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Abstract

We present some original results in the framework of the specification and of the
verification of real-time systems. The underlying formal model of computation is the
timed automata model. It is formally introduced in details and within a theory of
timed languages. Different aspects and variants of timed automata are exposed. The
main verification techniques that have been proposed in the literature are shown in
detail. Particular attention is dedicated to the simplifications that have been done
to the theoretical model of timed automata in order to construct simulators and/or
model checking tools. On the side of specification, the thesis presents two extensions
of the original model of timed automata: non-instantaneous actions and urgent
transitions. The first extension improves the expressive power of the formalism of
timed automata and allow more precise specifications. The second one is a very
useful tool in the task of the specification of typical behaviors of real-time systems.
It allows writing clear and concise specifications. We show that its introduction
does not increase the expressive power of timed automata. Both the extensions are
defined within the theoretical model of timed automata, but it is shown that they
have a similar definition also for the implementable timed automata. Moreover,
they are used to specify a classical railway cross example and a multicast protocol
for mobile computing. On these example we perform automatic verifications using
existing model-checking tools. On the side of verification, we define a timed version
of a classical security property defined on untimed systems: the non-interference
property. We show how this formulation can be used to state and verify time-
dependent security properties of timed systems. The definition of the timed non-
interference property is given in two different formulations. The first is the clearer
and more natural one, but suffers of a negative result of undecidability. The second
one is effectively used in an analysis of the strength of a time-dependent mutual
exclusion protocol against timed attacks.
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Introduction

Formal methods for the specification and the algorithmic verification of systems have
been of great impact on industry and on real-life applications. The fundamental idea
of these methods is as follows: define mathematical models to represent systems,
their behaviors and also the safety, liveness, fairness, structural requirements. Then,
using the precise mathematical definitions, construct (possibly efficient) algorithms
that accept a model and a requirement and that perform an analysis determining if
the model meets its specifications. The correctness of the answer of the algorithms
can be established by a mathematical proof. However, this approach could fail if
drawbacks are present in the task of modeling, i.e. the model could not be consistent
with the actual system.

A class of systems for which this approach has been adopted and studied is the
class of reactive systems. Examples of reactive systems are air traffic controllers,
dishwashers controllers, cash dispensers, operating systems, etc. A reactive system
is characterized by the fact that it operates in an environment that communicates
with it by sending requests or by signaling events. The system performs its tasks
in order to satisfy its requirements when inserted in the environment for which
it has been developed. This means that, when describing a reactive system, also
environments events have to be modeled. Moreover, a reactive system is supposed
to operate forever, i.e. its behaviors are infinite.

A reactive system can be modeled at different levels of abstractions and, usually,
its model is a composition of several modules that operate concurrently. Generally,
in the models, the computational tasks of the system are abstracted away to focus
only on the concurrent and/or communications aspects.

Several formalisms have been proposed in the past to model reactive systems.
Consider, for instance, transition systems [Kel76, Pnu77], process algebras [Mil80,
Hoa78], I/O automata, Petri nets etc. Also formalisms to express the requirements
of the systems have been proposed, the most important being temporal logics, first
introduced in [Pnu77]. In the 80’s many algorithms for the so-called model-checking
problem have been developed successfully. The model-checking consists in deter-
mining if a certain mathematical structure representing a system is a model of a
formula of a temporal logic representing a requirement. One important aspect of
model-checking algorithms is that they give diagnostic information if the verifica-
tion fails. For this reason many tools have been developed for the model-checking of
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different logics with respect to different formalisms of specification. They represent
a very useful aid in the design of complex systems.

The formalisms recalled above have an important limitation. They allow to
specify the behaviors of reactive systems only in a qualitative way. In other words,
within these formalisms, that we will call untimed formalisms, we cannot specify
quantitative time information about the behaviors of the modeled system. For
instance, we can specify a system in which “a request a is followed by a response
b or by a fail event”, but we cannot specify timed behaviors as “a request a is
followed by a response b within 5 time units or, exactly after 6 time units, by a fasl
event”. The reactive systems in which such information on the actual times is a
crucial aspect in defining their behaviors and their requirements are called real-time
systems.

A natural way to apply formal methods of verification to real-time systems is
to add, to the existing models, a suitable notion of time. This task started at the
end of 80’s and, since those years, researchers have proposed several timed versions
of the existing untimed formalisms. Examples of this extensions are timed Petri
nets [Ram74, GS94], timed I/O automata [LA92], timed transition systems [Ost90,
AH92b, HMP94] and timed process algebras [NS94]. Also logical languages have
been developed to express quantitative timing properties. For instance, the linear-
time logic PTL (Propositional Temporal Logic) [GPSS80] has been extended to its
timed version, TPTL, in [AH94]|. The branching-time logic CTL (Computational
Temporal Logic) [CES86] has been extended to TCTL in [ACD93]. Together with
logic languages comes a lot of model checking algorithms and techniques [EMSS90,
AH89, ACD94, AFH96, AD90, Lew90, Ost90, AH90, HLP90].

An important aspect of a timed formalism is the time domain that it uses. Many
of the formalisms above use a discrete time domain, i.e. the time is represented
by integer numbers. This choice simplifies the process of verification because the
untimed verification algorithms can be simply adapted to handle such a type of time
domain. However, formalisms that use a dense time domain can represent in a more
realistic way the actual physical processes that real-time systems are supposed to
control or to deal with.

In this thesis we adopt, as referring model for the specification of real-time
systems, the model of timed automata. It was introduced in [AD90, AD94] by
Rajeev Alur and David L. Dill. Since their presentation, timed automata have been
widely studied from different points of view [ACHT92, ACH94, AFH99, AH92a/, in
particular for their possible use in the verification of real-time systems [ABBL9S,
ABG98, ACD93, AH94, HK94, HNSY94, Yov96].

Chapters 1 and 2 of this thesis are dedicated to a detailed introduction of timed
automata and the main verification techniques of real-time systems modeled with
them. More precisely, we start defining a fundamental structure, that, following
[AD94], we call timed transition table, which is the basis of the different notions
of automata that we introduce. We address several issues regarding the dense time
domain used by timed automata and some aspects of timed behaviors concerning
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its use, e.g. divergence, are treated.

Then, timed Biichi automata are defined and the theory of timed regular lan-
guages is introduced. We show that the concept of timed Biichi automata is a
high-level powerful formalism to represent linear-time trace-based timed behaviors
of real-time systems represented by timed languages. The parallel composition op-
erator for timed Biichi automata is defined precisely starting from the construction
outlined in [AD94] and its properties are formally proved. Several classes of (vari-
ants of) timed automata are defined and their expressive power, given in terms of
accepted timed languages, is used to relate them.

In Chapter 2 we show the possible verifications that can be performed within the
automata-theoretic framework of timed Biichi automata and we discuss the prob-
lems that arise in an effective implementation of this model. We define timed safety
automata as a simplified formalism, with some limitations with respect to time Biichi
automata, that is the referring implementable variant of timed automata. We show
how the model-checking of the real-time temporal logic TCTL can be performed
with respect to timed safety automata. Then, we introduce two existing automatic
tools that perform model-checking verification for weak versions of TCTL with re-
spect to slight variants of timed safety automata, namely KRONOS [DOTY96] and
UPPAAL [LPY97, BLL196]. They are used in Chapters 3, 4 and 5 to perform some
verifications on the examples.

The model presented in Chapter 1 has enough expressive power to allow the
specification of most of the typical behaviors of real-time systems. However, not
always the basic model is satisfactory when modeling some features that are indeed
often seen in real-time systems. It can happen that some behaviors cannot be
expressed in the basic model, or that some characteristics have to be simulated with
the available machinery resulting in a complex and hard to understand specification.
For these reasons, many extensions to the basic model have been proposed [BPDG98,
CG00, DZ98, GHJ97, LMPO00]. All these extensions have been discussed with respect
to the expressiveness of the original model.

In this thesis we present two contributions to this research field. Chapters 3 and 4
contains two original extensions of the basic model of timed automata. Both the
ideas came out in response to specification necessities. The first of them concerns
the duration of actions which, in the basic model, are instantaneous. This constraint
is relaxed in order to possibly have actions with a duration. The second extension
concerns the possibility to have a priority between the possible transitions in a state
of a timed automaton. In the basic model all of the transitions have the same
priority and can be executed non-deterministically. We introduce the possibility of
specifying that some transitions are urgent, i.e. that they have priority with respect
to others and that their execution has to be fired within a short time interval from
their enabling.

Both the presented extensions are compared with the original model in terms
of expressive power, conciseness and possibility to have more precise, readable and
elegant specifications. For each extension a translation procedure that maps an
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automaton with the new features into a basic one has been defined. This allows
the use of all verification techniques and tools developed in the framework of timed
automata on the specifications that use the extensions.

Moreover, we show that in both cases the extensions added to timed automata
can be easily transported to the model of timed safety automata to make the auto-
matic verification effective and feasible. In this way, the extensions are defined upon
a clear theoretical basis and implementation details can be considered a separate
task to face to.

To give an evidence of the feasibility of this task we apply the introduced ex-
tensions to timed safety automata modeling the classical railway cross example, for
non-instantaneous actions, and a multicast protocol for mobile computing, for urgent
transitions. On these automata we use KRONOS, in the first case, and UPPAAL,
in the second case, to perform the automatic verification of some properties.

The contributions presented in this thesis are not restricted to the side of the
specification task that we enriched with the proposed extensions. We present a
contribution also in the area of verification. In particular, we follow the research di-
rection that tries to bring useful and fruitful concepts defined for untimed formalisms
into the framework of real-time systems.

This is the area within Chapter 5 can be placed. The untimed framework that
we address is the so-called information flow analysis and the idea we attempt to
import is that of the security property called non-interference [GM82]. We start by
introducing the idea of non-interference as it has been presented in the literature
and then we define a timed notion of non-interference for timed automata. This no-
tion could be considered natural for detecting interference caused by the frequency
of certain events in timed systems. However, the presented notion cannot be effec-
tively used because its checking requires to solve the timed automata equivalence
problem, which is shown to be undecidable. This problem is solved by defining a
decidable notion of timed non-interference that is based on the decidable problem
of reachability test.

We illustrate the characteristics of our notions of timed non-interference by suit-
able examples. In particular, a timed non-interference analysis is carried out to check
the strength of the Fischer’s mutual exclusion protocol [Lam87], which depends on
time, against timed attacks. The analysis is done using both timed automata and
timed safety automata. In the latter case the tool UPPAAL is used to support the
analysis.



Chapter 1

Timed Automata

Abstract

In this chapter we introduce in detail the model of timed automata. We
treat many different aspects including fairness and acceptance conditions, di-
vergence of derivation, parallel composition, expressive power, normal forms
and non-observable transitions. The model is introduced modularly starting
from the concept of timed transition tables toward timed automata with ac-
cepting conditions. The concepts and the notation introduced in this chapter
are used in all the subsequent chapters.

Throughout the thesis, we introduce some conventions on notation or on terms.
These parts have been highlighted by introducing a numbered type of text para-
graphs as the following one, which is the first.

Convention 1 In the following, R (Q) is the set of real (rational) numbers, RZ°
(Q=°) the set of non-negative real (rational) numbers and R>® (@Q>°) is the set of
positive real (rational) numbers. The set of natural numbers is denoted by N and
N>0 is the set of positive natural numbers.

1.1 Clock variables

The idea of clock variables is central in the framework of timed automata. They
have been introduced in [AD90] and they have been one of the most used tool to
introduce time constraints in untimed formalisms. A clock is a variable that takes
values from the set RZ°. The clocks measure time as it elapses. All the clocks of
a given system advance at the same rate: when increasing, they can be viewed as
functions on time whose derivative is equal to 1. Clock variables, or simply clocks,
are ranged over by z,v, z,... and we use X, X’,... to denote sets of clocks.

A clock valuation over X is a function that assigns a non-negative real number to
every clock. The set of valuations of X', denoted by V y, is the set of total functions
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from X to R=?. Clock valuations are ranged over by v,7/,.... Given v € Vy and
§ € RZ%, we use v+ § (resp. v — §) to denote the valuation that maps each clock
r € X into v(x) +§ (resp. v(z) — ). Note that if there exists x € X such that
v(z) — 3§ <0, v —0 is not a clock valuation.

Given two disjoint sets of clock variables X and X', and two clock valuations
v1 € Vy and 1y € VX" we denote by v U 15 a clock valuation in VXuX' that is
such that

v Uw(r) =

v(z) fzeX
v(z) ifzxeX!

Clock variables can be reset during the evolution of the system when certain
actions are performed or certain events occur. The reset consists in instantaneously
set the value of a clock to 0. Immediately after this operation the clock restarts to
measure time at the same rate as the others. The reset is useful to measure the
time elapsed since the action/event that reset the clock occurred. Given a set X’ of
clocks, a reset v is a subset of X'. The set of all resets of clocks in X" is denoted
by I' y and reset sets are ranged over by v,v',... Given a valuation v € V y and a
reset 7y, with \y we denote the valuation

0 ifrzey

\v(w) = { v(iz) ifxdgry

1.2 Clock constraints

The timed behavior of a system represented by an automaton is expressed using
constraints associated to the edges of the automaton. Such constraints depend on
the actual values of the clock variables of the system. Their form, and thus their
expressive power, is a crucial issue in the definition of timed automata because the
decidability of fundamental verification questions strictly depends on the structure
of the clock constraints. We will discuss this question in more details in Section 2.2.2.

Given a set X’ of clocks, the set Wy of clock constraints over X are defined by
the following grammar:

v o= true
| false
|z # ¢
|z —y#c
| A
| YV
| =

where x € X, c € Q2°, and # is a binary operator in {<, >, <, >,=}. Note that
we allow the constants ¢ that are compared with the values of clocks to be in the set
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of rational numbers. In Section 1.6 we will show how we can restrict to constants
in N.

Clock constraints are evaluated over clock valuations. The satisfaction of a clock
constraint 1) € ¥ 3 by a valuation v € V y, denoted by v = 1, is defined as follows:

v = true

v i false

v e iff v(z) #c
viEr—y#ciff v(z)-v(y)#c
V= Ay iff v = b and v = oy
vEYL VY iff viEY or v E
viE-W il vy

The previous definition of clock constraint is redundant. In Section 1.6 we will
present some normal forms of timed automata that enable us to restrict to a minimal
syntax for the constraints.

1.3 Timed Transition Tables

Now we can formally introduce the concept of the timed transition table of a timed
automaton. This is almost a timed automaton: some additional fairness conditions
on the runs are needed to obtain a timed automaton from a timed transition table.

Definition 1.1 (Timed Transition Table) A timed transition table T is a tuple
(@Q,%,E,B, X), where: Q is a finite set of states or locations, ¥ is a finite alphabet
of symbols, € is a finite set of edges, B C @ 1s the set of initial states, X is a finite
set of clocks.

Each edge e € € is a tuple in Q@ x Uy x 'y x X x Q. Ife=(¢,7,7,0,¢) is
an edge, q is the source, ¢' is the target, ¢ is the constraint, o is the label, v is the
reset.

A timed transition table can be used to model a reactive system. The locations
in @ represent the states and the labels in ¥ are the observable events/actions of
the system. The edges represent the instantaneous changes that occur in the system
in response of an event or as a consequence of an action. Quantitative real-time
requirements can be specified for both events and actions using the clock constraints
and the clock resets on the edges. The behaviors of the system are the traces of its
observable events.

To obtain traces we have to define the dynamics of a timed transition table.
A timed transition table T is a finite structure that represents an infinite labeled
transition system (l.t.s) whose runs will be used to define the behaviors of the system.
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e RO
11 (q,v) (g, v +6)
¢, V,7,0,¢)€EEviEY
- ( ) =

(¢,v) —(d',v\7)

Figure 1.1: Rules for the transition relation of §(7")

Definition 1.2 Given a timed transition table T = (Q,%,&, B, X), its associated
labeled transition system is denoted by S(T') and is such that 8(T) = (S, —), where
S is a set of states and — is the transition relation. The states S are pairs (q,v),
where q € Q is a state of T, and v € Vy is a clock valuation. The transition
relation —C S x (X UR>Y) x S is defined by the rules of Figure 1.1.

Convention 2 In some papers in the literature, the term “timed transition system”
is used to refer to l.t.s. of the form of the previous definition. We will adopt this
convention being aware, however, that this term is used also to refer to a different
class of l.t.s. See, for instance, [Ost90, AH92b, HMP9/, ACH9//.

The timed transition system (t.t.s.) 8(7") models the possible behaviors of T" in
the following sense. An initial state of $(T") is a state (¢, ) where ¢ € B is an initial
state of T" and v is the valuation which assigns 0 to every clock in X'. At any state ¢,
given a valuation v, T" can stay idle or it can perform an action labeling an outgoing
edge e. If T stays idle for § € R”® time units, 8(7') makes a transition, labeled ¢,
from the current state to a state in which the location of 7" is the same, but the
valuation has been modified according to the elapsed time (rule T1). We will call
these transitions d-transitions.

If T moves along an outgoing edge e = (q,1,7,0,q¢), this corresponds to a
transition, labeled by o, of §(T') from the state (¢,v) to the state (¢’,»\7y). This
transition is possible only if the current clock valuation respects the constraint ¢ of
e (rule T2). We will call these transitions X-transitions.

Definition 1.3 (Time, event, state sequences) Let T = (Q,%,E,B,X) be a

timed transition table and let r = sq l—0>81 s .. be an infinite derivation of its
associated timed transition system S(T') where so = (qo, o) is an initial state, i.e.

e (y € B is an initial state of T and
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o Vx e X. yy(x)=0

- The time sequence tyt; ty --- of the times elapsed from state sy to every state
s; tn 1 is defined as follows:

tOZO
0 ifl;ex

tiv1 =1 .
i1 =l [, otherwise

- The label sequence of r is the sequence of the transitions occurred during r,
including the elapsed times, from the initial state: (ly,to)(ly,t1) -~ -

- The action sequence of r is the projection of the label sequence of r on the
pairs {(I;,t;) |1 >0, [; € £}

- The state sequence of r is the projection of the sequence of states sy Sy Sg « -+
of r on the states {q; € Q | s, = (¢i,v;), i=0V (i>1 A ;-1 €X)}

- The set of infinitely many repeated states of r is denoted by inf(r) and is the
set of locations q € Q) that occur infinitely many times in the state sequence of
T.

Convention 3 For the sake of readability, we use, throughout the thesis, the term
“derivation”, applied to a t.t.s. associated to a timed transition table or to a timed
automaton, to denote an infinite derivation that starts at an initial state. When
we want to refer to a different kind of derivation, we use a different term which
explicitly describes its characteristics.

Note that, by definition, the time sequence of every derivation r of §(7’) is non-

decreasing:
Vi e N. t; € RZO Nt < tiv1

In some papers there is a more restrictive requirement, i.e. that the time sequence
be a strictly increasing sequence of times. This means that two consecutive -
transitions are not allowed or, in other words, that the timed transition table cannot
perform two or more actions/events at the same instant of time. It has to stay idle
for a certain time ¢ > 0 and then another Y-transition can be performed. However,
the fundamental properties of timed automata holds regardless of the choice in the
monotonicity of the time sequence [AD94].

We want to remark here that the derivations r of $(T") as defined above can
have several consecutive d-transitions that can be considered equivalent to one d-
transition whose delay time ¢ is the sum of the delay times of the consecutive
transitions. This property has been called time additivity. It is a postulate on time
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true, a, {x} X=2,
/\ C,
0 true, c, {x} o {x}
x<=1,b,{}

Figure 1.2: A timed transition table Tj

which is assumed, as far as we know, in all proposed models of behaviors of real-time
systems.

Let us show a first example of a timed transition table. First note that a timed
transition table can be represented as a directed graph in which the nodes are the
locations of () and the directed edges are the edges £. We will often use this
representation, as outlined in the following.

Convention 4 Throughout the thesis we use a graphical representation to specify
timed transition tables and timed automata. The graphical notation is the usual one
of the classical automata framework enriched with the new notation needed to handle
timing operators. Figure 1.2 shows a timed transition table Ty. Clircles represent
locations which we named 0, 1 and 2. The locations with a dangling ingoing arrow
are initial locations. In this case location 0 is the unique initial location. Edges are
represented as arrows from the source state to the target state and are labeled with,
in order, the clock constraint, the action/event symbol and the reset set. If an arrow
is labeled by a set of symbols, it represents a set of edges, one for each symbol in the
set, each of which having the same clock constraint and clock reset. In Ty there is
an edge starting from location 0 to location 1 whose clock constraint is true, whose
action symbol is a and whose reset set is {x}. We can deduce from the figure that
the only clock variable of Ty is x and that the alphabet is ¥ = {a, b, c}.

1.3.1 Fair derivations

In Ty a quantitative time constraint is imposed on the occurrence of b with respect
to the occurrence of a. Namely, each a is followed by a b within 1 time unit. This
is obtained by resetting the x when a occurs and by adding the constraint z <1 in
the edge executing b. Note that this is not true for all possible infinite derivations of
8(Ty). As a matter of fact, 8(7p) could reach a state (1,v) such that v(z) > 1 and
then it could start an infinite sequence of d-transitions yielding an infinite derivation
in which only a finite number of ¥-transitions has been performed. The formalism
of timed transition tables or timed automata does not consider such derivations as
fair derivations.
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Definition 1.4 (Fair derivations) Let T = (Q, %, &, B, X) be a timed transition
table and let v be an infinite derivation of $(T).

Then, r is fair iff inf (r) # 0.

Equivalently, r is fair if its action sequence or state sequence is infinite.

Most of the times we will consider as actual behaviors of the system modeled
by a timed transition table (or by a timed automaton) only those corresponding to
fair derivations of its timed transition system. This assumption will not be used
in Section 2.3.1 where the model of Timed Safety Automata is introduced. In this
model a similar notion of fairness is assured by invariant conditions on the states.

As an example, in every fair derivation of $(7}), if Tp is in state 1 then it cannot
let elapse a time greater than 1 time unit, because if this happens, it cannot execute
a Y-transition anymore. Thus, if we consider as behaviors of Ty only those that
derive from fair derivations, then 7j always executes the edge labeled with b within
one time unit from the occurrence of a. A different behavior is not considered a
behavior of the system.

However, when modeling real-time systems there could be some cases in which we
want to specify a behavior that is unfair. For instance, the specification of a system
could say that in certain situations a state ¢ ;,, can be reached in which it is possible
to let the time elapse forever. This behavior can be specified with fair derivations
simply adding to ¥ a new symbol idle representing an idle transition and adding to
the timed transition table representing the system the edge (qg;,, true, 0, idle, q 4;,,).

1.3.2 Specification of sequences

A possible fair derivation of the timed transition system 8(7p) is the following, where
the clock valuation is specified by the value of the unique clock .

ro = (0,2 = 0) —%(0,2 = 7.6) =3(0,2 = 9.0) —>(1,z = 0) 23(1, 2 = 0.5) -
(0,2 = 0.5) 22°(0, 2 = 101.05) —=(2,2 = 0) =>(2,2 = 2) (2,2 = 0) - - -

The time sequence of rq is tg = 0,t; = 7.6,t5 = 9,t3 = 9,14, = 9.5,t5 = 9.5,t5 =
110.05,t7 = 110.05,tg = 112.05,t9 = 112.05- - -

The label sequence of ry is (7.6,7.6)(1.4,9)(a,9)(0.5,9.5)(b,9.5)(100.55, 110.05)

(¢, 110.05)(2, 112.05)(c, 112.05) - - -

The action sequence of 7y is (a, 9)(b, 9.5)(¢, 110.05) (¢, 112.05) - - -
The state sequence of ry is 0,1,0,2,2,---

Convention 5 We can, and almost always will do so, characterize the set of in-
finite action sequences of a given timed transition table (or of a timed automaton)
analytically. In the definition of a set of action sequences, when this improves read-
ability and clarity, we write an action sequence (0g,t9)(o1,t1)--- as (7,t) where
0 =090y -+ and t = tyt; ---. The overline notation - always denotes a count-
able infinite sequence of objects in which the positions of the elements are indexed
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by natural numbers. By default the start index is 0. To specify a different start
index n we write EiZn =tptpe1 -+ To specify a finite sequence we use the notation
Op<i<m = Op Opy1 *** Op 0 which m,n € N and n < m.

