurrent programs. Proceedings Andrei Ershov 4th International Conference
on Perspective of System Informatics, Novosibirsk, LNCS, Springer-Verlag, July
2001.

D. A. Schmidt. Data-flow analysis is model checking of abstract interpretations.
Proc. 25th ACM Symp. Principles of Programming Languages, San Diego, 1998.
G. Smith. A New Type System for Secure Information Flow. Proc. 14th TEEE
Computer Security Foundations Workshop (CSFW’01), pp. 115-125, Cape Breton,
Nova Scotia, June 2001.

G. Smith, D. Volpano. Secure information flow in a multi-threaded imperative lan-
guage. Proceedings 25th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming languages, San Diego California, 1998, pp. 1-10.

D. Volpano, G. Smith, C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3), 1996, pp. 167-187.

D. Volpano, G. Smith. Eliminating covert flows with minimum typing. Proceedings
10th IEEE Computer Security Security Foundation Workshop, June 1997, pp. 156-
168.

16