Moreover, we often use w and n exponentiation as defined in the theory of w
languages. We recall the usual conventions in the following: a“ is an infinite string
formed by the infinite concatenation of the symbol a, while a™ is a finite string
composed of the concatenation of n occurrences of a. As usual, if n = 0, then
the result is the empty string €. The same convention applies when the base of the
exponentiation is a finite string. If the base is a set of symbols ¥ then the result is
a finite or infinite concatenation of symbols of 3.

For instance, a characterization of the action sequences of T can be written as

L= {((ab)“’,f) | VZ Z 0. tz S ti-l—l A\ t2i+1 — tQZ’ S ]_} U
{((ab)” Cw,f) | n > 0, Vi>0.t < tiv1, Vi <i<2n= toir1 — to; < 1,
Vi > 2n. t; = to, + 2(i — 2n)}

We can derive the set of repeated states inf(r) of a given fair derivation r. If r
is of the form ((ab)“,t;) then we deduce that inf(r) = {0,1}. Otherwise, if r is of
the form ((ab)™ ¢“,t;), then inf(r) = {2}.

1.3.3 Zenoness

We want to remark that the associated t.t.s. of a timed transition table could have
infinite fair derivations in which the time sequence does not diverge, i.e.

IreRVieNt;, <1

This is a consequence of the fact that the time is modeled by real numbers
and, thus, the time sequence of a derivation can be a convergent sequence of real
numbers. This derivations have been called Zeno derivations. They, of course,
cannot be considered behaviors of a real-time system and, thus, additional conditions
are required on the derivations of the t.t.s. in the context of real-time systems
specification and verification. Namely, that every infinite derivation is divergent.

Definition 1.5 (Divergent and Zeno derivations) Let T = (Q,%,&, B, X) be
a timed transition table and let r be an infinite derivation of 8(T'). r is divergent
iff its time sequence is such that VT € R>°.3i € N:t; > 7. A Zeno derivation is a
derivation that is not divergent.

An equivalent characterization requires that in every derivation and any finite
interval of time there are finitely many Y-transitions.

However, Zeno derivations are interesting from the point of view of timed lan-
guages theory. In Section 1.4.1 we will treat this aspect in more details.
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As an example, a Zeno derivation of the timed transition system 8(7j) is that
in which the sequence of symbols is (ab)” and the time sequence is t, = 0 and
Vi>0.t;, =t,_1+ Z% This derivation is possible because the clock constraints of 1
allows the time between a transition labeled a and the subsequent, labeled b, to be
arbitrarily small. On the other hand, if in a derivation at least a transition labeled
¢ is performed, then the clock constraints and the implicit fairness condition imply
that the time sequence diverges because the transitions labeled ¢ are separated by
exactly 2 time units.

1.3.4 Determinism

Definition 1.1 does not impose any condition on the edges of a timed transition table.
Thus, in general, if we consider timed transition tables as automata, they are non-
deterministic machines. It is useful, as in the classical automata theory, to identify
the subclass of timed transition tables that are deterministic. The presence of time
and of the clock constraints onto the edges allow to relax the classical definition:
in every state there can be several outgoing edges labeled with the same symbol,
provided that their clock constraints forbid the possibility of firing at the same
instants.

Definition 1.6 (Deterministic Timed Transition Tables)
Let T = (Q,%,&,B,X) a timed transition table. It is deterministic if and only if
the following conditions hold:

1. |B| =1, i.e. there is only one initial state.

2. Ver = (¢,9%1,7,0,4'), €2 = (¢,%2,72,0,¢") € E. Y1 Ny is unsatisfiable. In
other words, it is required that the clock constraints of any two transitions
having the same source and the same label are mutually exclusive.

As an example, the timed transition table Tj of Figure 1.2 is deterministic.

1.3.5 Synchronized product

When modeling a system by any formalism, a very useful tool is the possibility
to do a modular specification. Different parts of a complex system are specified
separately as components and the whole system is specified by a suitable product of
all components. Many formalisms introduced to specify reactive systems provide this
feature: product of automata, parallel composition of processes in process algebras,
product of Petri nets and so on. The possibility of modular specification has been
provided also for the specification of real-time systems in all the proposed timed
formalisms. A synchronized product is defined between timed transition tables.

An important aspect of the composition operations is the possibility, for different
components, to cooperate. For instance, in timed process algebras, such as CCS
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[Mil80] or CSP [Hoa78] or ATP [NS94], the parallel composition operator provides
a way to the components to synchronize and/or to exchange values by channels.
Moreover, each component is always allowed to perform its own operations, i.e.
those in which no other component is involved. Then, the whole system behavior is
the interleaving of the private operations of the components in parallel and, when
certain constraints (which depend on the particular formalism) are satisfied, the
common operations of several components synchronizing.

In the timed transition tables (timed automata) formalism, the components are
timed transition tables (timed automata) and their product, the whole system, is a
timed transition table (timed automaton) too. Its construction is defined according
to the following directives.

First, the mechanism of synchronization is based on the common symbols of
the alphabets of different components. When a symbol ¢ is a common symbol,
then a transition labeled o in the whole system can be executed if and only if all
components whose alphabet contains ¢ can execute a transition labeled o.

Second, in the whole system the time can advance of a certain amount § € R>?
if and only if all the components of the system can let § time units elapse, according
to their structure and semantics.

Finally, in any state of the whole system any component is allowed to perform a
private transition (i.e. a transition labeled with a symbol that does not belong to the
alphabet of any other component) at any instant in which the transition would have
been performed if the component were considered as a stand-alone timed transition
table.

Summarizing, the behavior of the whole system should be the interleaving of
the behaviors of its components where actions with the same name are executed
synchronously.

The formal definition of the whole system, with the characteristics outlined
above, is given by syntactically constructing a timed transition table from the spec-
ifications of the components.

Definition 1.7 (Synchronized Product) Let Ty = (Q1,%1,E1, By, X1) and Ty =
(Q2,%9,E2, By, X3) be two timed transition tables with X1 N Xy = 0. The synchro-
nized product of Ty and Ty, denoted by Ty | Ty, is the following timed transition
table:

T | Ty = (Q x Q2,51 UXy,E, By x By, X1 UXy)
where £ s defined by:

1. Synchronization actions

For all 0 € ¥, N Yy, (q1,%1,7,0,4) € €1, (q2,%2,72,0,q3) € &
£ contains ((q1,q2), Y1 A 2,71 U2, 0,(q1,05))



1.3. TIMED TRANSITION TABLES 11

2. T, actions
For all 0 € ¥1\Xs, (q,%,7,0,¢') € E1, s € Qs
E contains ((q,s),1,7,0,(d, s))
3. T, actions
For all o € ¥5\%4, (¢,%,7,0,q¢") € €2, s € Q1
E contains ((s,q),¥,7,0,(s,q))

Ty and Ty are called components of the synchronized product.

Let Ty, Ty, -+, T,,,m > 2, be m timed transition tables such that (.-, X; = 0 where
X is the set of clocks of T;. The synchronized product of them, denoted by Ty | T |
oo | T, is defined incrementally starting from the definition above:

T Tl | T = (- (T [T2) | T3) [ --) | T)

if the left association rule' is considered.
This definition shows what we expect in parallel behaviors:

e Common symbols of the alphabets of the components are synchronization
actions. A synchronization transition can be executed if and only if all the
involved components can execute it (its clock constraints is the conjunction
of the clock constraints of the transitions of all components involved). The
transition must be executed synchronously by all of the involved components.

e Other symbols can be executed by each component independently according
to its original specification.

As an example, consider the timed transition table T,,,,; in Figure 1.3. It speci-
fies a binary counter of the occurrences of the symbol b. State 0 represents the case
in which the counter value is 0, while state 1 represents the value 1. The system
displays, at every time unit, the value of the counter (the corresponding edges are
traversed when the value of clock x is equal to 1 and the clock is reset). The symbols
display0 and displayl model the actions of displaying 0 or 1 respectively. When
an action b occurs, the automaton changes its internal state.

The timed transition table 755 in Figure 1.4 simply executes b actions imposing
that each of them occurs when at least two time units have elapsed from the previous
one.

Now consider the synchronized product T,pyn; | T52 showed in Figure 1.5. The
action b is a common symbol, thus T,.,.,; and T, synchronize on it. As a con-
sequence, in the whole system the counter cannot change its internal state at any
time as in T,,un, because the time between two subsequent occurrences of b must
be greater than 2.

!Equivalently, the right association rule can be used. As a matter of fact, the synchronized
product operation is associative.
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true, b, {}

true, b, {}

Figure 1.3: A simple binary counter, Tpoun

y>2,
b
{y}

Figure 1.4: A timed transition table 7%,

y>2, b, {y}

x=1,

displayl,
{x}

x=1,

displayO,
{x} y>2, b, {y}

Figure 1.5: The timed transition table Tepuns | T2
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1.4 Timed Automata

As we mentioned in Section 1.3, timed transition tables are the basic objects on
which different types of timed automata can be defined. In particular, timed tran-
sition tables can be considered the “greatest common divisor” of several formalisms
that are all referred to as timed automata. In particular we think of Timed Biichi
Automata and Timed Muller Automata of [AD94] together with the numerous vari-
ants and extensions of these models that have been proposed in the literature. In
this section we introduce formally the models of [AD94].

1.4.1 Biichi acceptance condition

The theory of w-languages is the extension of the classical formal languages theory
on finite words to the study of languages composed by infinite words. Let ¥ be a
finite alphabet of symbols. As usual, 3* denotes the set of all finite words composed
by symbols in ¥ and ¥*° denotes the set of all infinite words composed by symbols
of ¥. As formal languages are subsets of ¥*, w-languages are subsets of ¥* U ¥*°.
w-regular-languages are those w-languages that can be accepted by finite automata
together with accepting conditions for infinite words (w-automata) [B60, Mul63].
[AD94] exposes a theory of timed regular languages starting from the theory of
w-regular-languages.

Definition 1.8 (Timed Biichi Automaton) A timed Biichi automaton (TBA)
is a tuple T = (Q,%,E,B, R, X) where (Q,%,E,B,X) is a timed transition table
and R C Q, R# 0, is a set of repeated states.

The timed transition table of a TBA T is denoted by T = (Q,%,E,B,X).

The class of all TBAs is denoted by 7.

Ifj’\ is a deterministic timed transition table (see Definition 1.6), then we say that
T is a deterministic timed Biichi automaton. The class of all deterministic TBAs
15 denoted by Top.

The set of repeated states is needed to specify a Biichi acceptance condition for
infinite timed words [B60].

Definition 1.9 (Timed Word, Timed Language) Let ¥ be a finite alphabet. A
timed word over X is a finite or infinite sequence of pairs (oo, to)(o1,t1) - - - such that
Vi.o, €2 A t; € R20 A ti < tiyr.

A timed language over Y is a subset of the set of all timed words over X.

In [AD94] and many other papers based on the model specified there, the em-
phasis is posed only on infinite timed words because the aim of the theory is to
provide a framework for the study of real-time systems. However, in some papers
that focus on the theory of timed regular languages and that report attempts to give
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timed versions of classical theorems and properties of formal languages theory, also
finite timed words are considered [BPDG98, ACM97, ACM02, BP99, BPT03]. In
this thesis we always focus our attention to infinite timed words unless finite timed
words are explicitly mentioned.

Moreover, also non-divergent words are not considered as semantics of timed
automata in the framework of specification and verification of real-time system. For
this reason, several methods have been proposed to get rid of these words, especially
in the model checking area (see Section 2.3.4). Let us fix some conventional terms:

Definition 1.10 (Divergent and Zeno words) Let Y be a finite alphabet of sym-
bols. An infinite timed word over X, w = (09, t)(01,t1) -+, is a divergent word iff
Vr € R?Y. 3i € N: t; > 7. If w is not divergent, then it is a Zeno word, i.e.
IyeR2: Vie N t; < 7.

Convention 6 Timed Buchi Automata on infinite timed words are considered, in
this thesis, the underlying model. For this reason the term “timed automaton” is used
as a synonym for “timed Biichi automaton”. Note that timed automata are ranged
over by T,T', T\, Ts, ... which is the meta-notation used also for timed transition
tables. This should not create confusion because, generally, the type of object to which
we are referring is clear from the context. When this abuse of notation could create
confusion, the notation T, introduced in Definition 1.8, will be used to distinguish a
timed transition table from a timed automaton.

Definition 1.11 (Run, Acceptance) Let T = (Q,%,€,B, R, X) be a timed au-
tomaton and let T be its timed transition table. An infinite derivation r of the

transition system S(YA“) is called a run of T if and only if the following conditions
hold:

1. r is a fair derivation.
2. inf(r)N R # 0.

A timed word w over ¥ is accepted by T if a run r of T exists such that w = v,
where v s the action sequence of r.

The set of all timed words accepted by T is called the accepted language of T' and
it is denoted by L(T).

The Biichi acceptance condition is a further fairness condition imposed on fair
derivations of §(7"). Only those derivations that satisfy the two fairness conditions
are considered behaviors of the system, i.e. timed words accepted by the timed
automaton 7. However, note that if the set of repeated states I is equal to () we
have that 7" accepts all the timed words originated from all fair derivations of $(T').

Consider again the timed transition table Tj of Figure 1.2. Let us define a
timed automaton based on T adding, as set of repeated states, the set Ry = {2}. In
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X <3, X=3,
{ab}, a,

{} {x}
Figure 1.6: Timed automaton T3,

Section 1.3.2 the set of all action sequences of T; has been characterized analytically.
This example explains very well the impact of the further fairness condition imposed
by the Biichi acceptance condition. The fact that the unique repeated state is the
state 2 discards a lot of actions sequences deriving from fair derivations, namely
those that never enter state 2 and that cycle forever between the states 0 and 1.
Thus, the timed language accepted by T with 2 as unique repeated state is

E(To) = {((ab)” Cw,f) | n >0, Vi > 0. t; < tivi, Vi <i<2n= toir1 — b9 <1,
Vi > 2. t; = ton + 2(i — 2n)}

Convention 7 Note that we use the same conventions used to specify action se-
quences, which, indeed, are timed words. Throughout the thesis we use the usual
graphical notation for specifying repeated states: they are depicted as double circles.

The use of Biichi acceptance conditions is, from the point of view of the spec-
ification of real-time systems, a powerful tool because typical requirements can be
expressed in this way. For instance, giving the set Ry = {2} in the previous example
corresponds to specify that the real-time system modeled by the timed automaton
eventually enters state 2.

Let us give another example of timed automaton. Figure 1.6 shows an automaton
T, in which ¥ = {a,b} and Q@ = B = R = {0}. In this case, as in all cases in which
R = @), the Biichi acceptance condition is useless, i.e. the action sequence of every
fair derivation of T3, is an accepted word of T3,. The language is

L(T3,) ={(@, 1) | Vi € N. 0; € {a,b}, Vi e N°°. Jj: t; =3i A 0; =a}

1.4.2 Parallel composition

The product of timed transition tables is the first step toward the definition of the
parallel composition between timed automata. As standard parallel composition op-
erators, the parallel composition of timed automata is defined requiring the following
fairness condition: in every run r of the obtained automaton, the projection of r
on each component j results in a derivation which is a run of the j-th automaton.
Thus, the parallel composition automaton has to be defined such that an infinite
derivation of its timed transition table is a run if and only all the correspondent
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derivations of the components satisfy the Biichi acceptance condition according to
their sets of repeated states.

This can be done, as outlined in [AD94, Alu99], by adding a number to each state
of the parallel composition automaton. This number behaves as a counter that keeps
track of which components entered one of their repeated states. Consider two timed
automata 77 = (Q1, %1, &1, By, Ry, X1) and Ty = (Q9, X9, €2, Ba, Ry, X'3). The set of
states of their parallel composition is Q1 x Q2 x {0,1,2}. Initially the counter is 0.
If the first component enters a state belonging to R, by a transition, the new state
have the third component equal to 1. Then, when the second component will enter
a state belonging to Ry the new state will have the counter at 2. The subsequent
transition resets the counter to 0.

Then, the right definition is achieved by requiring that the runs of the parallel
composition automaton are those in which the counter assume the value 2 infinitely
many times.

Definition 1.12 (Parallel Composition) Let T} = (Q1,%1, &1, Bi, Ry, X1) and
Ty = (Q2,%9,E2, By, Ry, X3) be two timed automata such that X1 N Xy = ().

The parallel composition of Ty and Ty, denoted by Ty || Ty, is the following timed
automaton:

Ty || To = (Q1 x Q2 x {0,1,2}, 5, Uy, &, By x By x {0}, Q1 x Q2 x {2}, X1 U X5)

where £ is defined as follows:
1. Synchronization actions
For all o € E1 N 227 ((hﬂ/)l,’h,@ qa) € 817 (q27w277270—7 QQ) € 82

E contains:

o ((q1,q2,%), 91 Nho, i U2, 0, (41,45, 2)) iff 1 € R1 and ¢4 € Ry
where i € {0, 1,2}

((Q1,Q2,i),1/)1 A %:71 U Y2, O, (qaaqéal)) Zﬁf qll ¢ Rl and QQ € R2
where i € {0,1}

((q1,92,2), 1 Ao, 11 U 2,0, (41, ¢5,0)) iff ¢f € R1 and ¢, & Ry

((q1,92,0), 01 Apa, 1 U e, 0,(q1,43,0)) iff ¢ & Ry and ¢, € Ry
((QhQQal)ﬂ/)l/\w2771U7270—7 (q117QQ72)) ZﬁQi €R1 and qg € RZ
((QI7Q272)7T/)1/\w2771U7270—7 (q117QQ70)) ZﬁQi €R1 and QQ € RZ
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L (((h,(hao),wlA¢2771U’Y2707 (QLQQal)) Zﬁqll € Rl and qé ¢R2
L (((h,(hal),wlA¢2771U’Y2707 (QQaqaal)) Zﬁqll € Rl and qé ¢R2
* ((q1,2,2), %1 NP2, 71 Una, 0, (g1, 43, 1)) iff ¢y € Ry and gy & Ry

2. T, actions

For all o € E1\227 ((Iﬂ/),% g, q,) € 517 s € Q?

E contains:
e ((¢,8,1),¢,7,0,(¢,5,1))
® ((¢,5,0),%,7,0,(¢,5,0) iff ¢ & B
* ((¢,5,2),¢,7,0,(¢,5,0)) iff ¢ & R
* ((¢,5,0),¢,7,0,(¢,5,1)) iff ¢ € Ry
* ((¢,5,2),%,7,0,(d,5,1)) iff ¢ € R

3. T, actions

For all 0 € 22\217 (qadjaf)/a g, q,) S 527 s € Ql

E contains:
e ((5,¢,2),¢,7,0,(s,¢,0))
* ((5,4,0),%,7,0,(s,4,0))
L ((87Q7 ) w Y, 0 7(87(1,71)) Zﬁq, €R2;
o ((5,0,1),%,7,0,(5,¢,2) iff ¢ € Ry

Let Th, Ty, - -, Tpn,m > 2, be m timed automata such that (-, X; = 0 where X; is
the set of clocks of T;. The parallel composition of them, denoted by Ty || Ty || - - - ||
T, ts defined incrementally starting from the definition above:

T[T 1T = (G- (T [ T2) ([ T5) [ - -) || To)
if the left association rule? is considered.

Definition 1.13 (Projections) Let T} = (Q1,%1,&1, By, Ry, X1) and
Ty = (Q2,Y,E9, By, Ry, X3) be two timed automata such that X1 N Xy = ().

l1

Let r = ((q3, 3, ko), vi U12) A>((q%, q?, k), v} Uv?) — - be an infinite derivation
of the timed transition table T} || Ty

?Equivalently, the right association rule can be used. As a matter of fact, the parallel compo-
sition operation is associative up to simple isomorphisms between states.
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where for all i €N, ¢} € Q1, ¢} € Qu, v} €Vy v €Vy, and k; € {0,1,2}
The projection of r on the component Ty is the infinite derivation 11 obtained by r

in the following way:

- the initial state ((q3,q3,0),vs UvE) is transformed into (g5, vg)

- all parts of the form E>((ql1, @2, ki), v} Uv?) such that i > 1 and l;_, € 35\%;
are deleted

. li- .
- all remaining parts of the form —=((q}, ¢?, k:), v} Uv?) are transformed into

i)

li—1

—(q
The projection of r on the component Ty, denoted by 1|2, is obtained symmetrically.

By a projection we retain all d-transitions and those transitions in which the
component we are projecting on is involved.

Proposition 1.1 (Fairness of the || operator) Let T, = (Q1,%1,&1, By, R1, X1)
and Ty = (Qo, X9, E9, By, Ry, X3) be two timed automata such that X1 N Xy = 0. Let
r be a run of the timed automaton T || Ty. Then, r is a run of Ty and 1)y is a run

Of TQ.

Proof. Let r be such a run. We start showing that r; can be derived by S(T1)
starting from an initial state.

By definition, to obtain r|;, we retain all d-transitions and those transitions in
which 77 participates, i.e. those of the form
((gly, @2y, kica), vl UvE ) Z53((gh, 62, k;), vl U v2) where 0;_; € £ can be a syn-
chronization action or an action of T} -

Such transition is performed by 8(7} || T2) using the rule T2 of Figure 1.1. Thus,

in 7TH\T27 there exists an edge ((q) 1,7 1 ki 1), %1 A o, v1 Uy, 001, (41, q2, ki)
where ¢; € ¥y and 7; € 'y and j € {1,2}°.
J J

o ——

By the structure of T} || T} specified in Definition 1.12, this implies that
1. there exists an edge in &, of the form ((¢\_y,q¢? ), %1, 71, 0i 1, (¢, q2))
2. Vi E

3. vi =vi)\m

Thus, starting from an initial state of $(7}) the derivation 71 can be constructed
using the rules of Figure 1.1 (note that J-transitions have not premises to satisfy
other than § > 0, which is obviously true in all cases).

3When o;_; is not a synchronization action we set 1) = true and 2 = §.
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The same argumentation can be used to prove that r; can be derived in S(T\Q)

Now we show that r|; is a fair derivation of T, and that inf (rp) N Ry # 0. This
is equivalent to say that the state sequence of r|; is infinite and there exists a state
in Ry that appears infinitely often in it.

The fact that 7 is a run implies that its state sequence g, = (q3, g2, ko) (g1, ¢%, k1) - -
is infinite and that there exists a state (q~1,q~2,2) € {(¢,4,2) | g € Q1, ¢ € Qa,}
that occurs infinitely often in it.

By construction of TTH\Tz, that uses the counters in the states specified in Defi-
nition 1.12, we know that if (¢!, ¢2,2) occurs at a certain position of G, then, during
r and before this occurrence of the state (¢!, ¢?,2) is entered, each component has
performed a transition whose target state is one of its repeated states.

Thus, in 7, before the considered occurrence of the state (¢!, ¢? 2) is entered,
there is at least one transition of the form
((gly, g2y kica), vl U2 ) 255 (g, 2, k~), v} Uv?) where 0;_; € % is a synchro-
nization action (or an action of T}) and ¢! € R;.

We know that this transition is retained to obtain r|; and it becomes a transition

of the form (g/_;,v}_,) Z=3((¢}, v}) at some position of 7. Thus, a repeated state
qz-1 occurs at a certain position in the state sequence of |1 glven an occurrence of the
state (qu,qNQ, 2) in q,.

We are supposing that (qu, qNQ, 2) occurs infinitely often in g, and now we show
that, for every such occurrence, there is a different occurrence of a repeated state
of R, in the state sequence of r;. We use an inductive argument. The previous

discussion shows that, for the first occurrence of (qu, qNQ, 2) in @, there is a repeated
state of 77 in 7;. By construction, the counter 2 in the state (q~1,q~2,2) is reset
to 0 in the subsequent (¥X; U Xy)-transition of r. Thus, a subsequent occurrence
of (q q2 2) in g, implies that, in the meanwhile, another different transition of the
form ((gj_1,¢7 1, kj-1),vj Uv; DEE 1((qj,qj,lf ), vjUr?) with ¢j € Ry has occurred.
Consequently, another different occurrence of a repeated state of T} has occurred
in the state sequence of rj;. This argument can be iterated for every subsequent

occurrence of (q q2 2) in q,.

Thus, there is an infinite number of occurrences of states of R; in the state
sequence of r|;. Since Ry is a finite set, there must be a certain ¢ € R; that occurs
infinitely often in the state sequence of rj;. This implies, by definition, that r|; is a
run of 7.

It can be proved in the same way that )5 is a run of 75. W

Let us show an example of construction of parallel composition using the pre-
vious definition. We show also that the simple synchronized product of the timed
transition tables of two timed automata cannot be used as a timed transition table
for the parallel composition of them.

Figures 1.7 and 1.8 show two timed automata 77 and 75 such that:
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x=1,Db,{x}

Figure 1.7: Automaton T}

true, b, {}
— = ® - true, d, {}

Figure 1.8: Automaton 75

LT)={bc, D) |to=1,VieNt; <tjy, IWER " 1 <y<2AVieNt; <y}

L(Ty) = {(bd*,T) | Vi € N. t; <t}

Note that £(T7) contains only Zeno words, while £(7%) contains both divergent
and Zeno words. L
The synchronized product T | T3 is showed in Figure 1.9.

Convention 8 The definition of synchronized product and of parallel composition
s given in term of set of states which are the Cartesian product of the states of the
components. When representing graphically the result, we, as usual, depict only the
states and the edges of the “reachable” part, i.e. the part of the graph that can be
reached by a path, along directed edges, starting at an initial state.

It is easy to see that we cannot find a set of repeated states for ﬁ | fQ in order
to obtain a timed automaton in which every run can be projected on 7T and T5

runs. To see this, let us try all possibilities. First of all, note that the state (¢, ¢3)
is leaved by the first transition of every run and it is not entered by any transition.

x<1c{}
=1, b,
@ X i = (02,04)

Figure 1.9: Timed transition table ﬁ | T\z

true, d, {}
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true, d, {}

true, d, {}

(92,04,0)

Figure 1.10: Timed automaton T} || T,

Thus, making this state a repeated state is useless because it can never be entered
infinitely many times in any run. The only other possibility is that the repeated
state is (g2, q4)-

This choice is not correct because we have that the resulting timed automaton
accepts timed words in the set Le. = {(b{c,d}"d",t) [ty =1,Vi.1<i<n=1<
ti < tip1 <2, t, <2, t, <tp1, Vien <i=t; < tiy1}. These timed words are
accepted by runs that, projected on the component 77, are finite derivations, which
are not runs of 7. L

Thus, we cannot find, in general, a way to transform 7 | T5 into a parallel
composition of 77 and T,. Consequently, the construction of Definition 1.12 that
uses counters in the states is needed if we want to define fair parallel compositions.

Figure 1.10 shows the timed automaton 7} || 75. We have, correctly, that:

L(Ty || To) = {(b{c,d}*,T) [ to = 1,Vi € N0 #; <ty < 2}

Note that the parallel composition force Ty to accept only Zeno words, as 77.
We want to remark that the impossibility to obtain the parallel composition from
the graph of 77 | T; does not depend on the fact that one or both the components
accept only Zeno words. Indeed, if we delete the constraint z < 1 in 77, then both
the components can accepts divergent timed words, but the words of L., still can
be accepted.

1.4.3 Muller Acceptance condition

The Biichi acceptance condition is not the only proposed device to specify how infi-
nite words can be accepted by a finite automaton. We recall the Muller acceptance
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condition [Mul63] because it is used in [AD94] to define classes of timed automata
with interesting characteristics.

Definition 1.14 (Timed Muller Automaton) A timed Muller automatonT con-

sists of a timed transition table T = (Q, %, &, B, X) together with a family of sets of
accepting states F C p(Q).

The class of all timed Muller Automata is denoted by M.

If the timed transition table T is deterministic (see Definition 1.6) then we say that
T s a deterministic timed Muller automaton. The class of all deterministic timed
Muller automata is denoted by M.

Definition 1.15 (Run, Acceptance)
Let T = (Q,%,E,B, F,X) be a timed Muller automaton and let T be its timed

transition table. An infinite derivation r of the transition system S(f) is called a
run of T if and only if the following conditions hold:

1. r is a fair derivation.

2. inf(r) € F.

A timed word w over X is accepted by T if a run r of T exists such that w = v,
where v s the action sequence of r.

The set of all timed words accepted by T s called the accepted language of T and
it is denoted by L(T).

The Muller acceptance condition correspond to a different way of specifying
fairness conditions on infinite derivations. In the following section we show some
results that relate the class of timed automata that we have introduced so far.

1.5 Equivalence and Expressive Power

Indeed, given a timed language L, different automata could exist that accept L.
This leads to a natural notion of equivalence between timed automata.

Definition 1.16 (Trace Equivalence) Let T} and Ty be two timed automata. We
say that they are equivalent, with respect to their timed traces or with respect to
accepted timed languages, if and only if the following condition holds.

L(Tv) = L(T3)
If Ty and T, are equivalent in this way we denote this fact by T\ ~ T5.

When we have different classes of automata, the notion of trace equivalence can
be used to relate them with respect to the so-called expressive power.
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Definition 1.17 (Expressive Power)

Let C be a class of automata accepting timed languages. By L(C) we denote the
set of timed languages that can be accepted by the automata in the class C, i.e. the
set of timed languages L such that there exists an automaton T in the class C with
L(T)=1L.

Let C1 and Cy be two classes of automata accepting timed languages. We say that
the class Cy1 has the same expressive power of the class Cy if and only if L(Cy) =
L(Cs).

The expressive power of Cy is less than that of Cy if and only if L(C1) C L(Cs).
The expressive power of Cy is greater than that of Co if and only if L(C1) D L(Cs).

The notion of expressive power is a significant parameter to consider when relat-
ing different classes of automata especially when new classes of automata are defined
as extensions of existing ones. In the following, when presenting an extension or a
variant of the class of timed automata, we always analyze the expressive power of
the new class with respect to the original class.

For instance, in [AD94], the authors show the following relations among the
classes T, Tp, M and Mqp:

L(Ma) C L(Tp) C L) = L(T)

Note that the last equality means that we can simulate a Muller acceptance
condition with a Biichi acceptance condition by a suitable construction (and also
the vice-versa) when considering non-deterministic timed transition tables. For this
reason we, following the choice of [AD94|, have used the Biichi acceptance condition
in all the definitions: it is simpler to manage than the other and have the same
expressive power.

Moreover, this results show a first difference between the classical theory of
regular languages and the theory of timed regular languages. Namely, that the
deterministic and non-deterministic automata have different expressive power. This
is true, in a different way, also for the theory of w-regular-languages in which only
deterministic Biichi automata have less expressive power than others.

This is not the only difference between untimed regular languages and timed
ones. In Section 1.7 we show another important difference regarding non-observable
transitions.

1.6 Normal forms of Timed Automata

In this section we show several constructions and restrictions that can be applied to
a timed automaton obtaining an equivalent one that has a simplified form.



24 CHAPTER 1. TIMED AUTOMATA

x<1, Z,{x}
x>=1, Z, {x}
P —
true, , {}

Figure 1.11: Automaton Ty

1.6.1 Restriction to Integer Constants

In Section 1.2 we have defined clock constraints in such a way that the constants
to which the clocks are compared are non-negative rational numbers. However, in
the fundamental constructions for the verification of timed automata it is required
to have integer constants (see Section 2.2.1).

This can be simply obtained multiplying every rational constant of the set C
of constants appearing in the constraints of a timed automaton 7' by the greatest
common multiple of the denominators of the numbers in C'. In this way we obtain
a timed automaton that is isomorphic to 7T'.

The difference between the two automata is essentially in the time unit of mea-
sure used. When the timed automaton is used to model a real-time system this
difference is not influent: rational constants can be used in the design task and
then, at the verification task, the constants can be transformed into integers as
above. All the properties of the original automaton are preserved.

1.6.2 Avoiding Zeno Runs

In the task of modeling a real-time system by a timed automaton one would like
to rule out the possible Zeno runs because they do not model a real behavior of
the system. One way to do this task is to use the timed language accepted by the
automaton Tz of Figure 1.11. This language is

Lyy :{(E,f) |\V/ZEN ogE XN < tit1, \V/TGR>0.37:EN3 t; >T}

Given a timed automaton 7" having the set X as alphabet of symbols, the parallel
composition T' || Ty is an automaton accepting all the timed words accepted by T
such that their time sequence is divergent.

However, this operation is not needed in the verification task because the verifi-
cation algorithms often are designed to consider only the divergent runs in checking
the properties.
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x>0, Z,{x}

Figure 1.12: Automaton Tl;ic

1.6.3 Strictly increasing time sequence

By our definition of the derivations of the timed transition system S(f) of a timed
transition table (Definition 1.3) we have that, in general, the time sequence of any
derivation is such that Vi € N. ¢; < ;.

However, in several papers (also in [AD94)) it is imposed that the time sequences
are strictly increasing: Vi € N. ¢; < ¢;,1. This corresponds to forbid two >-transition
to occur at the same time instant. Thus, to model this situations, the powerset p()
(without the empty set) has to be considered as the alphabet of the automaton and
the occurrence of a set of symbols in a certain time instant represents the fact that
all symbols in the set occurred in that instant.

All the results about timed automata are true both in the case of strictly increas-
ing time sequences and in the case of non-decreasing ones. We have adopted the
latter assumption because it seems more natural and simpler to manage. However,
if strictly increasing time sequences are needed, it is possible, as for Zeno runs, to
rule out all timed words with a non-decreasing time sequence of an automaton 7T
considering the parallel composition T || Tsyic;- The automaton Ty is shown in
Figure 1.12 and its accepted language is

Lsipict = {(E, Z) | VieN g, e XAL < ti+1}

1.6.4 Minimal syntax for clock constraints

In Section 1.2 we have given the syntax rules for clock constraints and we observed
that the syntax allows to express different clock constraints having the same mean-
ing, as, for instance, x = 3 and * < 3 Ax > 3. When proving properties or
giving complex constructions of timed automata it is useful to consider a minimal
non-redundant set of constraints (see for instance the construction of Chapter 4).
Using classical logical equivalence as De Morgan laws, we can put any clock
constraint ¢ into disjunctive normal form ; V -V 1,. Then we can simulate
the disjunction by non-determinism of timed automata in the following way: the

edge (Q7 wa v, 0, ql) becomes n edges (Q7 7?1, Y, 0, q,)a (Q7 1/)27 Y, 0, q,)a e ((L wna Y, 0, ql)
Applying this transformation to every edge of a timed automaton we obtain a timed
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automaton that is equivalent to the original one and that is said to be disjunction
free.

Moreover we can use the properties of the order of real-numbers to simulate the
equality, as we outlined in the example above, and we can simulate true (false)
with z > 0 (z < 0).

At this stage of the analysis we can restrict to the following syntax (we use
integer constants):

Y o= xFH#Hc
|z —y#c
| YA
| =Y

where # € {<,<,>, >}, ¢ € Nand z,y are clock variables.

Now, note that the negation operator is not needed because the negation of an
atomic constraint x#tt can be expressed as another constraint of the same kind. An
atomic constraint of the form = = t can be expressed as the conjunction x < tAx >t
and its negation can be expressed by x < ¢tV x > t. The disjunction, as above, can
be simulated by the non-determinism of the edges. Moreover, in [AD94] it is stated
that diagonal constraints, i.e. those of the form x —y#c, are not needed, in the sense
that they can be simulated using the other constraints. In [BPDG98] a construction
to eliminate all diagonal constraints from a timed automaton is given. However, the
result of this construction has a size significantly greater than that of the original
automaton and this has to be considered when assuming to use a diagonal free timed
automaton.

Putting all together, the minimal non-redundant syntax for clock constraints is
the following:

Vo= xH#Hc
[P A

where # € {<,<,>,>},c € Nand z is a clock variable.

1.7 Timed Automata with e-Transitions

In this section we introduce into timed automata the possibility of firing non-
observable transitions. The non-observable symbol is denoted, as usual, by €. The
study of e-transitions in the timed setting has been carried out in [BGP96] and
[DGP97] and has been summarized in [BPDGYS].

The properties of e-transitions in the timed setting are different from the classical
properties of e-transitions. The most important difference is that their use, unlike in
the untimed case, increases the expressive power of timed automata. Moreover, the
fact that infinite fair derivations of the timed transition table of a timed automaton
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correspond to infinite action sequences is not true any more if e-transitions are used.
This is because a derivation could end with an infinite cycle of € symbols yielding
a finite timed word. For this reason the use of non-observable events imply the
possibility, for a timed automaton, to accept a finite timed word.

In [BPDGIS| the possibility of accepting a finite timed word is given also by a
specific device that is the same as the classical acceptance condition for finite words.
A timed automaton 7" includes also the definition of a set F' of final states. A finite
timed word is accepted if the correspondent finite derivation of $(7") ends in a state
(q,v) such that g € F.

Finite timed words are also considered in several papers that present results of
the theory of timed regular languages. In particular, the classical Kleene theorem
for classical finite automata [Kle56], relating automata representation of regular
languages with their algebraic characterizations as regular expressions, has been
considered in the timed setting. In [ACM97, ACMO02] timed regular expression are
defined and a timed analogous of the Kleene theorem is shown. Another approach
to the same attempt can be found in [BP99, BPT03] where a different notion of
timed regular expressions is defined.

In this thesis we do not use finite timed words even when we use e-transitions in
some transformations that we define (see, for instance, Chapter 3). Thus, we give
the following definition.

Definition 1.18 (Timed automata with e-transitions)

A timed automaton with e-transitions is a tuple T = (Q, %, &, B, R, X) where R C @,
R # 0, is a set of repeated states and T = (Q,%,E,B, X) is a timed transition table
whose structure is as in Definition 1.1 but the labels of the edges in £ can be both
o €Y and e.

The class of all timed automata with e-transitions is denoted by Te.

Timed automata with e-transitions in which all edges of the form (q,,v,€,q') are
such that v = 0 are called restricted timed automata with e-transitions and are
considered as a special subclass denoted by Txe.

The timed transition system S(7') is defined as for timed automata without e-
transitions (Section 1.3). The label, timed, action and state sequences of the infinite
derivations of S(f) are defined as in Definition 1.3. The runs and accepted language
are defined as in Definitions 1.4 and 1.15.

Note that, since ¢ € ¥, the action sequences do not contain the occurrences of
the e-transitions and the relative times. Consequently these transitions do not occur
in the timed words accepted by T

As an example consider the timed automaton with e-transitions 7T,,., shown in
Figure 1.13. Note that whenever x is reset to zero the automaton can execute a
visible transition. As x increases above 0 the automaton must let elapse exactly
2 time units and then perform a non-visible transition resetting z. Thus, every
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x=0, Z ,{x}
x=2, &,{x}

Figure 1.13: Automaton T,,., recognizing Ly,

visible transition is separated from the successive by an even number of time units.
Formally, the accepted language is

Leven = {(Uzatz)121| o; - E A V'L Z ]_ (tz S ti-l—l) A (tz = 2h, h € N)}
This particular language is used in [BPDG98] to show that

L(T) C £(T)

Indeed, timed automata are special cases of timed automata with e-transitions
and, in op. cit., the authors show that L.,., cannot be accepted by any timed
automaton without e-transitions. Thus, e-transitions increase the expressive power
of timed automata, unlike in the untimed classical automata.

However, in op. cit., it is shown that the real increasing power is given by e-
transitions that reset clocks. For this reason the class T, has been introduced. It
is shown that

L(T) = L(T)

Actually, the result is slightly stronger. Namely, it is shown that, for every
timed automaton 7" in which no € resetting transition lie along a cycle on the graph
representing 7', it is possible to construct a timed automaton without e-transitions
that accepts the same divergent timed words of T.

The fact that the result is not true for Zeno words is quite surprisingly. However,
the evidence is given in [BPDG98| using the Zeno timed language £(T),) accepted
by the timed automaton shown in Figure 1.14. It does not contain e-transitions that
reset clocks and that lie along a cycle. The accepted language is

,C(Tz):{(a,ti)i21|5|w>0:0§t1<t2<...<t2+1—w}

Every timed word of £(7,) has a converging sequence of times. It is shown in
op. cit. that this language cannot be accepted by any timed automaton without
e-transitions.
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e LN NS
N

x<landy>0,a/{y}

Figure 1.14: Automaton 7,

Finally, in op. cit., a concept of precise action and a relative result are introduced,
which are two useful devices in showing that a timed language cannot be accepted
by any timed automaton without e-transitions. We recall it here because it will be
used in the proof of Proposition 3.4.

Let T be a timed automaton which uses a finite set C C Q=2° of rational con-
stants in the clock constraints. Suppose also, without loss of generality, that T is
disjunction free and diagonal free (see Section 1.6.4). Let Cyay be the maximum
value of the set C' and let § > 0 be such that C' C §Z=° (§ can be chosen such that
6~! is the common denominator of the numbers in C).

Consider an infinite path m, along the graph representing the automaton 7,
starting from an initial state go: (qo, %0, Y0, 00, ¢1)(q1, %1, 71,01, G2) - - -

Definition 1.19 (Precise Action) Let T and 7 be as above. By T'S(m) we denote
the set of all possible time sequences totits -+ such that 0 =t < t; <ty < --- and
there exists a run of T whose time sequence is totits - - - and whose infinite path along
the states of T is the same as the one of .

For each m € N, TS, (7) denotes the set of values v € R”? such that there exists
a time sequence totity - -ty -+ € T'S(mw) with t, = v.

The occurrence of o, along the path 7 is called a precise action in m if T'S, ()
reduces to a singleton.

Now we report the theorem, whose proof can be found in [BPDG98], regarding
precise actions.

Theorem 1.2 Let T, 7, 6 and Cyax as above. Assume that TS(w) # O and let
t € TS,(m).

e [fthe occurrence o, is a precise action in 7, thent € 6N. Moreover, if t > Clhax
then there exists an occurrence a,,, with m < n, such that a,, is also a precise
action in 7 and the unique element of T'S,, () belongs to the half-open interval

[t — Ciax, t)-

e Otherwise, T'S,(m) is a non-empty interval (r,s) with r € 6N and s € N U



30 CHAPTER 1. TIMED AUTOMATA

><D

x=1,4a {x}
0<x<10Db{}

x=1, g, {x}
Figure 1.15: Automaton 7,

This result is a useful formal tool that can be used to show that some timed
languages are not recognizable by any timed automaton (without e-reset transitions).
It has been used, in op. cit., to show that the language accepted by the timed
automaton with e-transitions 7, in Figure 1.15 cannot be accepted by any automaton
in 7.

The language £(T,) is such that in every timed word

e in every open time interval (i,7 + 1), where ¢ > 1, at most a b can occur

e an a occurs at time ¢ + 1 if and only if a b did not occur in (4,7 + 1).

Formally,
L(T,) ={(7,t) | Vi e N. t; € (i,i+1]A((0; = aAt; = i+1)V(0; = DAL; € (i,i+1)))}

This example also shows that an e-transition that resets clocks and that lies on
a cycle cannot be removed in general.



Chapter 2

Verification of Real-time Systems

Abstract

In this chapter we introduce the task of automatic verification of real-time
systems. The timed automata model introduced in Chapter 1 is used as re-
ferring formalism for modeling real-time systems and the automata-theoretic
approach to verification is exposed. Important decidable problems and the
fundamental region construction for timed automata are reported in detail.
We then discuss implementation issues of timed automata and show that
important simplifications have to be done to the theoretical model to reach
implementability and practical feasibility of the verification. In particular, we
introduce the formalism of timed safety automata and their use as models in
the model-checking approach to the verification of properties expressed in the
real-time temporal logic TCTL. The syntax and the semantics of this logic are
defined with respect to the behaviors of timed safety automata. Finally, we
introduce the tools KRONOS and UPPAAL that are used to perform verifica-
tions on the examples of the remaining chapters. Many concepts and notations
introduced in this chapter are used, as for those of Chapter 1, throughout the
remaining part of the thesis.

A practical feasible automatic verification of real-time system is one of the main
objectives of the field of research in which this thesis can be placed. For this reason,
after the introduction of a clear basic theoretical model in Chapter 1, we show in
this chapter the main theoretical and practical formalisms and techniques that can
be used to reach this objective.

We start presenting the classical railway cross example that is suitable to show
the features of the timed automata formalism and to introduce some typical verifi-
cation questions. In Section 2.2 we complete the exposition of the model of timed
automata showing how they can be used to verify properties. To do this, we intro-
duce the region construction and show how it can be used to solve the emptiness
problem and the reachability test for timed automata. Then, we show how these two
problems can be used to verify the properties of the railway cross example.
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true, idle T, {}
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i {}
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true, out, {}

Figure 2.1: Automaton Train

In Section 2.3 a more practical formalism is introduced, namely the formalism of
timed safety automata. Timed safety automata are a simplified model with respect
to timed automata and are, in a sense, a lower level way to specify real-time systems.
They are introduced in detail and their features are compared with those of timed
automata. The semantic domain of timed safety automata is suitable to define the
semantics of the branching-time timed temporal logic TCTL that is introduced in
Section 2.3.5.

Finally, in Section 2.4, we introduce two existing automatic tools that perform
model-checking of (variants of) timed safety automata.

2.1 The train example

In this section we introduce a classical example to show how a real-time system
can be modeled as a parallel composition of timed automata. This example will be
used also as a basis to show the features of timed automata with non-instantaneous
actions that are presented in Chapter 3.

We consider an automatic controller of a gate in a railway cross. This example
was introduced in [LS85] and used in [AD94]. The system is simple but useful to
show basic features of the formalism and to formulate typical requirements. The
real-time system is modeled by three components: the Train, the Gate and the
Controller.

For simplicity we assume that one unit of time corresponds to a minute. In
Figure 2.1 it is shown the timed automaton which models the behavior of trains.
The set of symbols is {idle_T, approach, exit, in, out}. The automaton starts
in state 0. It is not required that a train enters the railroad crossing. This is modeled
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Figure 2.2: Automaton Gate
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Figure 2.3: Automaton Controller




34 CHAPTER 2. VERIFICATION OF REAL-TIME SYSTEMS

by the idle action which can iterate on the repeated state 0. However, a train could
enter the railroad crossing any number of times, provided that at least 3 minutes
elapse between the exit of a train and the approach of the subsequent (this is
modeled by the reset of the clock x before entering state 0 and by the constraint
x > 3 on the edge labeled approach). When a train is going to arrive to the railway
cross it is required to communicate with the controller, by the signal approach, at
least 4 minutes before it enters the crossing (the in event). The end of the crossing
is indicated by the event out and it is not constrained, but the train has to exit the
railroad crossing (exit event) at most 8 minutes after the approach signal.

The automaton modeling the gate is shown in Figure 2.2. The set of symbols is
{ idle_G, lower, down, raise, up }. In state O the gate is open and in state 2 it
is closed. The gate can cycle on its idle action idle_G on state 0 or state 2 forever.
This means that it can remain open or closed forever. When it is open and receives
the signal lower from the controller it has to close (down action) within 1 minute.
When it is closed, it can receives the signal raise from the controller and it must
open (up action) within 1 to 2 minutes.

The controller is shown in Figure 2.3. It manages the signals transmission. It,
as the other components, can idle forever. When it receives approach from a train,
it sends lower to the gate exactly after 1 minute. When it receives exit from a
train, it sends raise to the gate within 1 minute.

Consider, now, the whole system obtained by the parallel composition Train ||
Gate || Controller. The correctness requirements for this system are the followings:

1. Safety. Whenever the train is inside the gate, the gate must be closed.

2. Liveness. The gate never remains closed for more than 11 minutes.

2.2 The automata-theoretic approach to verifica-
tion

The approach to verification of untimed systems using automata theory follows the
following lines.

A reactive system can be modeled as a parallel composition of Biichi w-automata
S. The language accepted by S, L(S), represents the set of all behaviors of the
modeled system. The requirements of the system can be also modeled using a Biichi
automaton P that, generally, has a simpler structure than S and accepts the set
of all wanted “good” behaviors of the modeled system. The verification problem is
then posed as a language inclusion problem:

S Piff £(S) C £(P)

Unfortunately, in the timed case this kind of approach cannot be used in gen-
eral because it is shown in [AD94] that the timed language inclusion problem is
undecidable for timed automata.
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The undecidability result is due to the fact that the classes T and M are not
closed under complement, i.e. given a timed automaton 7" over an alphabet ¥ in one
of these classes, there not exists in general another automaton, in the same class,
that accepts a timed language which is the complement of £(T') with respect to the
universe {(X¥,7) | Vi € N. t; < t;41}.

The undecidability of language inclusion implies the undecidability of the trace
equivalence between timed automata (see Definition 1.16) that can be expressed as

However, there is a subclass of timed automata that are closed under comple-
ment, namely deterministic timed Muller automata introduced in Section 1.4.3. In
this case it is possible to apply the approach of verification by language inclusion.
In [AD94] a procedure is outlined to check a timed language inclusion £(S) C L(P)
where S is a parallel composition of timed automata and P is a deterministic timed
Muller automaton.

Another subclass of timed automata for which the language inclusion is decidable
is the class of Event-clock automata, introduced in [AFH99].

Decidable problems for timed automata that can be used to perform an auto-
matic verification of properties are the reachability test and the emptiness problem.
They are based on the region construction which is introduced in the following
section. In Section 2.2.2 it is shown how to perform verification using these tools.

2.2.1 The region construction

The fundamental idea behind the success of timed automata is the idea of clock
regions. It was introduced in [AD90] and it consists in observing that, given a finite
set of clock variables X and a finite set C of clock constraints on X, i.e. C C ¥ y,
the infinite space of all possible clock valuations V y- can be partitioned into a finite
set of equivalence classes such that given two clock evaluations v and v/ belonging
to the same equivalence class, for every clock constraint ¢ € C, v = ¢ iff v/ = 9.
In [AD94] the equivalence relation inducing this partition is said to be stable with
respect to the set of clock constraints C.

__ The equivalence classes are called clock regions and are defined as follows. Let
T =(Q,%,&,B,X) be a timed transition table. We are supposing that the clock
constraints of £ contains only non-negative integer constants and we have showed
in Section 1.6 how to reduce to this case. Let C be the set of clock constraints
appearing in £ and, for each z € X, let ¢, be the greatest integer constant to which
x is compared in C. For every real number ¢ we denote by |¢] the integral part of ¢
and by fract(t) the fractional part of t.

Definition 2.1 (Equivalence ~) The relation ~ between clock valuations of V y
is defined as follows: v ~ V' iff all the following conditions hold

1. For all x € X either |v(x)| = [V (z)] or v(z) > ¢ ANV (T) > ¢,
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Figure 2.4: Clock regions for X = {z,y} and ¢, = 2,¢, =1

2. For allx,y € X with v(z) < ¢; and v(y) < ¢y, fract(v(z)) < fract(v(y)) iff
fract(v'(z)) < fract(v'(y))

3. For all x € X with v(z) < ¢, fract(v(z)) =0 iff fract(v'(x)) =0

The relation ~ is an equivalence relation and the number of equivalence classes,
called clock regions, that it induces is bounded by n!-2"- [, _y(2¢; +2) where n is
the number of clocks in X'. The equivalence class of a clock valuation v is denoted
by [v] and clock regions are ranged over by «,d,... We denote by Reg(f) the set
of all clock regions for the timed transition table T.

~

A clock region « € Reg(T') can be uniquely identified by specifying both

- for every clock x € X, one clock constraint of the set
Co={r=clc=0,1,...;c,}U{c—1<z<c|ec=1,2,...c,} U{x > ¢, }

- for every pair of clocks x and y, with associated constraint ¢ — 1 < z < ¢ and
d—1 < y < d (for some ¢ and d), an inequality of the type fract(z)#fract(y),
where # € {<,=,>}. Equivalently we can use a clock constraint of the form
xr — Yy#c or y — x#c.

-~

Given a clock region o € Reg(T) and z € X we denote by Rr(a,x) the unique
clock constraint in C in the specification of a.
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y<1a/{y}

Figure 2.5: A timed transition table ﬁ

-~

Given a clock region o € Reg(T') and a reset v C X we denote by [y — O«
the clock region such that, for all x € 7, the constraint in « for x is substituted by
x = 0.

In Figure 2.4 it is shown the set of clock regions for a timed transition table
with X = {z,y}, ¢, = 2 and ¢, = 1. There are 28 regions. Note that regions can
be composed only by one point, e.g. the region [z = 1 Ay = 0] (point ¢ in figure)
or by open segments as [rt = 0 A0 < y < 1] (point a of the figure belongs to this
region). Another type of regions are open bounded areas as [0 <z < 1A0 <y <
1 A fract(z) > fract(y)]' (point b of the figure belongs to this) or, finally, open
unbounded areas as [t > 2 Ay > 1] (point d of the figure belongs to this).

For every clock region o we can compute the set of time successors of a, i.e. the
clock regions [v + 0] where v € @ and 6 € R”°. Graphically these regions can be
individuated following a diagonal line (having a 45° angle) from any point in a. We
denote by succ(«) the set of all regions that are time successors of «.

For example, in Figure 2.4, starting from point a we traverse, in order, the
regions, [0 <z < IAN0<y<1lAy—z>0,[0<z<lAy=1,0<z<1lAy>1]
z=1Ay>1],[l<z<2Ay>1],[z=2Ay>1],[z>2Ay>1].

Note that in this case we exit immediately from the starting region. In case of
the region [0 < x < 1A0 <y < 1Az —y > 0], starting from point b, we remain in
the same region for a while and then we traverse other regions.

Note that the region [ > 2 A y > 1] has only one successor, which is itself.

Using the concept of regions we can construct an untimed automaton that mimics
the untimed behavior of a timed transition table.

Definition 2.2 (Region automaton) Let T = (Q,%,E,B,X) be a timed transi-
tion table. The region automaton of T is denoted by Unt(T') and is the automaton

~

Unt(T) = (Q', X, &', B, R') defined as follows:

1Or equivalently [0 <z < 1A0<y < 1Az —y > 0]
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Figure 2.6: Region automaton Unt (ﬁ)

~

- the states in Q' are pairs of QQ xReg(T), i.e. a state is of the form (q, ) where
q € Q and « € Reg(T) is a clock region

- the states in B' are of the form (q,[v]) where ¢ € B and vy(x) = 0 for all
redX

~

- ((q,),0,(¢, [y — 0]") € & iff (¢,¢,7,0,¢) € E, a € Reg(T), and " €
succ(a).

~

An infinite run p of the automaton Unt(T") is of the form
so 5 s I g = (i, o) =5 - - where s € B’ and Vi € N.3(s;, 04, 5i41) €
E'. The label sequence of the run p is the sequence o005 - - - and it is denoted by

p.

A run p of Unt(T\) is progressive if and only if, for each clock x € X, there are
infinitely many ¢ > 0 such that «; satisfies x = 0V 2z > ¢,. A progressive run
corresponds to a divergent derivation of $(T).

Let p be a progressive run of Unt (7). In [AD94] it is proved that there exists a
time sequence ¢ such that (p,%) is the action sequence of a fair divergent derivation
of $(T).

As an example, in Figure 2.5 it is shown a simple timed transition table ﬁ and
in Figure 2.6 is shown its region automaton.

We can now define the region Biichi automaton associated to a timed automaton.
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Definition 2.3 (Region Biichi automaton)
LetT = (Q,%,&, B, R, X) be a timed automaton. The region Biichi automaton of T

is denoted by Unt(T) and is the automaton Unt(T) together with the set of repeated
states R' = R x Reg(T).

The untiming construction given in [AD94] states that for every divergent timed
word (7,%) accepted by T, the infinite word & is accepted by Unt(T") with the Biichi
acceptance condition.

Of course the Biichi acceptance condition in the untimed case acts as in the
timed one, i.e. a word is accepted if and only if its corresponding run p is such that
there exists a state (¢, a) that occurs infinitely many times in p and that belongs to
R’'. Biichi w-automata define the class of w-regular-languages.

It is in the light of the result on the untiming construction that in [AD94] the
languages L£(7) are called timed regular languages. The fact that untiming operation
preserves regularity of languages is not an isolate case. A study that treats more
generally the untiming construction can be found in [B95).

Finally, we want to remark that the region construction given in this section
can be done, in the same way, if we use timed automata with e transitions (see
Section 1.7). This means that the decidable tests exposed in the following section
can be applied also to the class 7T..

2.2.2 Decidability Results for Verification

We can use the region Biichi automaton of a timed automaton as a structure on
which we perform verification because its finiteness allows the application of several
algorithms.

One important decision problem that can be solved for timed automata is the
emptiness problem, i.e. deciding, given a timed automaton, if it accepts at least a
divergent timed word. In [AD94] it is shown that this problem is PSPACE-complete.
The suggested algorithm, given a timed automaton 7' = (@, X, €, B, R, X), acts as
follows:

1. Construct the region Biichi automaton Unt(T) = (Q', %, &', B', R', X)
2. Check if there exists, in the graph representing Unt(7"), a cycle C' such that:

e (' is reachable by a path along the graph that starts at a state in B’

e at least one state of R’ belongs to C'

e at least one state of {(¢,) € Q' |Ve e X.alE=(z=0)VaE (v >¢)}
belongs to C

3. If such a cycle C does not exist then the timed automaton T" accepts an empty
set of divergent timed words.
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Figure 2.7: Liveness property complement

The emptiness checking can be used to verify a property of a real-time system
modeled by a timed automaton 7" in the following way:

1. Model the complement of the property prop by a timed automaton T,
2. Construct the parallel composition 1" || Tprep
3. Check if L(T || Tprop) is empty using the procedure given above

4. If it is empty then T satisfies prop, else the property is not satisfied. In the
latter case the traces of the automaton can be considered counterexamples
that give diagnostic information about which situations make the property to
fail.

Recall the example of Section 2.1 and consider the liveness property 2. A timed
automaton modeling the complement of the property is shown in Figure 2.7. It
requires that exists at least a case in which the action close is performed and for
more than 11 subsequent time units the action up is not performed. Putting this
automaton in parallel with the system Train || Gate || Controller, if the resulting
automaton accepts an empty set of divergent timed words, then the property 2 is
satisfied.

Another important verification that can be performed using the region Biichi
automaton is the reachability test, i.e. deciding if a state of a timed automaton
T can be reached in a divergent run of 7.

To do this, given a timed automaton T = (@, %, &, B, R, X) and a state ¢, € @
we can act as follows:

1. Construct the region Biichi automaton Unt(T) = (Q', %, &', B', R', X)
2. Check if there exists, in the graph representing Unt(7), a cycle C' such that:

e ( is reachable by a path along the graph that starts at a state in B’
e at least one state of R' belongs to C'

e at least one state of {(¢, ) € Q' |Vr e X.alE(r=0)Va k= (z>c¢)}
belongs to C'

e ¢, belongs to C
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3. If such a cycle C' exists then the state ¢, is reachable, else it is not reachable.

The safety property 1 of the example of Section 2.1 can be checked using reach-
ability: we can check whether all states in which the train is inside the gate (state
2) and the gate is not closed (states {0,1,3}) cannot be reached in the parallel
composition Train || Gate || Controller.

2.2.3 Techniques for improving efficiency

The effective implementation of the algorithms outlined in the previous section has
to face the problem of the huge state explosion due to two principal factors:

e Composing in parallel different timed automata determines an exponential
number of states on the parallel composition automaton that has to simulate
the interleaving and the synchronization of all the actions of the components.

e The number of regions is bounded by n!- 2" - ] _y(2¢, + 2) where n is the
number of clocks of the given automaton.

Since the introduction of the idea of regions, a lot of researchers have studied
different ways to contain the size of the graph representing the state space to explore
when checking properties. Exposing the different techniques that have been devel-
oped in this field goes beyond the scope of this thesis. However, we want to briefly
show a simple idea that has been fruitful, namely the idea of clock zones. Another
important technique to increase efficiency is the use of symbolic model checking that
will be treated in the following section.

Recall the equivalence classes Reg(f) defined in Section 2.2.1. We have seen that
the equivalence ~ is stable with respect to the clock constraints of T However, there
exist stable equivalence relations with respect to the clock constraints of a given T
that correspond to a smaller number of equivalence classes than that of regions.

In [ACH"92] clock zones are introduced. A clock zone is a convex union of clock
regions and, like these ones, can be expressed by a conjunction of clock constraints.
The most important fact is that there exists a minimization algorithm, originally
introduced in op. cit., that constructs a minimal zone automaton, i.e. an automaton
which satisfies the same properties of the region automaton but that has a minimum
number of states. The use of zones and of other suitable data structures (e.g.
difference-bound matrices) have been very useful in making practically feasible the
verification of properties of timed system specified by timed automata (see, for
instance, [Yov96, ABG98|). As an example of how much the use of zones instead
of regions can reduce the state space we have reported, in Figure 2.8, the zone
automaton for the timed transition table 7T, of Figure 2.5 whose region automaton
was presented in Figure 2.6.
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Figure 2.8: Zone automaton for 7,

2.3 The model-checking approach to verification

We have used in this thesis timed Biichi automata as the main device for specifying
real-time systems. This model allows to specify typical requirements of real-time
systems and the theory developed in [AD94] and in the other papers concerning the
theory of timed regular languages is a good theoretical basis for the framework of
automatic verification of real-time systems. In Chapter 1 we showed how a timed
automaton uses fairness conditions (Definition 1.4 and the Biichi acceptance con-
dition) to specify those derivations of the timed transition system associated to its
timed transition table that represent the actual intended behaviors of the modeled
system. This type of model always allows time to advance in a state (recall rule
T1 of Figure 1.1 in Section 1.3). If, in a derivation, the time advances too much
so that the automaton cannot perform transitions any more, then the derivation
is discarded by the fairness condition of Definition 1.4 and it is not considered as
a behavior of the system. Moreover, the Biichi acceptance condition may discard
some other derivations that do not satisfy a condition depending on information
about the infinite sequence of states of the derivation (inf(r)).

It is easy to realize that an interpreter that attempts to generate a run of a given
timed automaton 7' cannot decide, being in one state of S(7') at a certain point
of a derivation, how to progress into a run of 7" using only the information of the
state. This is because the required information to do so is infinitary and global to
the automaton.

For this reason, in verification and model checking tools, the model used is
different. The information required for the progress at each state is local: the states
of T are equipped with an invariant condition on the values of the clocks which
must be always true when the control is in the state. This forces the automaton to
perform a transition to leave the state when the condition is going to become false.
This feature can be used to assure the progress of every derivation of the timed
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transition system defining the semantics of the automaton as the set of all infinite
derivations of the timed transition system even if they end with an infinite sequence
of d-transitions (this is possible only if the invariant condition is ¢rue). Acceptance
conditions are not used and the implementation of the model is relatively easy. This
model was introduced in [HNSY94] and is used in all simulators and verification tools
developed for timed automata. In op. cit. the focus is on divergence-safe real-time
systems, a subclass of the real-time systems that can be specified by timed automata.
We define this class in the following using Timed Safety Automata, introduced in
op. cit., which are representations of divergence-safe real-time systems.

A practical difference between the two models is in the process of specification
and/or design of a real-time system. It is in that process that one decides the
progress model to adopt and then, accordingly, writes the automaton. Timed au-
tomata are in a sense a higher level formalism with respect to timed safety automata
and often a real time system modeled by a timed automaton can be rewritten, adding
details and making some approximations, into a timed safety automaton. The re-
sult cannot be in general an equivalent system because, to reach implementability,
timed safety automata forbid unbounded inevitability. We will clarify this aspect by
an example below.

Moreover, timed safety automata have a state-base semantics. The model of
real-time systems that they use is the so-called branching-time model in which the
behaviors of a system are sequences of states where each state is typically repre-
sented by the values of a set of boolean variables. This type of semantics is useful
for defining the derivations of timed safety automata as models of formulas of timed
branching-time temporal logics. We introduce in Section 2.3.5 the logic TCTL
(Timed Computational Tree Logic) introduced in [ACD93]. It is a real-time exten-
sion of CTL [CES86]. The model checking of this logic with respect to timed safety
automata is implemented in the tool KRONOS (see Section 2.4.1) which is used in
Chapter 3. Moreover, timed safety automata with some additional features can be
model checked in UPPAAL (see Section 2.4.2) with respect to formulas that use a
restricted version of the branching time operators of TCTL. UPPAAL is used in
Chapters 4 and 5 to do some verifications.

It is important for us to remark that, often, new features added to timed au-
tomata can be easily transported to the model of timed safety automata to make
the automatic verification effective and feasible. In this way, the extensions can be
defined upon a clear theoretical basis and implementation details can be considered
a separate task to face to. In this thesis this is often done. In Chapter 3 we introduce
non-instantaneous actions into the model of timed automata. The translations that
we give into timed automata with e-transitions can be easily rephrased in transla-
tions into timed safety automata, which are used at the end of the chapter to specify
the railway cross system (making some approximations). In Chapter 4 we introduce
urgent transitions for timed automata but we show that it is possible to define both
urgent transitions and the relative translation using timed safety automata as un-
derlying model. Finally, in Chapter 5, we define timed non-interference for timed
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automata, but to reach decidability and effectiveness we give a state-base character-
ization of the property and use timed safety automata to perform the verification.

2.3.1 Timed Safety Automata

Timed safety automata specify real-time systems using the state-based branching-
time model, i.e. as sequences of states. In this setting labels on the transitions
are useless because the observable objects of the system are the states. However,
labels on the edges are useful in defining the synchronized product to recognize
synchronization transitions. For this reason, differently from the formulation given
in [HNSY94], we put labels on the states. As a matter of fact, they are included
in the tool KRONOS for this purpose and also note that they are useful to define
time-abstract bisimulations in [Yov96, TYO01].

The main purpose in the definition of timed safety automata is the imple-
mentability and, hence, the efficiency. To achieve these objectives, they are defined
in a way that minimizes the possible redundancies and that simplifies as much as
possible the task of verification. Recall Section 1.6 in which several simplifications
on the syntax of timed automata, which can be used without loss of generality, are
introduced. In particular, for timed safety automata we use the following grammar
for the clock constraints

Y o= true
| w4t
| @ — y#c
[ YA

where x,y are clocks, # € {<,<,>,>} and ¢ € N. Note that the diagonal
constraints are retained because their elimination introduces a consistent number of
states and this is not good from the point of view of efficiency.

The invariant conditions of the states are expressed as clock constraints, but
they have additional restrictions.

Definition 2.4 (Past-closed clock constraints) Let 1 € Wy be a clock con-

straint. 1) is past-closed iff for each clock valuation v € V y and for each § € R,
it holds

v+iEY=vEY

Examples of past closed clock constraints are ¢ = true or constraints that impose
upper bounds on the values of clock, e.g. v =2 <4 Ay < 3.

Definition 2.5 (Timed safety automata) A timed safety automaton A is a tu-
ple (Q, X, E,Inv, X) where Q is a finite set of states or locations, X is a finite alphabet
of symbols and X s a finite set of clock variables.



2.3. THE MODEL-CHECKING APPROACH TO VERIFICATION 45

= R>0, Vo e R>0 & < d=v+4 ): IIIV((])
(Qa V) L}(q,l/—i—(S)

Al

(¢, ¥,7,0,¢) €&, viEY, v\y ETnv(])
(¢,v) —(d',v\7)

A2

Figure 2.9: Rules for the transition relation of S(A)

Inv is a function assigning to every state its invariant: Inv:Q — Wy and it is
such that for all ¢ € Q Inv(q) is a past-closed constraint.

EC(QxVyxTyxXxQ)is a finite set of edges. If e = (q,¢,7,0,q') is an
edge, then q 1s the source, 1V s the clock constraint, v C X s the reset set, o is the
label and q' is the target.

The class of all timed safety automata is denoted by A and timed safety automata
are ranged over by A, A', ... Ay, Ay, ...

Note that timed safety automata are exactly timed transition tables without the
set of initial states plus the invariant assigning function. As for timed transition
tables we associate to a timed safety automaton A a timed transition system S(A)
whose structure is exactly the same but the rules are modified to take into account
invariants. They are showed in Figure 2.9.

Note that Rule A1 can let a time § elapse only if this respects the state invariant,
i.e. if the clock valuation continuously satisfies the state invariant while the time
increases by ¢ time units. Moreover, a transition can be executed only if its clock
constraint is satisfied by the current clock valuation and the clock valuation after
the reset satisfies the invariant of the target state. This is expressed in Rule A2.

We define now the possible behaviors of a given timed safety automaton A. We
define derivations that start at a given state of the timed transition system S(A).

Definition 2.6 ((¢,v)-paths) Let A = (Q,%,&,Inv, X) be a timed safety automa-
ton and let (q,v) be a state of the timed transition system S(A).

A (q,v)-path, denoted by (4., is an infinite derivation of the timed transition
system S(A) of the form sy = (q,v) LN I

The set of all (q,v)-paths, i.e. those infinite derivations that start at (q,v), is
denoted by 11 4(q,v). The set of all paths of A is the set

HA = U HA(Q: V)
(qu)e(QXVX)
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The time, label, action and state sequences for (q,v)-paths are defined in the
same way as for derivations of timed transition tables (Definition 1.3)

While the semantics of a timed automaton 7" is the timed language L£(T'), the
semantics of a timed safety automaton A is the set of all (¢, v)-paths, I14. The mo-
tivation of this definition can be found below when we use timed safety automata
as models of formulas of TCTL. Although the denotations are rather different ob-
jects, the underlying intuitive behaviors that are modeled by timed automata and
timed safety automata are similar. Giving an initial condition (g, 79) to a timed
safety automaton and considering the set of all (o, 1p)-paths as derivations of a
timed transition table, we can compare the two formalism and make some remarks
on their features.

2.3.2 Expressiveness of timed safety automata

Figure 2.10 shows a timed safety automaton Ay. It is an attempt to simulate the
behaviors of the timed transition table Tj of Figure 1.2. Note that the definition
of the (g, v)-paths does not require any fairness condition on the derivations. In
particular the fairness condition of Definition 1.4 for timed transition tables is not
imposed. This means that a timed safety automaton can remain in a state and let
the time advance forever if the state invariant allows it to do so (i.e. it is true).
Thus, in state 0 of Ay, it is not required that the automaton performs any transition.
This is an important difference between timed automata and timed safety automata,
namely timed safety automata cannot express unbounded inevitability (in branching
time temporal logics it is often expressed by the notation V¢). If an event/action
(represented by a transition between states) has to occur in the system, then it
must occur within a predefined amount of time. A behavior in which this time is
not specified, but it is known that the event/action will eventually occur, cannot
be modeled by timed safety automata. Timed automata can do this because fair
derivations are considered.

The main motivation for this limitation of the model of timed safety automata
is a practical one. In [HNSY94] the authors develop a symbolic approach to model
checking in dense real-time and, to do this, they want to express the algorithm
as a fix-point computation on suitable operators. This requires the definition of
a next-state operator that has to be used during the fix-point computation. The
denseness of the time domain force the time to advance, in a next-state relation,
by an infinitesimal amount but, on the other hand, the time is required to diverge.
A proper next-state relation can be defined for timed safety automata because the
time that the system can spend in a state is restricted by the state invariants, i.e.
by upper bounds, and thus the next-state relation is not required to let the time
diverge. Such a relation allows to compute reachability or possibility (3¢) and
its dual, invariance (V). Moreover, since timed safety automata cannot express
unbounded inevitability, checking such a requirement reduces to checking bounded
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Figure 2.10: Timed Safety Automaton A,

true, a, {x}

Figure 2.11: Timed Safety Automaton A, with additional constraints

inevitability which, in turn, can be reduced to the check of an invariance. This is
because time may not progress beyond the upper bound of any event without the
event occurring.

Returning to our example, if Ag performs the transition from state 0 to state 1
(labeled a) then the real-time requirement that the transition labeled b is performed
within one time unit can be expressed simply resetting the clock x when the state
1 is entered and setting the state invariant of state 1 to x < 1. In every derivation
with the rules of Figure 2.9 each occurrence of a is followed by a b within 1 time unit.
In state 2 of the automaton Ay it is used the same technique to impose a behavior
in which the transition labeled c is taken infinitely many times exactly every 2 time
units.

The timed transition table Tj is used in Section 1.4.1 to define a timed automa-
ton giving the set of repeated states {2}. We observed that the Biichi acceptance
condition is a further fairness condition on the derivations and that this set of re-
peated states expresses the requirement that, in every run of the timed automaton,
eventually a transition labeled ¢ is taken and a cycle of ¢’s ends every timed word
accepted by the automaton. This, again, is an unbounded inevitability requirement
and it cannot be modeled by a timed safety automaton.

The best that we can do to approximate the behavior of the timed automaton Tg
is to impose that the first ¢ is taken within a certain time, say 50 time units. This
can be done adding a new clock variable z to Ay and putting the invariant condition
2z < 50 both on state 0 and state 1. Although it is not needed, to underline the
required behavior we can add the constraint z < 50 to the transition from state 0
to state 2 (Figure 2.11).
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2.3.3 Parallel composition

The first aim of the definition of timed safety automata is implementability. Thus,
they must be a proper formalism to model real life systems and to effectively perform
automatic verification. For these reasons a parallel composition operator used to do
modular specification has to be defined.

The parallel composition between two timed safety automata is very similar
to the synchronized product between timed transition tables of Definition 1.7. In
addiction to this the definition has to specify the invariants of the states of the
parallel composition.

Given two timed safety automata A; and A, having a disjoint set of clocks their
parallel composition is a timed safety automaton denoted by A; | As. The set of
states, the edges, the alphabet and the set of clocks of the parallel composition are
defined as in Definition 1.7. The invariance function Invy, |4, is such that

v(Qla Q2) € Ql X QZ‘ InVAl\A2 (Qh QZ) = InVAl (ql) A InVA2 (q2)

where Q1 (Inv4,) and Q2 (Inv4,) are the set of states (invariants assigning func-
tions) of A; and A, respectively.

2.3.4 Divergence-safe real-time systems

Another aspect that we have to consider is the non-divergent (Zeno) (g, v)-paths.
We have seen in Chapter 1 that Zeno timed words have several properties and
characteristics that have to be considered in the theory of timed languages. However,
when applying the theory to specification and verification of real-time systems, they
are not meaningful and have to be ruled out. The first aim of the use of timed safety
automata is to model implementable real-time systems and thus, in this setting,
Zeno derivations are not considered. In [HNSY94] this aspect is treated giving a
fix-point algorithm (that has been implemented in KRONOS) that, given a timed
safety automaton A, individuates all the states of 8(A) from which the time cannot
diverge.

Definition 2.7 (Zeno states) Let A be a timed safety automaton and let S(A) be
its associated timed transition system. A state (q,v) of 8(A) is a Zeno state if and
only if given any (q,v)-paths, its time sequence t is convergent, i.e. Iy € R?: Vi €
N. t; < .

A state (q,v) of 8(A) is nonZeno if and only if there exists a (q,v)-path whose
time sequence t is divergent, i.e. YT € R°°. Ji e N: t; > 7.

Only nonZeno states are allowed in the timed transition system of timed safety
automata. For instance, consider the automaton in Figure 2.12. The state of the
form (¢,v) with ¢ € {0,1} and 4 < v(x) <5 are Zeno states. They can be detected
automatically using the algorithm given in [HNSY94] and can be easily eliminated.
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Figure 2.12: A Timed Safety Automaton with Zeno states

For instance, in the automaton in Figure 2.12 a solution is to turn the constraint
r < 4 in z < 5. Another solution is to turn the invariants and constraints of states
0 and 1 into z < 4.

Finally, note that a nonZeno state is such that there exists at least one divergent
path from it. Obviously, as for timed automata, the transition system can always
generate convergent derivations, but only divergent runs from a state are considered
behaviors of the modeled system. Thus, if all the states of a timed safety automaton
are nonZeno then there exists always a divergent path starting from each of them.
This is what is needed in the following to define computational trees denoted by a
TCTL formula.

Definition 2.8 (Divergent paths) Let A be a timed safety automaton and let
(q,v) be a state of its associated timed transition system S(A).

The set 11 (q,v) is the set of all (q,v)-paths whose time sequence is divergent.
The set of all divergent paths of A is

ny= J o¥X@v
(4)E(@x V)

The set I has to be considered the intended semantics of the timed safety
automaton A. This set of derivations, that can be seen as a set of sequences of
8(A) states?, satisfies the properties of fusion, suffix and stutter closure [HNSY94].
Moreover, the property of safe-divergence, which is an adapted version of the safety
in linear time [ADSS86], is satisfied. Namely, for every divergent derivation (g, if
all finite prefixes of 7, ,) are prefixes of derivations in II%, then m,) € II.

All these properties are needed to define the semantics of a TCTL formula. The
fundamental observation is that, given a nonZeno state (¢, v), the set of (¢, v)-paths
can be represented as a tree whose nodes are states of S(A). The root is the state
(¢,v) and the edges of the tree represent all possible transitions.

2Here we refer to every state s; of a (q,v)-path, which is different from the state sequence.
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2.3.5 The real-time logic TCTL

In this section we introduce the real-time temporal logic TCTL (Timed Computa-
tional Tree Logic). It is an extension of the Computational Tree Logic (CTL) of
[CES86] and was introduced in [ACD93] in a weaker version of that we present here3.
A model checking algorithm based on the region graph of a given timed graph (a
timed automaton without labels and without acceptance conditions) and on addi-
tional fairness checks was given in [ACD93]. Moreover, in op. cit., the authors show
that the model-checking problem for TCTL is PSPACE-complete.

In [HNSY94] a symbolic approach to model checking has been introduced for
a timed version of the p-calculus, the timed p-calculus T),. It is shown that the
approach can be used also for the model checking of TCTL formulas on divergence-
safe real-time systems represented by timed safety automata. The tool KRONOS
implements this approach and also the tool UPPAAL uses a restricted version of
this logic as language for requirements. The definition of the syntax and of the
semantics given in this section is close to the approach of [Yov96].

Let A = (Q,%,&,Inv, X) be a timed safety automaton and let Z be a set of
clock variables disjoint from X'. Moreover, let P be a set of boolean variables used
to describe observable information on the states of A and let P: Q — @(P) a function
assigning to every state ¢ in () the set of boolean variable of P that are true in gq.
The set of formulas ® X Zpis defined by the following grammar:

p o=y
| b
| 2.
|~
| 1V @2
|9013u<P2
|901VU<P2

where 1) € ¥y z is a clock constraint in which also clocks of Z can occur, b € P
is a boolean variable and z is a clock variable in Z. Clock variables of the set Z can
occur free or bounded by a freeze clock quantifier “z.”. The set of clock variables
that occur free in a formula ¢ is defined as follows, where we indicate by clk_var(i))

the set of clock variables occurring in a clock constraint ):

free(¢) = clk_var(¢)

free(b) =0

free(z.p) = free(yp) — {2}
free(—y) = free(p)

free(p; V o) = free(p;) U free(ys)
free(p; U o) = free(p;) U free(ys)
free(p YU ¢y) = free(p;) U free(ys)

3In particular, the freeze clock quantifier z.¢ was not included.
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A TCTL formula ¢ is closed if and only if free(p) C X i.e. if every occurrence
of a clock variable that does not belong to the timed safety automaton is bounded
by a freeze quantifier.

The truth value of a closed TCTL formula ¢ € (I)X,Z,P is given by a satisfaction
relation E=rory, defined in the following by structural induction We have seen in the
previous section that the set of all divergent (g, v)-paths, , is a suitable semantic
domain for a branching time logic. The relation FErcrr spemﬁes if ¢ is true or false
in an eztended state of the transition system S(A). The modal operator U (until)
ranges over the divergent (g, v)-paths of I (g, v).

An extended state (q,v, () is such that (¢,v) is a state of §(4) and ( € Vz is a
clock valuation for the (freeze quantified) clocks z € Z of .

Let m(g.):50 = (¢, V) Loy sy sy-- be a (q,v)-path of 8(A). A position p of
T(gw) is a pair (i,0) € N x R2%. Each position (i, 8) represents the set of states
through which the derivation m,,) passes while time elapses from state s; to state
si11 in the following way. The pair (i,0) represents the exact position ¢ of the
derivation m(,,) and for all § such that 0 < § < (t;41 — ¢;)* the position (i,4)
represents the intermediate “state” between s; and s;;; of the derivation in which
a time ¢ has elapsed. A natural order < is defined between positions:

(i,8) < (j,6) iff i < jV(i=j A6 <)

The set of positions of 7(,,) is denoted by Pos(7(,,)). For each position p =
(4,0) € Pos(m(g,,)) we denote by A(p) the time that has elapsed from position (0, 0)
to position p:

Ap) =0 + > l;
0<j<i—1 Al;ER>O

The following is the definition of Ercry:

(¢,v,¢) ErcrL ¢ iff vU(kEY

(q v, C) ):TCTL b if b € P(Q)

(¢,v,¢) FrotL 2.9 iff (¢,v,(\{z}) FrerL ¢

(¢, v, ¢) Ercrr ~¢ iff (g,v,C) FreTL ¢

(q,’/ C) ):TCTL o1V iff (q, v, C) ):TCTL @1 Or (q,’/ C) ):TCTL P2
(¢,v,¢) FrorL w1 U @ it 7,y € ¥ (q,v): Ip = (i,6) € Pos(mgu)):

s; = (qi, vi) A (qi, vi + 0, + A(p)) ):TCTL Y2
AP = (j,0') € Pos(mg)). (0" <pAs; = (q;,7;))
= (q;,v; + 6", ¢+ A(p')) Frete 01V ¥2
(¢,v, Q) FEret o1 YU oo iff YV 7(g,) € IF(q,v). Ip = (i,6) € Pos(m(g,u)):
si = (i, vi) N (i, v + 6,4+ A(p)) Frere @2
AP = (j,0') € Pos(m(gw)). (1" <pAs; = (q;,7;))
= (gj,v; + 6", C+A(p)) Frern @1V @2

4t; and t;, represent the times of the time sequence associated to the derivation T(q,v)-
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We say that a state (¢g,v) of $(A) satisfies a formula ¢ if and only if it holds
that (¢,v, (o) ErcrL ¢, where (p is such that Vz € Z. (y(z) = 0. The timed safety
automaton A satisfies a formula ¢ if and only if every state of $(A) satisfies ¢.

The U operator is the “until” operator. A state (¢,v) satisfies ¢;TUp, if and
only if there exists a (¢, v)-path along which a state satisfying ¢, is reachable and
all intermediate states starting from (g, v) satisfy ¢; or ¢y. The formula ¢Vl ¢y
requires the same, but for all (¢, v)-paths.

In the following we give some useful macro that are often used to increase the
readability of a TCTL formula. For each of them we show how it can be translated
into a formula written in the basic syntax given above. The usual abbreviations of
the classical logic are not given but are used with their usual meaning.

A0 is the formula to express reachability. It is satisfied by a state (q,v) iff there
exists a (g, v)-path in which eventually a state satisfying ¢ is reached. The
translation is truedl .

VO expresses invariance. It is satisfied by a state (g, v) iff ¢ is satisfied in all states
reachable along all (¢, v)-paths. The translation, as usual, is =30—¢.

VOp expresses inevitability. It is satisfied by a state (¢,v) iff in all (¢, v)-paths a
state in which ¢ is satisfied is reachable. The translation is trueVifp.

J0p expresses possible invariance. A state (q,v) satisfies it iff there exists a (g, v)-
path along which the formula ¢ is satisfied in all reachable states. The trans-
lation is =VO—.

IO <. is bounded reachability. A state (q,v) satisfies it iff there exists a (g, v)-path
along which a state satisfying ¢ is reachable within ¢ time units. The transla-
tion uses the freeze quantifier: 2.30(p A z < ¢).

VO<cp is bounded inevitability. A state (q,v) satisfies it iff in all (¢, v)-paths a state
satisfying ¢ is reachable within ¢ time units. The translation is z.Y0(pAz < ¢).

Using the freeze quantification a lot of other operators can be defined using
different clock constraints on the frozen clock.

Usually, when specifying a property for a given timed safety automaton A, the
TCTL formula has the form .y — ¢ where @i is a formula specifying the initial
conditions. Generally, such a formula is simply a conjunction of boolean variables
that are true only on those states of A that we want to consider initial states in the
same sense of initial states of timed automata.

Examples of specifications given as TCTL formulas can be found in all subsequent
chapters when we specify the examples as timed safety automata and use a tool to
perform automatic verification.

In [HNSY94] it is shown that we can check if a timed safety automaton is nonZeno
verifying that the following TCTL formula is satisfied:
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Pinit — YO(IO=1true) (2.1)

The idea is the same as the one exposed in Section 1.6.2 in the timed automata
setting.

The model checking problem for the TCTL logic is decidable and it is shown
that it is PSPACE-complete [ACD93]. In the same paper the authors give a model-
checking algorithm for a weaker TCTL on different objects than timed safety au-
tomata, namely timed graphs. The algorithm is based on the region construction
(see Section 2.2.1). In [HNSY94] a symbolic model-checking algorithm is given for
TCTL and for a timed version of the p-calculus. It can be properly defined only if
the timed safety automaton to model-check is nonZeno. For this reason the authors
give a fixpoint algorithm that can be used to check the formula 2.1 on any timed
safety automaton. If some of its states result to be not nonZeno they can be mod-
ified in order to eliminate the Zeno derivations as we saw in Section 2.3.4. A good
survey on the algorithmic techniques and data structures introduced to perform an
efficient model-checking of timed safety automata can be found in [Yov96].

2.4 Tools

The last step of the simplification process of timed automata toward implementation
is a little step in which the model of timed safety automata is adapted to several
real implementations. The studies in the framework of timed automata and of real-
time systems in general have led to the development of several tools for automatic
verifications.

The following is an incomplete list of some tools with some references:

KRONOS Performs the model-checking of TCTL formulas with respect to timed safety
automata [DOTY96].

UPPAAL Performs the model-checking of properties written in a restricted TCTL logic
with respect to slight variants of timed safety automata [BLLT96, LPY97].

HYTECH The HYbrid TECHnology Tool is a tool for the analysis of embedded systems.
It computes the condition under which a linear hybrid system satisfied a tem-
poral requirement. Hybrid systems are systems composed of both discrete and
continuous components [ACHH93, ACH"95, KPSY93|. Since timed automata
are particular hybrid systems they can be verified with this tool [HHW97].

SGM It is a State Graph Manipulator tool for real-time system specification and
verification. It uses various sophisticated verification techniques developed in
the last years [HW98, WHO1].
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In this section we want to introduce two automatic tools that will be used in
the subsequent chapters to perform automatic verification of the systems used as
examples.

2.4.1 KRONOS

KRONOS has been developed at VERIMAG, France. It performs model-checking of
timed safety automata with respect to the logic TCTL. Actually, the supported logic
is slightly weaker than the one introduced in Section 2.3.5. In particular, the use
of the freeze clock operator is restricted. It can only be used for defining bounded
operators such as VO, or 300y, where # € {<,<,=,>,>} and c € N.

The definition of each component of a timed system is given by a description
program with a simple syntax that can be used to define the states, the invariants,
the boolean variables and the transitions of a timed safety automaton. Although
the semantic model is state-based, KRONOS allows labels on the transitions. The
synchronization between the components acts as parallel composition of timed safety
automata (see Section 2.3.3).

KRONOS can be used to construct the parallel composition of several timed
safety automata on which the verification can be performed. With some restrictions,
the construction of the parallel composition can be done on-the-fly while performing
a checking. This potentially saves space and time.

The verification engine is based on the symbolic model checking approach in-
troduced in [HNSY94|. The details of the implementation can be found in the
literature referred in [DOTY96]. An example of analysis using KRONOS can be
found in Section 3.6.

2.4.2 UPPAAL

UPPAAL is developed by a team at University of UPPsala in Sweden in collaboration
with a team at AALborg University in Denmark.

It is one of the fastest and usable tools in this area. The usability is due to the
possibility of specifying the automata graphically and to the existence of a graphical
simulator on which some runs can be simulated. The efficiency is due to the fact
that it restricts the type of properties that can be checked on those properties that
can be reduced to a reachability test. Hence, the verification engine can be better
optimized for the task of reachability.

The theoretical papers on which UPPAAL is based analyze the set of properties
that can be reduced to reachability and it turns out that many typical real-time
requirements can be checked with this restriction [ABBL98, ABG98]. In [LPY95]
there is an overview of the algorithmic techniques used in UPPAAL to reduce the
state-space explosion on the side of the number of regions and also on the side of
parallel composition.
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UPPAAL allows to specify a slight variant of timed safety automata. In particu-
lar, a system is represented as a network of timed safety automata. This term simply
means that the non-synchronization transitions of the components are considered
internal actions and that synchronization is modeled by synchronization channels.
A synchronization channel can be a normal channel (to specify a synchronization
between two timed safety automata) or a broadcast channel (recently supported)
that allow synchronization of several components.

Moreover, it is possible to define local and global variables that are not clocks,
but integer or boolean variables (or recently arrays). These non-clock variables can
be initialized to a value and a test on their value can be inserted in the constraints
of a transition. They can be assigned only by the execution of a transition that
perform the assignment (as it can reset clocks).

The properties that can be model checked can be expressed by this syntax

¢ == JOExpr
| VOExpr
| VOExpr
| 30Expr
| VO(Expr — JQExpr)

where Expr can be a boolean expression involving variables or a dot expression
of the form P.s that is satisfied only if the component P is in state s.

We refer to the online documentation and to the literature referred at
http:\\www.uppaal.com for a more precise description of the features of the tool.

Two examples of analysis using UPPAAL can be found in Sections 4.7 and 5.7.
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Chapter 3

Non-Instantaneous Actions

Abstract

In this chapter we propose timed automata with non-instantaneous actions,
a model that allows representing in a suitable way real-time systems. Timed
automata with non-instantaneous actions extend the timed automata model
by dropping the assumption that actions are instantaneous, that is an action
can take some time to be completed. Thus, for an action o, there are two
particular time instants, the initiation of the action and the completion of the
action, which may occur at different times. We investigate the expressiveness
of the new model, comparing it with classical timed automata. In particular,
we study the set of timed languages which can be accepted by timed au-
tomata with non-instantaneous actions. We prove that timed automata with
non-instantaneous actions are more expressive than timed automata and less
expressive than timed automata with e transitions. Moreover, we define the
parallel composition of timed automata with non-instantaneous actions. We
show how real systems can be more clearly and suitably modeled by them
specifying the railway cross system of Section 2.1. We point out how the
specification by means of a parallel composition of timed automata with non-
instantaneous actions is, in some cases, more convenient to represent reality.
To reach effectiveness for automatic verification we define a transformation to
represent a parallel composition of timed automata with non-instantaneous
actions by a timed automaton with € transitions. However, with some ap-
proximations, the parallel composition can be modeled also by timed safety
automata. We reduce to this case and prove the properties of the railway
cross system with KRONOS.

This contribution was originally proposed in [BDT00]. A revised version
has been published in [BDTO01].

When considering real systems in many cases the events are not instantaneous,
but have a duration. In this chapter we propose a model, timed automata with
non-instantaneous actions, which extends the timed automata model by dropping
the assumption that Y-transitions are instantaneous: in our model an action can
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take some time to be completed. Throughout this chapter we refer often to actions
rather than events. This is because events are generally instantaneous while the
actions performed by the modeled system usually have a duration. We remark that
in the proposed model instantaneous transitions can be modeled as well.

The new model allows specifying in a natural way systems in which the actions
have a duration. To model non-instantaneous actions, every edge of the automaton is
equipped with two constraints, an initiation constraint and a completion constraint.
An edge can be taken when its initiation constraint is satisfied by the current value
of the clocks and it can be completed only when its completion constraint is satisfied.
Analogously, every edge is associated with a set of clocks which are reset to zero
when the action is initiated (initiation reset) and a set of clocks which are reset to
zero when the action is completed (completion reset).

An action with a duration can be modeled, using timed automata, with two
actions, corresponding to the initiation and the completion of the event. However,
in this way, the resulting automaton has a different alphabet with respect to the
original one and the information that the event is unique is lost.

The notion of timed language accepted by a timed automaton is redefined in
the context of timed automata with non-instantaneous actions. Different notions of
language acceptance will be defined, which differ in the choice of when an action
occurrence must be considered, either on its initiation or on its completion. The
different acceptance conditions correspond to different views of the system, on which
different properties can be considered: for example, some property may refer to the
initiation of an action and the completion of another one.

In Section 3.2 we investigate the expressiveness of the new model, comparing
it with classical timed automata. A main result is that timed automata with non-
instantaneous actions are strictly more expressive than timed automata and strictly
less expressive than timed automata with € edges.

Afterward, we define the parallel composition of timed automata with non-
instantaneous actions in Section 3.3. The key idea is that synchronization actions
with a duration must be taken synchronously by all the participating components
for all the duration of the action. On the other hand, independent actions from
different components can be executed in parallel allowing their interval of duration
to overlap. In other words, this means that during an execution of an action of one
component other actions can be initiated or completed by other components. This
kind of behavior is hard to define with a syntactical definition as done for timed
automata in Section 1.4.2. We provide a semantic characterization and then we
show, in Section 3.5 how to construct a timed automaton with e-transitions that
is equivalent to the parallel composition of some given timed automata with non-
instantaneous actions. This construction makes effective the use of timed automata
with non-instantaneous actions in automatic verification tasks.

Regarding this last aspect, in Section 3.4 the train example presented in Sec-
tion 2.1 is modeled using non-instantaneous actions. Then, in Section 3.6 the exam-
ple is adapted to the model of Timed Safety Automata (see Section 2.3.1). The tool
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KRONOS is then used to verify automatically the properties of the railway cross
system.

3.1 The model

We extend the class T of timed automata with Biichi acceptance condition in the
following way.

Definition 3.1 (Timed Automata with non-Instantaneous Actions)

A timed automaton with non-instantaneous actions N is a tuple (Q,%,E, B, R, X),
where: Q) is a finite set of states, ¥ is a finite alphabet of symbols, £ is a finite set
of edges, B C @ s the set of initial states, R C () is the set of repeated states, X is
a finite set of clocks.

Each edge e € € is a tuple in Q X Uy x Ty XU X Vp xT'y X Q. Ife =
(q, V%~ 0,90, 79¢,q') is an edge, then q is the source, ¢ is the target, ¥ and ¢° are
the initiation constraint and the completion constraint, respectively, o is the label,
vt and ¢ are the initiation reset and the completion reset, _respectively.

The timed transition table associated to N is the tuple N = (Q, %, &, B, X).

The class of all timed automata with non-instantaneous actions will be denoted
by N. Automata in this class are ranged over by N, N',..., Ny, Na,.. ..

The timed transition table of a timed automaton with non-instantaneous action
differs from a timed transition table of a timed automaton only in the definition of
edges. The timed transition system used to define derivations and runs is conse-
quently modified as follows. The states of 8(IV) are of two kinds:

e a pair (¢,v), where ¢ € @) is a state of N and v € V y is a clock valuation;

e a pair (?w,%q),u) whereo € ¥, € Uy, vy €l y, g€ Qand v € Vy. These
states represent the execution of action o after its initiation.

For an action o, there are two particular time instants, the initiation of the action
and the completion of the action, which may occur at different times. Following
the notation of [JM87] we use 01 to denote the initiation and o | to denote the
completion. The transitions of S(JV ) are labeled either by a real number representing
the elapsed time, or by an initiation or a completion of an action in X.

The rules to derive the transitions of (V) are defined in Figure 3.1.

Rule N1 represents the case in which the automaton is not executing any action
and let the time to elapse. The execution of an edge e = (q,¢" v, 0,¢°, ¢, ¢') is
modeled by a transition of $(N) from a state (¢,v) to the state (F)(,‘/}cﬁ/c’q/), \7)
in which o is initiated (Rule N2). Note that this state records the completion
constraint and the completion reset of e, to be considered for the completion of
o. In this state some time can elapse: in this case 8(N) reaches a state where o
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Figure 3.1: Rules for the transitions of S$(N)

continues to be executed, but the valuation of clocks is modified according to the
elapsed time (Rule N3). When the execution of o terminates, $(/V) reaches a new
state whose first component is the target state of e and the clock valuation results
from the completion reset of e (Rule N4).

As for timed automata with alphabet X, the languages accepted by timed au-
tomata with non-instantaneous actions N = (Q, %, &, B, R, X) are timed languages
over Y. The difference is that here we have different acceptance notions: we can
choose, for each action o € ¥, if we want to consider the time of its initiation or the
time of its completion. If, for some action o, we choose to consider its initiation, o
is considered as occurring when o1 occurs, and o] is ignored, while, if we choose
to consider its completion, o is considered as occurring when o] occurs, and o1 is
ignored.

Given A C ¥, let us denote by At ={c1|oc € A} and Al = {0l |0 € A} the
set of initiations and completions of the actions in A, respectively.

Definition 3.2 (Selected Sequences)

Let N = (Q,%,E,B, R, X) be a timed automaton with non-instantaneous actions
and let r = sq o, 51 Dy bean infinite derivation of the timed transition system
S8(N) such that sy = (q,v), ¢ € B and v(x) =0 for every x € X'. The time sequence
and the label sequence of r are defined as in Definition 1.3. Moreover,

- Given a partition ¥ = (I,C), IUC =% and INC =0, the (I,C) selected
action sequence of r is the projection of the event sequence of r on the pairs

{Ltlielt uCl).

- The state sequence of r is the projection of the sequence of states sy Sy Sg - -+
of r on the states {¢; € Q| s; = (¢;,vi), i=0V (i>1 ANl ,€X])}
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- The set of infinitely many repeated states of r is denoted by inf(r) and is the
set of locations q € @) that occurs infinitely many times in the state sequence

of r.

Note that the state sequence, used in the following to define acceptance with
the Biichi acceptance condition, is composed of states ¢ € Q of N because a new
occurrence in the state sequence is added only after a completion of a ¥-transition.

Definition 3.3 (Runs) Let N = (Q,%,&,B,R, X) be a timed automaton with
non-instantaneous actions and let r be an infinite derivation of the timed transi-
tion system 8(N). Then r is called a run of N iff

e 1 is a fair derivation (Definition 1.4 applied to derivations of S(N))

e inf(ryNR#(

Now we define the ways in which a timed automaton with non-instantaneous
actions can accept timed words on X.

Definition 3.4 (Selection, Initiation and Completion Acceptance) Let N =

(@Q,%,E,B,R,X) be a timed automaton with non-instantaneous actions, and let
(I,C) be a partition of X.

e A timed word w over ¥ is (I, C) selection accepted by N if a run r of N exists
such that, for all o € I,0' € C, w =v[o/ot ,0'/d’ | ], where v is the (I,C)
selected action sequence of r and vjo/o T | denotes the sequence v in which
every symbol o T € 11 is substituted by o (analogously for vjo/o | |). The
set of timed words (I,C) selection accepted by N is called the (I,C') selection
accepted language of N and is denoted by L oy(N).

o A timed word w over ¥ is initiation accepted by N iff it is (X,0) selection
accepted by N. We shall use L'(N) for Lis g (N), to denote the initiation
accepted language of N.

e A timed word w over ¥ is completion accepted by N iff it is (0, %) selection
accepted by N. We shall use L°(N) for L5, (N), to denote the completion
accepted language of N.

The classes of timed languages selection accepted (for any (I, C) ), initiation accepted
and completion accepted by automata in N are denoted by L°(N), L'(N), LYN),
respectively.

As an example, consider the automaton N; of Figure 3.2.
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>

x=1,{x}, a true, {} 0<x<1,{},bx=1,{x}

Figure 3.2: Automaton N;

(0,2 = 1) 250 true0 0y & = 0) 220 truenoy, @ = 0.2) 25(0,z = 0.2) 25
— —

(O,x = 0.3) L( b (z=1,{2},0),T = 0.3) ﬂ)( b (z=1,{z},0),T = 1) L(O,x =

0) —»

(0,2 =1) 250 (ruepoy, & = 0) ~5(0,2 = 0) - - -

- (at,1)(b1,1.3)(at,3)--- is the ({a,b}, D) selected action sequence of r. It
corresponds to the ({a, b}, D) selection accepted timed word (a, 1)(b,1.3)(a,3) - - -

- (al ,1.2)(b] ,2)(al ,3)...1is the (0, {a, b}) selected action sequence of r. It
corresponds to the (0, {a, b}) selection accepted timed word (a, 1.2)(b, 2)(a,3) - - -

- (a1 ,1)(b) ,2)(at,3)...1s the ({a}, {b}) selected action sequence of r. It
corresponds to the ({a}, {b}) selection accepted timed word (a, 1)(b,2)(a, 3) - -

The initiation accepted language of N; is the set
Li={(@,t) |VieN t; € (i,i+ 1A (s =aNt;=i+1)V(0; =bAt; € (i,i+1)))}

Consider, now, the automaton N, of Figure 3.3. Its completion accepted lan-
guage is

L2:{(E,¥) |VZEN ti<ti+1,3w>OIViEN.O<ti<t0+1—UJ}

We want to remark that the timed languages L, and Ly are the same languages
introduced in Section 1.7 and accepted by the timed automata with e-transitions
T, (Figure 1.15) and T, (Figure 1.14) respectively. This fact will be used in some
proofs below.

3.2 Expressive power of the model

In this section we prove that the expressive power of timed automata with non-
instantaneous actions is greater than that of timed automata (without e edges). To
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true, {x}, ¢, x >0, {y}

trug, {},c,x<land0<vy,{y}

Figure 3.3: Automaton Ny

achieve this result we first introduce a useful device, the simulator automaton, that
will be useful to prove the theorems and to define the effective parallel composition
in Section 3.5.

Moreover, we state intermediate results on the subclass of initiation and com-
pletion accepting timed automata.

3.2.1 Simulation

Definition 3.5 (Simulator Automaton) Let N = (Q,%,&, B, R, X) be a timed
automaton with non-instantaneous actions. The simulator automaton of N is a
timed automaton TN defined as follows: TV = (Q',X1 UX | &', B, R, X) where
Q = QU {ql e € &} and for all e = (q, V", ', 0,9%,7¢,¢) € &, E contains
(¢, 9" 7" 01, qe) and (ge, ¥, 7, ) . ¢').

The simulator automaton 7" simulates all runs of N retaining both initiation
symbol and termination symbol for each action. Its actions are instantaneous and
represent initiating instants and terminating instants of non-instantaneous actions
of N. In the following, to save notation, we omit the superscript N in 7V when it
is clear from the context that 7" is the simulator automaton of N.

The following definition introduces a useful technical device that we use in the
proofs.

Definition 3.6 (Correspondence relation)

Let N = (Q,%,€,B, R, X) be a timed automaton with non-instantaneous actions
and TN = (Q', L1 U], &', B, R, X) be its simulﬁor automaton and consider their
associated timed transition systems S(N) and S(TN). The correspondence relation

pn between states of S(N) and S(f]\V) is defined as follows:

1. forallqe @, ¢ €Q andv eV y we let
pn((q,v), (¢, v)) iff g =¢
2. forallo e, Y eV¥y,vely, ¢ €Q, ¢ €Q andv €Vy we let

pN((?(wcﬁc,qI),y), (qe,v)) iff q. is the state of the simulator automaton TN
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associated to the transition e = (q, V%, ", 0,0 7%, ¢') € € of N and this non-
instantaneous transition is represented in S(N') by the state (0 (ye yeq), V).

The following Lemma states the level in which the simulator automaton is equiv-
alent to the main automaton.

Lemma 3.1
Let N = (Q,%,E,B,R, X) be a timed automaton with non-instantaneous actions
and TV be its simulator automaton. Let us denote T by T.

1. Let N be a run of N, there exists a run r’ of T such that the label sequence
of T is equal to the label sequence of rv

2. Let T be a run of T, there exists a run v of N such that the label sequence
of 'V is equal to the label sequence of r™

Proof. We first construct a run of 7" having the same label sequence of a

given run of N and such that every state corresponds to the ones of the run of N.
1y I I i
1. Let V¥ = sy s =5 . 25 sV 256N, .. be arun of N. Consider the
ir 17 1 iy
runr? = sf 5 sT = . 25 5T 5 6T, . of T inductively constructed as follows.
The initial state is s3 = s} = (g0, ) with qo € B and vy(z) = 0 for every z € X.
Thus rT start at the same instant and in the same initial state of V. Note that

pn (s, sd’) holds.

Let j be a natural number. Suppose by induction that S(N) and $(T) are in states
si and s] such that py(s),s}). Consider, now, the (j 4 1)-th step of 7V, i.e. $(N)
moves to state s7,, with label /Y. Then $(T) can move to a correspondent state
having a transition with the same label:

A~

o if $(IV) uses the rule N1 to let a time § € R>? to elapse, then $(T) uses T'1
to let the same time § to elapse. Note that, by definition of py, 8(7) reaches
a state s7,, such that py(sf,,s],,).

e if S(N) uses the rule N2 to start an action then, by induction, we know that
s;r = (q,v) and, by the definition of the simulator automaton, we know that

&' contains a transition (q,v*,7",01 ,q.). Thus, S(f) can move with the rule
T2 to the state (ge, #\7") = sj,, Note that, again by definition, pn (s}, s7},).

o if S(N) uses the rule N3 we know, by induction, that s;r is a correspondent

state of s, 50 5] = (e, v) for an certain e € £. This time $(T) use T1 again
to reach the state (ge,v +0) = 57,
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o if S(]/\\f) uses the rule N4 we know, by induction and by definition of the simu-
lator automaton, that s7 = (g, v) where & contains e = (¢,9",~", 0,9, 7", ¢)
and &' contains
(ge, V7504 ,¢'). So S(T\) can use the rule T2 to reach the state (¢',v\7¢) =
SJTH. Reached states are correspondent.

Step 2. is symmetric to step 1. W

Definition 3.7 (Relabeled Simulator Automaton)
Let N = (Q,%,€,B, R, X) be a timed automaton with non-instantaneous actions
and TV its simulator automaton. Let (I,C) a partition of ¥.

The renaming function g ) : (X1 UX] ) = (XU {€}) is defined as follows:

ifoel

9(1,0)(0T)={ ifoeC
ifoel

gao(od) = { o ifoeC

N Qg

The relabeled simulator automaton of N, denoted by T(]XC), s the simulator
automaton TN where for all e € £ the transition label | € ¥4 UX | of e is renamed
by ger.c) (D).

Note that the relabeled simulator automaton of N has an alphabet ¥ U {e} and
belongs to the class T, (see Section 1.7).

The following Lemma conclude the construction of a simulator for a timed au-
tomaton with non-instantaneous actions.

Proposition 3.2 Let N be a timed automaton with non-instantaneous actions and
let (I, C) be a partition of its alphabet ¥. Then Lf; oy(N) = ,C(T(]XC))

Proof. Let r be a run of N and (lo,,)(l1,%1) ... be the label sequence of r. Let
v be the (I,C) selected action sequence of r. By definition, v is obtained by the
projection of the event sequence of r on the pairs {(I,¢) |l € I1 UC] }. The timed
word accepted by N through the run r is obtained by a substitution as w = v[o/
o1 ,0'/o"| | where 0 € I and o' € C.

There exists, by Lemma 3.1, a run 7’ of TV with the same label sequence
of r. There exists also a run " of T(JXC) such that the label sequence of " is
(9¢r,c)(lo), o) (g(r,c)(I1)s 1) .. The timed word o' accepted by T}y -y through the
run " is the projection of the label sequence on the pairs {(I,¢) | [ € £}. Note that
in the last projection labels equal to € are not considered.

By the definition of the relabeling function g(; ) and the substitution above we
have o' = w. This shows L{; o) (N) C L(T]} ¢)-
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To obtain the language equivalence among N and T(JX o) we have to show the

converse: E(T(]}’,C)) C L{;c)(N). This can be obtained in the same way using the
symmetric result stated in Lemma 3.1.

Note that a relabeled simulator automaton T(]IV ) is a timed automaton with
e-transitions, but its particular structure does not allow it to accept finite timed

words with infinite fair derivation of the timed transition system S(T(]}f cy)- Thus,
we have not to consider the case of finite timed words (see Section 1.7).

3.2.2 Classes inclusions

Now we can relate the expressive power of the class of automata introduced in this
chapter with respect to the previous introduced classes.

Theorem 3.3 1. £(T) € LI(N), 2. £(T) C L)

Proof. To show that £(T) C £'(N) and £(T) € L(N), we give a construction
that, given a timed automaton 7', builds a timed automaton with non-instantaneous
actions N such that £(T) = L'(N) = L°(N).

Let T = (Q,%,&,I, R, X) be a timed automaton, the corresponding timed au-
tomaton with non-instantaneous actions is N = (Q, %, &', I, R, X'), where

o X' =X U{xo} with zg ¢ X
e for each e = (q,v,7,0,¢") € €, & contains (¢,¢,vU {zo},0,70 =0,0,q")

All actions of N are forced to be instantaneous because the fresh clock z, is
reset at the initiation of the every transition e and it is required that xo = 0 at
the completion of e. This means that N acts as 7' in all runs, and hence £(T) =
LY(N) = L£L°(N) no matter the given selection for N.

To show that the class £(T) is a strict subset of £(N), we consider the timed
automaton with non-instantaneous actions N; in Figure 3.2. The language initi-
ation accepted by this automaton, L, is equal to the one accepted by the timed
automaton with e edges shown in Figure 1.15 of Section 1.7. There, it is recalled
that this language cannot be accepted by any timed automaton without € edges (see
[BPDGYS]).

Analogously, to show that the class £(7) is a strict subset of £°(N), we con-
sider the timed automaton with non-instantaneous actions N, in Figure 3.3. The
language completion accepted by this automaton is equal to the one accepted by
the timed automaton with € edges shown in Figure 1.14 of Section 1.7. Also this
language cannot be accepted by any timed automaton without € edges [BPDG98]. B

Proposition 3.4 1. £i(N) ¢ £°(N), 2. L5(N) € LI(N)
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Proof. We show that the language L; (L3), initiation (completion) accepted by
the automaton Ny in Figure 3.2 (IV; in Figure 3.3), cannot be completion (initiation)
accepted by any timed automaton with non-instantaneous actions. To do this, we
adapt the proofs given in [BPDG98] to show that L; and L, cannot be accepted by
timed automata without e-transitions.

Part 1. Suppose, for contradiction, that there exists a timed automaton with
non-instantaneous actions N| that accepts L; using the partition (0, {a,b}) for the
alphabet. Consider the simulator automaton 77 of Nj. This automaton is a timed
automaton without e-transitions on the alphabet {a 1 ,al ,b1 ,b] } and we may
transform it into a disjunction free and diagonal free one.

We use the notion of precise action and the relative result that have been in-
troduced at the end of Section 1.7. Let 6 > 0 and C,.x be the constants for this
automaton as they have been defined there. By Lemma 3.1 and by our assumption
that Ly is completion accepted by Nj, we can deduce that a timed word of the
following form is accepted by T:

(b1, t6) (b, t5) (01, ) (b ,25) -+ (b1, th ) (bl ,t51) (at,th)(al ,t]) -

where, 15 | <t <ti=deN, 0< 1t <tf<land it/ <t <t5<j+1forall
0<j<d.

We can choose d > Chay, t;
(4,j+1)—6Nforall 0 <j <d.

Let m be a path of T} accepting a timed word of this type. Since the action a
only occurs at integer times, all occurrences of a should be precise. In particular,
the first occurrence of a is precise. Since d > Cp.x, we can deduce from Theorem 1.2
that one of the preceding occurrences of symbols in 7 should be precise in 7. But
such a precise action cannot be the any of the occurrence of b1 or b] or a?
because we have chosen the times té-, 15 € (7,74 1) — 6N and any precise action in ,
by Theorem 1.2, has to occur in one of the times dN. Thus, we have a contradiction.

€ (j,j +1) —oNforall 0 < j < dand t) €

Part 2. Suppose, again for contradiction, that there exists a timed automaton with
non-instantaneous actions N that accepts L using the partition ({c},?) for the
alphabet. As above, consider the simulator automaton of N, T5.

Let C be the finite set of rational constants appearing in the constraints of 75 and
let ¢y > 0 be an arbitrary positive real number. We can choose a number § such that
0<d<1,0<min{ceC|c>0}and (tr+1—0,tp+1)N(CU{to+c|ce C}) =0.

Now, consider a timed word of the following form:

(et to) (e, tr)(ct,ta) (el ,ts) - --

such that to +1 -0 < t; < t9 < t3 < --- and lim;_,t; = to + 1 — w for some
0<w<é.
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By our assumption that N/ completion accepts L, and by Lemma 3.1, we have
that a timed word of the type above has to be accepted by T5.

This means that there exists a path in 75 along which this timed word is accepted.
However, we can deduce, by the choice of §, that along the same path also the
following timed word can be accepted:

(et ,to)(cd ,t1 +w)(ct ,ta +w)(c) i3 +w)---

But we have that lim; ,. t; + w = tp + 1 and this means that N} accepts also a
timed word which is not in Ly. This is a contradiction. H

Proposition 3.5 £/(N) U L(N) C £(N).

Proof. The part £'(N) U L(N) C L5(N) follows easily from Definition 3.4.

For the strict inclusion consider the language L; U Ly where L, and L, are the
languages introduced at the end of Section 3.1. It is easy to see that L; U L, is
({a, b}, {c}) selection accepted by the automaton N3 in Figure 3.4 and, thus, that it
belongs to the class £°(N). We show in the following that it does not belong neither
to L£'(N) nor to L(N).

Recall part 1 of the proof of Proposition 3.4. We have shown that there is an
infinite set of timed words belonging to L, and thus to L; U Lo, such that a timed
automaton with non-instantaneous actions cannot exist which initiation accepts
them. Thus, L; U Ly cannot belong to £'(N).

The other possibility is that Ly U Ly € L°(N). In this case consider the part 2
of the proof of Proposition 3.4. We have shown that, similarly to the previous case,
a timed automaton with non-instantaneous actions cannot exist which completion

accepts a certain infinite set of timed words belonging to Ls. Therefore, we have
also that Ly ULy, ¢ L°(N). B

Theorem 3.6 L°(N) C L(T,).

Proof. First we show that £°(N) C L(T,). Consider a timed automaton with
non-instantaneous actions N = (Q, X, &€, I, R, X), and a partition (I, C') of ¥. Let T
be the simulator automaton of N and T(I o) be the relabeled simulator automaton
of N. Recall that this automaton belongs to the class T.. By Proposition 3.2, we
have that L{; oy (N) = L(T} ¢)-

Thus, any timed automaton with non-instantaneous actions can be simulated by
an automaton in 7.

To show that the class £5(N) is a strict subset of £(T.) (and then also £(N)
and L£°(N) are so, by Proposition 3.5) consider the timed automaton in T, shown in
Figure 1.13 of Section 1.7. Recall that the language accepted by this automaton is
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x=1,{x}, a true, {} x=1,{x}, a true, {}
T
o O
v
0<x<1,{},b,x=1,{x}
true, {x}, ¢, x>0, {y} 0<x<1,{},bx=1{x}

@
true, {},c,x<land0<y,{y}

Figure 3.4: Automaton Nj

Leyen = {(a“’,f) | VieN. ¢; < tiv1 N (Hh eN: ¢t = Qh)}

We show that this language cannot be selection accepted by any automaton
in N. Suppose, for contradiction, that there exists a timed automaton with non-
instantaneous actions Ney., = (@, {a}, &, B, R, X') accepting this language. Let ¢
be the greatest constant to which the clocks are compared in the clock constraints
of £ and let h € N such that 2h > c¢. Given k € R>? let us denote by v} a clock
valuation such that Vo € X. v (z) = k.

Consider a timed word of Leye, of the form (a,2h)---. Neye, has to accept it
given a partition ({a},?) or (0,{a}). Thus, there exists an edge in £ of the form
(qo, Vb, 78, a, 5,75, q1) with g € B. Moreover, there exists a run of N, of the
form

5 ) 5n n a
(g0, v0) == (g0, Yo + 0g) — - - - —>(qo, o + Z]’:O d;) —(

@ (v5,78,a1)> (v + Z?:o)\%g)

ay — ) 5 5
—(a (¥§:7691)> (v + Z?:o)\’)’(z)) + 00) — -

S0 85 S an, (o + 37—\ %) + g )\Y) - -

where n,m > 0 and the times ¢ are positive real numbers.

If Neyen uses initiation accepting, then we know that Z?:o d; = 2h and that
va, = o+ 25— 0; F ¥§. Indeed, given any p,q € R*?, if p,q > ¢ then v, |=
if and only if v, | ). Thus we have that ve,1 E ). Using this fact we can
construct another run of N, obtained by the one above letting another time unit
elapse before the transition labeled a1 . Therefore, the timed word (a, 2h+1) - - -, not
belonging to Leyey, is initiation accepted by Ne,e,. This is a contradiction because
we are supposing that its initiation accepted language is Ly .

e
a
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The case in which N, uses completion accepting is similar. ll

As a consequence, our model can be put at an intermediate level between timed
automata and timed automata with e edges.

Timed automata with periodic clock constraints, defined in [CG00], also have an
expressive power between timed automata and timed automata with € edges. They
contain constraints which are based on regularly repeated time intervals. However,
their power is not comparable with the power of our model. In fact the aim of
automata with periodic clock constraints is that of model periodic behaviors, while
we model actions that have a duration.

)
L) \__ L)

Figure 3.5: Inclusion among language classes

With automata with periodic clock constraints it is possible to model the timed
automaton (with e edges) of Figure 1.13 for Ly, which we are not able to model.
On the other side, automata Ny, Ny and N3 cannot be modeled with periodic clock
constraints.

The inclusion among language classes is given in Figure 3.5, where £(J7?) is the
class of languages accepted by timed automata with periodic clock constraints.

3.3 Parallel Composition

To make the definition of the class of timed automata with non-instantaneous ac-
tions useful for the specifications of real-time systems we have to define a composition
operation for modular specification. Our aim is to extend the definition of paral-
lel composition of timed automata (see Section 1.4.2) to the case of actions with
duration. In particular we want to preserve the same notion of synchronization.

It is easy to see that, when transitions can have a duration and there are several
components acting in parallel it could happen that, during the execution of an
action by a component, another component start the execution of another action.
However, this should happen only if the action started by the second component
is not a synchronization action with the first component. Moreover, the second
component should not be involved in the execution of the transition of the first one.

The synchronization actions are, as in the instantaneous case, those that belong
to the alphabet of different components and the rule is that a synchronization action
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with duration has to be initiated and completed by all the involved components in
the same instants. While these components are executing the synchronization action
other non-involved components can initiate and/or complete other actions.

It is difficult to specify such a behavior using a syntactical operation as we have
done for the parallel composition of timed automata. The main problem is that we
should specify states in which some actions are in execution and some others are
not. Moreover, when an action is in execution, the state should give the possibility
to other independent actions to start or to stop. The syntactic structure of timed
automata with non-instantaneous actions given in Definition 3.1 is not suitable to
model these behaviors, considering also that the definition of the accepted language
depend on a partition of the alphabet. In addiction, recall that we have to assure
that in a parallel composition all the timed automata with non-instantaneous actions
that are in parallel have a run with their Biichi acceptance condition.

It is an open problem to give the definition of a syntactical parallel composition
operation with the characteristics outlined above. We avoid this problem by spec-
ifying directly by the timed transition system that would be associated to timed
transition table of the result of such a syntactical operator. Then, in Section 3.5, we
give a characterization of the timed language accepted by the parallel composition
of automata of the class N by an automaton of the class T..

Let N1 = (Ql; 21, 81, Bl, Rl, Xl) and N2 = (QQ, 22, 82, BQ, RQ, XQ) be two timed
automata with non-instantaneous actions such that X; N Xy = (. The parallel
composition of Ny and Ny is denoted by Ny || No.

We use the notation S(mg) to denote a timed transition system which is
an extension of the synchronized product between timed transition tables that was
introduced in Section 1.3.5. It handles the interleaving of transitions with duration,
but it does not impose the respect of the Biichi acceptance conditions of the two
components. In other words, it may happen that fair derivations of this transition
system could not be runs ¢ of the parallel composition Ny || N.

The states of S(Nl | N3) are pairs (Cy,Cz) in which C; is a state of the timed
transition system S(Nl) and C, is a state of the timed transition system S(Ng) An
initial configuration is (CY,C3) in which the components are initial states of S(Nl)
and S(]/V\Q) respectively.

To save notation let us define a function Fgy,e : (X1 U Xg) — {{1,2}, {1}, {2}}
such that Fgync(0) = {k € {1,2} | 0 € ;}. This function returns a non-singleton if
applied to a synchronization action of Ny and N,, otherwise it returns a singleton
containing the index of the automaton the argument belongs to.

The system generates derivations starting from an initial configuration using the
rules showed in Figure 3.6.

Rule PN1 represents the case in which both the two automata stay idle while the
time passes. Rule PN2 describes the situation in which a set of automata initiate,
at the same time, an action 0. The set .J is {1, 2} if o is a synchronization action. If
Fsync(0) is a singleton, only one automaton proceeds according to its own behavior.
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5 € R>0
((s1,11), (52, 18)) —=3((s1, 1 + 8), (59, v + 6))

PN1

fsyng(a) =J, .
pNo VI €T (Ci = (45,v)), (45,9575 0, 05,75, 4)) € &), vi %)

(€1, Ca) T (Ch, Ch)

C; if j&.J
where for all j € {1,2}, C; = I, Z_ lfJ ¢
(0 @wsean-vi\y) ifj€J

—

Fone(0) = J, Vj € J. (C; = (0 yereq): V5), Vi E¥j)
(C1,C2) Z5(C), Ch)

C; if ¢

(g5, v\75) ifjeJ

PN3

where for all j € {1,2},C) = {

Figure 3.6: Rules for the timed transition system S(mg)
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Rule PN3 describes the case in which a set of automata in parallel, or a single,
complete an action o. Note that synchronization of non-instantaneous actions must
be initiated and terminated in the same instants by the two automata.

The definition above can be extended to the case of n, n > 2 automata simply
adding components to the states of the transition system and extending the function
Feyne to handle common symbols of n automata. That is, the function applied to
a symbol returns the set of all indexes of automata that must synchronize on the
symbol.

Give a derivation 7 of the transition system S(]\TFVQ), the label sequence and
the time sequence of r is defined as in Definition 1.3 and, given a partition (I,C)
of 31 U X, the selected action sequence and the state sequence of r is defined as in
Definition 3.2.

For the definition of the runs we have to recall the projections on the components
given in Definition 1.13 for timed automata. It is simple to adapt this definition to

the case of the derivations of the timed transition system 8(m2)3 it is sufficient
to neglect the counter k on each state used to assure the fairness of the || operator
for timed automata. .

We say that a derivation r of S(N; | Ny) is a run of Ny || Ny if and only if the
derivation 7|; is a run of Ny and rp is a run of N.

With this notion of run, the accepted language of a parallel composition N; || Ny
is defined as for timed automata with non-instantaneous actions (Definition 3.4).

3.4 An example of specification

Recall the railway cross example specified in Section 2.1. In this section we re-model
the system by using timed automata with non-instantaneous actions.

The automaton modeling the behavior of trains is shown in Figure 3.7. Note
that the signals approach and exit are forced to be instantaneous as in the original
formulation, while the action crossing models in a more suitable way the behavior
of trains. It has a duration of at least 1 minute. Note that, because this action is
non-instantaneous, in the original formulation it was modeled by two actions, in
and out, simulating the initiation and completion of it.

The gate is modeled by the automaton in Figure 3.8. The synchronization signals
lower and raise are still instantaneous. In this case the specification is more clear
because the the closing action is modeled such that it takes between 1 and 2 minutes
to be completed (action down). Also the opening action up has a duration within 1
and 2 minutes.

Finally, Figure 3.9 shows the controller. It is equivalent to the original formula-
tion.

The whole system is obtained by the parallel composition of the three automata.

We would like to remark that our specification allows us to state properties
which describe real constraints better than timed automata (recall the formulation
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true, {}, idle_T, true, {}

@ x >= 3, {x}, approach,
Ar/ =04 )

true, {w},

exit,
X<8and X>41{W}1
w =0, {x} crossing, w>1, {}

Figure 3.7: Train

true, {}, idle G, true, {}

@ true, {y}, lower, 1
) yeon U
)

y<1,{z}, y<1,{z,
up, down,

1<z<2,/{} 1<z<2,{}

Y true {},idle G, true,
\‘ (06, (v} réiss @ rue, {}, idle_G, true, {}
)T y=0q

Figure 3.8: Gate
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true, {}, idle_C, true, {}

@ true, {u}, approach, @
‘ / u=0,{) \

u=0,{}, u=1/{},
raise, lower,
u<i,{u} u=11{}

\i

true, {u}, exit,u=0,
@;ue {u}, exit, u {} @

Figure 3.9: Controller

of Section 2.1):

1. “Whenever the train approaches the gate, the gate closes, and when the train
initiates to cross the gate, the action of closing it should be completed”.

2. “Every time, after the train crosses the gate, the gate must open within 11
minutes, and the action of opening the gate should be initiated only when the
train has completed the action of crossing it”.

Both the properties could be expressed as conditions on the language accepted
by the parallel composition (Train || Gate || Controller) by specifying that, for
property 1., the selection accepted words should refer to the initiation of crossing
and to the completion of down, while for property 2. they should refer to the
completion of crossing and to the initiation of up.

3.5 Simulation for Effectiveness

In this section we define a simple construction that, given a parallel composition
P = (N; || Ny) of timed automata with non-instantaneous actions and a partition
(I,C) of its alphabet XU, builds a timed automaton with e transitions recognizing
exactly L o) (P). This is done in order to make the parallel composition effective:
properties can be checked on the timed automaton resulting from the construction.
Let P = (Ny || Ny) is a parallel composition of timed automata with non-
instantaneous actions. The construction of the simulator is defined as follows:

1. Construct the simulator automata TN, T2 of Ny, N, respectively (see Sec-
tion 3.2.1).
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2. Construct the parallel composition of timed automata T" = T™ || T2 as in
Definition 1.12.

3. Construct the relabeled simulator automaton of the automaton 77, as in Def-
inition 3.7, obtaining the automaton T(IID ) which belongs to 7.

Clearly, if we have more than 2 automata the construction extends naturally to
the general case. First, do step 1 and step 2 for the automata N; and N,. This
yields an automaton P’. Do step 1 for the successive automaton N3 and construct the
parallel composition of P’ and T™3. Iterate until all automata have been considered
and, finally, do step 3.

Theorem 3.7 ﬁf],c)(P) = £(T(JID,C))-

Proof. Lemma 3.1 states that the timed transition system associated to the
timed transition table of a simulator automaton generates exactly the same deriva-
tions of the one associated to the time transition table of the simulated automaton.
Using this fact it is easy to see that the timed transition system S(N; | Ny) is iso-
morphic to 8(7/’]71 | 7/’]72) There is a correspondence relation between their states
that can be defined on the basis of py, and py, (Definition 3.6).

Now, TM and T™2 are timed automata having the same Biichi acceptance con-
ditions of Ny and N, respectively. We know, by Proposition 1.1, that the parallel
composition operator between timed automata is fair, i.e. the resulting timed au-
tomaton accepts only words that result from runs in which all the components have
their Biichi acceptance condition satisfied.

Thus, a run r of T™ || T™ is such that its image, by the isomorphism, into

8(Ni | Ny) is a derivation such that the projections on the original components N;
and N, are runs according to their Biichi acceptance conditions.

This means that the timed words resulting from r belongs to both to Lf; o (P),
by the mechanism of selection accepting, and E(T(I;’C)), by the renaming function
gu,c)- W

3.6 Analysis with KRONOS

The implementation of timed automata with non-instantaneous actions is straight-
forward. By implementation we mean a translation into timed safety automata.
Since timed safety automata have state-based semantics, the issues regarding € tran-
sitions or transitions of the form 01 and o] are meaningless in this context.
Thus, given a system modeled by a parallel composition of timed automata with
non-instantaneous actions we can take the simulator automata of all the components
and we can transform them, with the needed approximations (see Section 2.3.2), into
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timed safety automata. Finally, the parallel composition of these ones is the model
on which we can perform automatic verification.

In this section we show this process starting from the parallel composition de-
fined in Section 3.4 and arriving to perform the verification of the properties using
KRONOS.

In Figure 3.10 it is shown a timed safety automaton which approximates the
behavior of the simulator automaton of the timed automaton with non-instantaneous
actions of Figure 3.7. In each state we have inserted the invariant and the boolean
variables that are true in it. For each symbol o € ¥ we use the symbol i_o for o1
and c_o for o .

Of course, originally instantaneous transitions are not modeled as in the simu-
lator automaton, but they are modeled by a single transition; e.g. the transitions
labeled approach and exit. We have eliminated the idle transition in state 0 and
substituted it by the invariant true.

In the formulation with timed automata with non-instantaneous actions the fair-
ness condition allows us to specify only the constraint + < 8 on the edge labeled
exit and the constraint x > 4 on the edge labeled crossing. Without the fairness
condition and using the initiation and completion transitions for crossing we have
to specify, by invariants, the exact times in which the control must stay in each state.
In particular we impose that the initiation of the crossing occurs after 4 and before
5 minutes from the approach and that its completion occurs after 1 and before 2
minutes from the initiation.

Note that the automaton of Figure 3.7 has a greater degree of freeness on these
times. However, we have to say that, when composed with the other components,
the times of occurring of the initiation and the completion of the crossing are forced
to be very close to the ones specified above. This is a further evidence that the
use of the model of timed safety automata corresponds to a lower, more detailed,
view of the system with respect to the specification in which fairness and acceptance
conditions are used.

Figure 3.11 shows the Gate and Figure 3.12 the Controller. Similar remarks
with respect to the ones that we have done for the Train can be done on these
components.

We have specified these timed safety automata with the tool KRONOS. The
programs are shown in Figures 3.13, 3.14 and 3.15. All the states of the parallel
composition of them are nonZeno. This has been established proving the property

(IDLE_T A IDLE_G A IDLE_C) — YI(30—,true)

where (IDLE_T A IDLE_G A IDLE_C) represents the initial conditions.

Recall the properties 1. and 2. of Section 3.4. In the system that we have
specified with KRONOS we have that the proposition variable CROSSING becomes
true immediately after a train initiates a crossing and it remains true for all the
crossing. Immediately after the train completes the crossing it becomes false. More-
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0 X >= 3, approach, {X 1
o IDLET P 4 »| ARRIVING
true X<=5
A
8 X >4,
X < : i_crossing,
exit, (W
{x}
Y
3\ |
w > 1, c _crossing, {} 2
CROSSED | CROSSING
x<8 w<=2

Figure 3.10: Train

0 true, lower, {x}

1 y <1,i_down, {z} 2

IDLE_G - »/DOWNING
true y<1 z<?2
A
1<z< 2’ 1<z< 2,
c_up, c_down,
0 {}
\i
5\ 1<y<2, 4 true, raise, {y} 3
UPPING <2 - CLOSED
z<2 i_up, {2z} y true

Figure 3.11: Gate
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0 true, approach, {u} 1
IDLE_C >
A
u<l, u=1,
raise, lower,
{} {}
Y
3\ true, exit, {u} / 2
u<1i /- true

Figure 3.12: Controller

over, we know that CLOSED becomes true immediate after the closing of the gate is
completed and that UPPING, as CROSSING, is true during the raising of the gate and
false otherwise. Thus, the properties can be expressed in TCTL as follows:

1. (IDLE.T A IDLE G A IDLE C) — VJ(CROSSING — CLOSED)

2. (IDLE.T A IDLE G A IDLE_C) — V[J(CLOSED — V{,, IDLE G)
together with
(IDLE_T A IDLE G A IDLE C) — VJ(CROSSING — —UPPING)

They are all true. Note that the liveness property requiring the re-opening of
the gate within 11 minutes is false if we require an upper bound of 10 minutes.
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/* Train */

#locs 4

#trans 4

#clocks X W

#sync APPROACH EXIT

loc:0

prop: IDLE_T

invar: TRUE

trans:

X>=3 => APPROACH; X:=0; goto 1
loc: 1

prop: ARRIVING

invar: X <= 5

trans:

X > 4 => T_CROSSING; W:=0; goto 2
loc: 2

prop: CROSSING

invar: W <= 2

trans:

W > 1 => C_CROSSING; ; goto 3
loc: 3

prop: CROSSED

invar: X < 8

trans:

X < 8 => EXIT; x:=0; goto O

NON-INSTANTANEOUS ACTIONS

Figure 3.13: KRONOS program representing the Train
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/* Gate */

#locs 6

#trans 6

#clocks Y Z

#sync LOWER RAISE

loc: O

prop: IDLE_G

invar: TRUE

trans:

TRUE => LOWER; Y:=0; goto 1
loc: 1

prop:

invar: Y<1

trans:

y<1 => I_DOWN; Z:=0; goto 2
loc: 2

prop: DOWNING

invar: Z<2

trans:

Z>1 and Z<2 => C_DOWN; ; goto 3
loc: 3

prop: CLOSED

invar: TRUE

trans:

TRUE => RAISE; Y:=0; goto 4
loc: 4

prop:

invar: Y<2

trans:

Y<2 and Y>1 => I_UP; Z:=0; goto 5
loc: 5

prop: UPPING

invar: Z<2

trans:

Z>1 and Z<2 => C_UP; ; goto O

Figure 3.14: KRONOS program representing the Gate

81
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/* Controller x/

#locs 4

#trans 4

#clocks U

#sync APPROACH EXIT LOWER RAISE
loc: O

prop: IDLE_C

invar: TRUE

trans:

TRUE => APPROACH; U:=0; goto 1
loc: 1

prop:

invar: U<=1

trans:

U=1 => LOWER; ; goto 2
loc: 2

prop:

invar: TRUE

trans:

TRUE => EXIT; U:=0; goto 3
loc: 3

prop:

invar: U<1

trans:

U<1 => RAISE; ; goto O

Figure 3.15: KRONOS program representing the Controller



Chapter 4

Urgent Transitions

Abstract

In this chapter we present an extension of the formalism of timed au-
tomata by allowing urgent transitions. An urgent transition is a transition
which must be taken within a fixed time interval from its enabling time and
it has higher priority than other non-urgent transitions enabled in the same
state. We give a set of rules formally describing the behavior of urgent transi-
tions and we show that, from a language theoretic point of view, the addition
of urgency does not improve the expressive power of timed automata. This
is done by defining a transformation that uses first the region construction
for timed automata to obtain a timed automaton in region form. Then, the
procedure adds transitions and clock constraints to the obtained automaton.
The result is a timed automaton without urgent transitions that acts as the
original one. From a specification point of view, the use of urgent transitions
allows short and clear specifications of behaviors involving urgency and prior-
ity. The notion of urgency that we introduce is inherently non-compositional
and the transformation procedure that we give to reduce a timed automaton
with urgent transitions to a timed automaton introduces an enlargement in the
automaton size due to the use of the region construction. We discuss these
aspects and show how to make effective our approach using implementable
timed automata and standard minimization techniques. To show the features
of the proposed extension we specify a multicast protocol for mobile com-
puting using timed automata with urgent transitions and we compare this
specification with one that uses the features of the tool UPPAAL.

The material of this contribution was originally presented, in an early
version, in [BT01]. The full version has been published in [BT04].

The notion of urgency in timed systems has been already introduced in [BS97,
BST98, BS00], where the urgency of transitions outgoing from a state is induced
by a time progress condition associated to the state and derived from deadlines
associated to the transitions. The semantics imposes the impossibility to stay in
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the state if the condition is not satisfied while the time elapses. In this Chapter
we consider a slightly different notion of urgency. Urgent transitions are transitions
which must be performed within a given time interval starting from their enabling
and, in this situation, have priority upon non-urgent transitions.

From the expressiveness point of view, both our approach and the one of [BS97,
BST98, BS00] are suitable for specifying timed systems. The latter allows, in some
cases, more general urgency conditions, while, in other cases, such as “as soon as
possible” transitions, our approach allows more general time constraints. Moreover,
the semantic setting is different. In op. cit. the model of timed safety automata (see
Section 2.3.1) is used together with time progress conditions in the states. Here we
adopt the timed automata model, although we show, in Section 4.5, that our notion
of urgency can be defined in the same way for timed safety automata. Section 4.6
contains a more detailed discussion on the differences of the two approaches.

We show that, from the language theoretic point of view, timed automata and
timed automata with urgent transitions are equivalent. This is proved by defin-
ing a transformation from a timed automaton with urgent transitions to a timed
automaton which accepts the same language.

From a specification point of view, urgent transitions provide an easy and effec-
tive way to express some important types of behaviors of real time systems, which,
otherwise, should be simulated using complex constructions. These usually yield
specification that id difficult to understand and they increase the probability of
mistakes.

The notions of priority and urgency captured by our definitions are inherently
non-compositional and, hence, the transformation is not a congruence with respect
to parallel composition. Thus, in the specification task, one has to design compo-
nents considering that the urgency of their actions can be affected and/or enhanced
by other components and by the synchronization mechanism of the parallel com-
position. This aspect is explained in Sections 4.3 and 4.4. The latter contains
an example of specification of a multicast protocol for mobile computing, which is
used to illustrate the possible use and the features of timed automata with urgent
transitions. Section 4.5 contains some remarks and suggestions for an effective use
of timed automata with urgent transitions in the verifications of systems. Finally,
Section 4.7 contains an attempt to specify the multicast protocol with the urgency
features of UPPAAL, which are weaker than ours.

4.1 Timed automata with urgent transitions

In this section we extend the model of timed automata with a new feature which is
useful in the specification of real-time systems. We start from timed Biichi automata
(Chapter 1) with the following clock constraints:
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Y = true
| z#tc
[ Ay

where x,y are clocks, # € {<,<,>,>} and ¢ € N. Recall Section 1.6 in which
we show that this syntax is minimal. Diagonal constraints are not included simply
for the sake of simplicity. They can be treated with a slight modification of the
transformation given in Section 4.2.

The idea is to provide, in each state of a timed automaton, the possibility of
labeling some outgoing edges as urgent. Intuitively an urgent labeled edge must be
taken with higher priority with respect to the non-urgent ones and it must be taken
within a certain time interval starting from its enabling.

Let ¢ be a state of a timed automaton and let e be an outgoing transition
from ¢g. We use (b%,0¢) to denote the time interval in which the transition e is
enabled, according to its constraint, in the state ¢ during a derivation of the semantic
transition system of the automaton. Note that such an interval is represented by its
bounds, b¢ and b¢, which can be closed or open; that is b3 € {(¢, [t} and b¢ € {t),¢]},
where ¢ is, in general, a non-negative rational value.

Let ¢ € Q" be a fixed parameter associated to the timed automaton. Let ¢, be
the time instant in which the state ¢ is entered. Suppose e is an urgent transition.
The time interval in which e must be taken starts at time b7, but if the constraint of e
is already satisfied when ¢ is entered then the interval starts at time ¢,. The interval
stops ¢ time units after its start. However, if the constraints of e becomes false
before, the interval stops at instant b¢. Figure 4.1 shows three cases. The gray-filled
areas are the intervals in which e is enabled by its constraints. The oblique-line-
filled areas are the intervals in which e is enabled but not executable. The case (a)
is the basic case in which the interval has length ¢, starts at the enabling time of e
and stops after ¢ time units while e is still enabled. Case (b) shows the situation
in which e becomes disabled before ¢ time units elapsed and the interval is shorter
than ¢. In case (c) the transition is already enabled when the state is entered: the
interval starts at ¢, and its length is ¢.

This notion of urgency allows us to define precisely the behavior of urgent actions.
The intuitive idea “urgent transitions must be taken as soon as possible” introduces
some problems when applied in a model with a dense time domain. To see this,
consider a state of a timed automaton in which the current value of clock x is in [0, 1]
and there is an outgoing urgent transition with a clock constraint x > 1. Letting
the time to elapse, at which time should the urgent transition be executed? It is not
possible to answer precisely this question since the time domain is dense. To avoid
this problem we introduce the constant ¢ and the interval within the action must be
executed. Adopting this solution, the problem does not arise and the semantics of
urgency is clear in all cases.
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Figure 4.1: The semantics of urgency

To complete the specification of the proposed notion of urgency we have to
specify the nature of the bounds of the interval. The choice is arbitrary in principle,
but the following seems to be the most natural. If the left bound of the interval is
open, then we set the right bound closed, i.e. for the urgent action with constraint
x > 1 of the example above, the interval in which such an action must be taken
is that in which € (1,1 + ¢]. Conversely, if the left bound is closed then we set
the right bound open. For instance, if the transition has a constraint of the form
of x > 1, instead of x > 1, then the interval in which it must be taken is that in
which z € [1,1+ ¢). When the state is entered and the urgent transition is already
satisfied, the left bound of the interval is considered closed. In this way the interval
is always well defined.

The denseness also imposes that the constant ¢ be greater than 0. The choice
¢ = 0 could be interpreted as “immediately”, but this leads, in some cases, to the
problem discussed above. However, since / € Q7 it can be chosen as small as needed.
In other words, the “as soon as possible” limit behavior can be approximated with
arbitrary precision.

Note that the parameter ¢ can be local to each urgent transition, but for the sake
of simplicity we discuss the case in which /¢ is a global parameter. The case of local
specification can be caught by a slight modification of the definition, the semantics
and the transformation.

When a state ¢ has a set U, of outgoing urgent transitions, they are treated
as follows. Let b° be the lower bound of the first interval, in the state, in which
some urgent transition becomes enabled. Let S, = {uy,us,...,ux} be the set of
urgent transitions which become enabled after b* and let I,,, = (b] ,b5 ), i =1,...,k
be their enabling time intervals. The time interval in which at least one urgent
transition must be taken is (b°,min bound(b® + 4,0 ,...,b; )), where min bound
gives the more restrictive interval upper bound. In this interval all enabled urgent
transitions have the same priority and one of them is executed non-deterministically.

Figure 4.2 shows two possible scenarios. The white area gives the interval in which
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Figure 4.2: The case of more than one urgent transitions overlapping

at least an urgent transition must be taken. In (a) u; is the first enabled transition.
uo has the minimal upper bound, thus the interval in which one urgent transition
must be taken starts with b; and ends with b;,. In this interval one of u;,us and
ug (in the sub-interval in which it is enabled) can be taken. In (b), the first urgent
transition enabled is u; and it remains enabled also after ¢ time units. Thus, in this
case, the interval to consider has length ¢ because the other ones are still enabled.
Within this interval us and us can be taken, when enabled, as well.

If a state has no urgent outgoing edges then the behavior is the usual one of timed
automata. This also happens when a state is entered and no urgent transitions are
enabled.

Moreover, when some urgent transition is enabled in a state, the unique way
to continue the run is to execute it or another urgent transition following the rules
expressed above.

Definition 4.1 (Timed Automaton with Urgent Transitions) Let / € Qt be
a constant. A timed automaton with urgent transitions T, = (Q,%,&,U, B, R, X)
is a tuple where QQ is a finite set of states, ¥ is a finite alphabet of actions, £ and
U are finite sets of edges, the non-urgent and the urgent ones, B C () is the set of
initial states, R C Q is the set of repeated states, X is a finite set of clocks. FEach
edge e € EUU is a tuple in Q X ¥ p x 'y x X x Q.

The class of all timed automata with urgent transitions will be denoted by T*.

In the following the superscript ¢ could be omitted and, when this happens, it
should be considered implicitly defined.

The semantics of a timed automaton with urgent transitions T is defined, as
for timed automata, in terms of its accepted language. This is defined in the same
way of the accepted language for timed automata. The difference is that we use a
differe/n\t timed transition system to define the derivations of the timed transition
table T¢: the transition system 8(7)) = (S, —). The states S, are triples (g, v, d,)
such that ¢ € @ is the current state of the automaton T, v is the current clock
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5 e RO
(q,v,6,) —=(q,v + 8,0, + )

(Time)

(¢.0,7,0,¢) €&, v =1,
(Non-Urgent) _ (V(¢: Yu; Yu, 0w, ¢,) €U(230. (0 <6 <y Av =0 = thu)))
(q7 v, 54) é(qla V\f)/a 0)

(@ Yus Yus 0us ') €U, v E Py
(_EIU, = (qa wu’af)/u'v Ou/s qzll,’) cu.
(F0.0 <0<, ANI >l AVY =6 E1y)),
(Urgent) (=3 = (¢, Yus Y, ow, @1y) € U.
(36.0 <5 <G AV Yy Av—0 = 1hy)

(q7 l/a 5q) i>(qla V\f)/u’ 0)

Figure 4.3: Rules for the transitions of S(ﬁ)

valuation and §, € R=? is a number recording the time elapsed since the state ¢ has

been entered. The rules to derive the transitions of S(ﬁ) are defined in Figure 4.3.
Rule (Time) lets the time elapse in a state and updates both the clock valuation
and the time elapsed in the state. Recall that, due to the acceptance condition
semantics, some states, in the action sequence, must be entered infinitely many
times. Thus the automaton is not allowed to elapse time in a state infinitely.

Rule (Non-Urgent) can be used when T/ is in a state without outgoing urgent
edges (the V condition is trivially true). In this case the behavior is the same as
timed automata. When T is in a state with a set of urgent outgoing transition,
the “=3” condition in the rule requires that every urgent transition has never been
enabled since the current state was entered. If this is false the rule is not applicable.
Note that when a new state is entered the time elapsed is set to 0.

Rule (Urgent) executes an urgent action o,. The first “=3” condition ensures
that the urgent transition that is going to be executed is taken before a time ¢ has
elapsed after the enabling time of any urgent transition. The second “—3” forbids the
execution of the urgent transition if there is a urgent transition which was enabled
and it is no longer so.

Example 4.2 Figure 4./ shows an example of a timed automaton with a urgent
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transition (graphically, we show this by attaching a “u” to the edge). In this example
we consider ¢ = 1. The automaton can execute the action b when the value of the
clock x is in the interval (0,1]. When the value of x becomes greater than 1, b cannot
be performed any longer and the urgent action a must be executed. Moreover, because
of the urgency, a must be performed while the value of x is in the interval (1,2].

X >0, x>1,
b, a,
{x} @ {x}

Figure 4.4: An automaton with urgent transitions, T}

4.2 Expressive power of timed automata with ur-
gent transitions

In this section we show that, from a language theoretic point of view, the expressive
power of timed automata with urgent transitions is equivalent to the one of timed
automata. This is shown by providing a three-steps transformation which preserves
the accepted language. Since timed automata are special cases of timed automata
with urgent transitions (U = (}), the transformation is only given starting from the
latter ones.

4.2.1 The region form of a timed automaton

Let T¢ be a timed automaton with urgent transitions. We give a transformation
that builds a timed automata accepting the same timed language.
Note that if £ = ¢ with a and b natural numbers (b # 0), it is always possible to

transform a Tu% automaton to an isomorphic one 7> by multiplying all the constants
in the clock constraints by b. Practically this means that a different scale is used to
measure time and, indeed, this does not affect specification/verification tasks. So
we can assume without loss of generality that ¢ is a positive natural number.

In the following we need a transformation of clock constraints that, starting from
a constraint 1, gives a logically equivalent constraint min(v)) such that it does not
contain redundancies. Essentially the transformation drops from v the atomic con-
straints which are implied by others, yielding a minimal conjunction of constraints.

Definition 4.3 Given a constraint 1y over a set X of clocks. min(v)) is the equivalent
constraint where there is only one constraint of the form x =c, x # ¢, c # v #' d
or ¢ # x, where #,#' € {<, <} for every clock xz € X.
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Given x € X, we denote by select(min(v), x) such unique constraint for x.

Recall the region construction for timed transition tables introduced in Sec-
tion 2.2.1. In particular recall that we denote by Reg(T") the set of all clock regions
for a timed transition table T and that, given a clock region o € Reg(T\) and z € X,
we denote by Rr(a,x) the unique clock constraint in C, in the specification of a.
Moreover, given a clock region € Reg(T) and a reset v C X, we denote by [y — 0]a
the clock region such that, for all x € 7, the constraint in « for z is substituted by
x = 0. R

In Section 2.2.1 it is shown how to construct, given a clock region o € Reg(T),
the ordered set of clock regions that are time successors of a, denoted by succ(a).
The order <, of the clock regions in this set is total and such that o <, o/ iff & is
a time successor of a'.

The following definition describes a first transformation, in region form, of a
timed automaton with urgent transitions. To this purpose a state of the transformed
automaton records both the state of the original one and the equivalence class (clock
region) of the values of clocks when the state is entered. The resulting automaton
is a timed automaton that is equivalent to the original one and has a structural
property that will be used in the next step of the transformation for proving the
correctness of the transformation itself.

Definition 4.4 Let T, = (Q,%,E,U, B, R, X) be a timed automaton with urgent
transitions. The corresponding timed automaton in region form,

Tr = (Q",X,E",U", B",R", X) is defined as follows:

the states in Q" (resp. R") are of the form {(q,«) where ¢ € Q (resp. R) and
a 1s a clock region,

the states in B" are of the form (q,[w]) where ¢ € B and vy(x) = 0 for all
reX

({q, @), min(y) AN,y Br, (@, 2), 7,0, (¢, [y = 0]")) € E" (resp. U") iff

—~

(q,0,7,0,q") € E (resp. U), o € Reg(T,), and " € succ(a).

Note that the new states are built exactly as the ones of the region Biichi automa-
ton defined in Definition 2.3. This construction differs from that because constraints
and resets are maintained on the edges. These constraints are modified in order to
force the corresponding edge to enter only one of the time successor clock regions
(in the sense that for other regions the constraint is always false).

Also note that this step can be applied to any timed automaton yielding the
following result.

!This has to be imposed for those cases in which a does not belong to succ(a) i.e. points or
lines regions.
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x>1,b,{x}
O<x<1, d 1<x,
b, {x} a, {x}
x=1,b,{x}

Figure 4.5: Automaton T

Proposition 4.1 Given a timed automaton with urgent transitions T,, let T, be T,
in region form. Then, L(T,) = L(TY).

Proof. By region construction correctness. l

We want to remark that the region form of a timed automaton can be, in gen-
eral, a useful device for reasoning about the automaton itself and its structure. In
particular, we exploit, in the next step of the transformation, the following property:

Proposition 4.2 Let T,, be a timed automaton with urgent transitions and let T,

be Ty, in region form. In every derivation of the transition system S(TZ), if a state
({q, ), v) is entered by performing a transition labeled by o € 3, then [v] = .

Proof. By Definition 4.4.

As a consequence of this property, note that a clock constraint of the form z—y#c
(# € {<,<,>,>}) maintains the same truth value while the control is in a state
of T! and this truth value is the value of the satisfaction o = 2 — y#c where « is
the clock region associated to the state. This means that every diagonal constraint
in T¢ can be substituted in 7" by true or false. Thus, we could allow diagonal
constraints in 7 as well and eliminate them at this stage of the transformation.

Example 4.5 In Figure 4.5 it is shown the automaton of Figure 4.4 in region form,
denoted by T)". Note that the constraints explicitly show the time successor clock
region to which they refer. Note that all the edges with a false constraint have been
removed and, in the states, there is only the [x = 0] region because both the original
edges reset x.
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4.2.2 Making the urgent transitions /-consistent

The second step of the transformation will adapt the constraints of the urgent tran-
sitions of 7, making them consistent with the semantics we gave in Section 4.1.
More precisely clock constraints are adapted according to the behavior expressed by
the rule (Urgent). In this step we consider only the urgent actions and neglect the
other ones which remain unchanged. The third step will adapt these according to
the semantics.

Let (g, @) be a state of T such that in state ¢ of T, there was a set of outgoing
urgent transitions Uy = {us, ..., ur}, where u; = (¢, Yu;, Yuys Ouis @), 1 = 1,2, ., k.
Each of these transitions becomes, in 77, a set of transitions

By = {({g, @), min(u,) AN e Br, (7, 2), Yuss 0w (G, [y = 0]"))]
" € succ(w)}

We need to determine the minimal upper bound of the enabling interval of all
the urgent actions which can be enabled in a state. By the semantics of Section 4.1,
we know that urgent transitions must be taken before such a bound.

Using the total order <, defined in the set succ(a) and the property of states
expressed by Proposition 4.2 we can determine the set of urgent actions which will
be enabled.

Fuey = {wi €U, |3 € succ(a)U {a}. o/ = min(v,,)}

If this set is empty, the state (¢, @) and its outgoing urgent transitions remain
unchanged. Otherwise we add to each outgoing urgent transition an explicit con-
straint which forces it to respect both the expiry time expressed by ¢ and the minimal
upper bound of the enabling interval of other urgent transitions. Such an explicit
constraint does not modify the behavior of the automaton, but explicitly adds to
the transition constraint the conditions expressed by the semantic rules of Section
4.1.

If in F4 o) there are transitions that are already enabled when the state is entered
we simply add to each transition in Ule E}. a new constraint imposing that the
time elapsed in the state be less than /. To do this we add in 7 a new clock variable.
Whenever a state is entered this clock is reset, so it can be used in the constraints
of outgoing edges as a measure of the time elapsed in the state.

If in Fl,q) there are only transitions that are enabled after some time, we
determine the first clock region which satisfies a constraint of an urgent action
fst_succ(a,min(¢y,;)) = Mminycsucc(a)ufa} (@ = min(yy,) A u; € Fgqy). Note that
if fst_succ(a,min(¢),,)) = « then the urgent transition is already enabled when the
state is entered (remember Proposition 4.2). By convention, if the clock constraint
min(v,,) is equivalent to false or if it is consistent, but it will never be true letting
the time to elapse from «;, the result of fst_succ is T and this value has the property
of being greater than any element of succ(a)U{a}. Moreover, we can establish the
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immediate predecessor, according to the total order, of a clock region «' in the set
succ(w). Let us denote this by prec(a’). Again, if ' is the minimum in succ(«),
then its predecessor is a.

Definition 4.6 (Set of Crucial Clocks) If o # min(ty,), then we define the set
cruc(a,min(t)y,,)) as the set X — {x € X | Ry, (prec(fst_succ(a,min(¢),,))), z) =
select(min(e),,),x)}. It contains the only clocks that determine the truth of the
constraint min(t,,) in the region fst_succ(a,min(t,,)).

Example 4.7 Let us explain the concept of “ crucial”. Let min(t),,) be 0 < x <
2A1<y<3. Ifais[t=0A0<y <1] then fst_succ(a,min(¢,,)) =[1 <y <
2A0 < z < 1,fract(y) < fract(z)] and prec(fst_succ(a,min(¢y,,))) = [y = 1A0 <
x < 1]. In prec(fst_succ(a,min(¢y,,))), the value of clock x, 0 < x < 1, implies the
atomic constraint select(min(e,,),r) =0 < x < 2, so x is not crucial for min(t,, ).
Instead, the value of y, y = 1, does not imply select(min(t)y,,),y) =1 < y < 3.
Thus, we have y € cruc(co,min(1y,)).

If a is [y = 1 Az = 0] then fst_succ(a,min(,,)) = [1 <y <2A0< 2z <
1,fract(y) = fract(x)] and prec(fst_succ(a,min(vy,,))) is « itself. Here both x
and y are crucial clocks.

Proposition 4.3 The set of crucial clocks always contains at least one element.

Proof. For contradiction, suppose it is empty. Then, the constraints of the clock
region prec(fst_succ(a,min(¢,))) would imply min(),,).

But, by definition, fst_succ(a,min(y,,)) is the minimum clock region that im-
plies min(¢,, ) and prec(fst_succ(a,min(t),,))) is strictly less than it using the order
defined in succ(a) U{a}. A contradiction. H

Let u; € F4q). The constraint select(min(ty,), ), given any crucial clock z,
can be used to determine a constraint that force the urgent action to be executed
within ¢ time units from the time in which it becomes enabled (and respecting the
rules discussed in Section 4.1). To do this we add to any transition in Ule Eg the
additional constraint add(«, min(¢,,))) constructed as follows. Given any crucial
clock x for min(¢y,), x € cruc(a,min(t,,)):

e add(a,min(t)y,,))) is (z < ¢+ () if select(min(t)y,), ) is either (z = ¢) or
(¢ < az#td) or (¢ < x), where ¢ < d and # € {<, <}.

e add(a,min(t)y,))) is (x < ¢+ ) if select(min(e),,), ) is either (¢ < z#d) or
(¢ < z) where ¢ < d and # € {<, <}.

The final step in the construction of a ¢ consistent timed automaton is to add
to all urgent transitions a constraint which forces all of them to be executed (if
possible) before the upper bound of the enabling interval of the first disabled one:
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recall Figure 4.2(a). If such an urgent transition does not exist, this step, for the
current state, ends. To formalize this search, we exploit again the total order defined
in succ(a). Given the set Fi, ), we search, for each element (q, Vu;, Vu;, Ou;» 4y,.) Of
this set, the clock region, in succ(«), in which the constraint min(¢,,) becomes false,
if any. fst_dis(«,min(¢,,)) denote such clock region. If the constraint will never
be false, letting the time to elapse, in the current state, the result of this operation
is, by convention, T and has the property of being greater than any element of
succ(a). Now we can explicitly define the set of enabled urgent transition which
are first disabled.

Lig,a)

’

{ui € Flgoy | fstdis(o,min(epy,,)) #T A Vuj € Figq.
fst_dis(a,min(y,)) <o fst_dis(a,min(iy;))}

Taking any transition u; in this set, we have to find the clock constraint to add
to other urgent transitions that disables them when u; is disabled. To this purpose
we introduce the following definition.

Definition 4.8 Let ¢ be a constraint without redundancies over a set of clocks X .

The lower opening O (1) of ¢ is obtained by deleting from 1 all the constraints
of the form ¢ < x and ¢ < x, and by substituting all the constraints of the form
r=cbyx<c, forallx e X.

Analogously, the upper opening OF(¢) of ¢ is obtained by deleting from 1 all
the constraints of the form x < ¢ and v < ¢, and by substituting all the constraints
of the form x =c by c < x, for allx € X.

Clearly this definition requires constraints of the form c#ta#d, # € {<,<}, to
be considered as c#Hx N x#d.

Thus if we want that all the urgent transitions will be disabled when u; is dis-
abled, we need to add to all of them the constraint O~ (min(t,,)) which becomes
false at the same time of the first disabled urgent transition.

Definition 4.9 Let T) = (Q", %, ", U", B", R", X) be a timed automaton with ur-
gent transitions in region form. The (-consistent version of it, (T, is the timed
automaton (Q,%,E", U, B", R", X") where X" = X U {ZTtine_state} and Uy is con-
structed as follows:

1. (< > 1/) fYU{xtlme state} g, <q Oé>) € uz Zﬁ (<Q7 Oé>71/)777 g, <qlaal>) € ur and

Flgoy=10

2. (<Q7 >7'§/) N Tyine_state < ¢ , YU {xtlme state} ag, (q o >) € Z/{Z Zﬁ
(g, ), ¥,v,0,(¢, ) €eU" and u € Figny and o = min(ey,) and Ligay =0

3- (<q; >7 'Q/) /\ xtlme state < f /\ O (min(wu’))a ’7 U {xtime_state}a 07 <qla O/>) E uz Zﬁ
(g, a),0,7,0,(¢,a')) €U" and u € Fiyoy and a = min(¢,) and v’ € Ligq)
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4' (<Q7 Oé>, 7/) /\ add(a, min(wu))a ’7 U {xtime_state}a 07 <q,7 O/>) G Z/{z fo
(g, ), ¥,v,0,(¢,)) €eU" and u € Figoy and o 7 min(th,) and Ligay =0

5. ({g, ), v ANadd(a, min(¢y,))ANO™ (min(ty)), YU{Tsine_state }» 0, (¢, ')) € U iff
(g, @), ¢, 7,0,(¢,a')) €U and v € Fyny and oo 7 min(1)y,) and v’ € Ligq)

Proposition 4.4 Given a timed automaton with urgent transitions in region form
T and its (-consistent version (1), then L(T)) = L((T7).

Proof. Let us first add the clock Zyipe_state t0 all edges of T). This operation
results in an equivalent timed automaton with urgent transitions.
The proof proceeds for cases.

Case 1. Consider the hypothesis Fi, . = 0.

We have

Flga)y =10

= {By definition of Fi, .y}

—Ju € U,.(3o/ € succ(a) U {a}.o/ = min(1,))

= {By Proposition 4.2}

-3({q, ), ¥, v,0,{(¢,a')) e U".][v] € aUsucc(a) Av E

Thus, no urgent action can be performed in (g, @) and the state is equivalent
in both T and (T .

Case 2. Consider the hypothesis u € Fg 4 and a = min(t,) and L) = 0.
We have:

(a)

(u € Flgoy N = min(1p,)) A Lygay =0

= {by definition of L}

(u e F(q,a> A a = min(¢,)) A
(—3u € Flgay- | (3o’ € succ(a). £st_dis(a,min(ty)) # T))

= {by definition of Fi; ), L(gq) and Proposition 4.2}
Vv :[v] € aUsucc(w).

(Vg9 = £.(Fu = (g, ),9,7,0,{(¢,a')) € U".(36.0 < 6 < Ogay NO > LAV —

0 =) A
(Vo(gay < L.(mFu = (g, a),9,7,0,(¢,')) € U .(F6.0 < 6 < bpgay NO >

CAv =0 1Y) A
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V0 (g,0)-(mFu = (q, ), %, 7,0,(¢,a')) €U".(36.0 <0 < bpgay ANV EVAY =6 |=
Y)

Now, let us consider ({(g,a),v,v,0,{¢,a')) e U".

The condition for performing such an action, given by the (Urgent) rule is:

vEYA

(_EI’LL, = ((qa O[>, z/)u’aqu’a Ouw, <q,7 O/>) € z/{r-
(36.0 S(SS(S(q,a)A(SEEAV—(S E )
(_EI’LL, = ((qa O[>, z/)u’aqu’a Ouw, <q,7 O/>) € z/{r-
(6.0 <d < (5<q,a> AV EYy ANV =0 E y))

which, under the hypothesis and proof (a), is equivalent to:

V)ZQ/)/\(S<Q7Q><€

Now v |= 9 Adgay < Ciff v = (¢ A Tiine_state < £), thus an urgent action
(<q7 Ot>, ,QZ} A Tyime_state < ga Y U {xtime_state}, g, <ql, OZ,>) € UZ can be performed
if and only if ((q, @), 1,7, 0,(¢,a)) € U" can be performed.

Case 3. Consider the hypothesis u € Fg oy and oo = min(1),) and v’ € Lg a.

Under the hypothesis u € Fig oy and a = min(s,), the proof of Case 2. states
that the introduction of the constraint Tyipe_state < £ guarantees that no urgent
action can be performed after ¢ time units from the enabling of the first urgent
action.

Now we have an additional hypothesis:
u" € Liga)
= {By the definitions of Ly oy, O~ and the hypothesis}

Yv @ [v] € aUsucc(a).r = O (min(¢y)) = ((30.0 < 6 < dgay AV
'Q/)u’ ANV —20 ): %'))

Thus, for the (Urgent) rule, an urgent action could be performed only if v =
O™ (min(t),)). We can conclude that an urgent action ((g, @), ¥ A Tyine_state <
CAO™ (min(¢y ), YU{Zsine_state }> 0, (¢, &) € U} can be performed if and only
if ({q,a),v,7v,0,(¢',a')y) € U" can be performed.

Cases 4. and 5. The proof proceeds analogously to the ones of the other
cases.
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4.2.3 The quiet version of a timed automaton with urgent
transitions

Now, in order to achieve the desired behavior, in each state of ¢7, we have to
turn off all the originally non-urgent outgoing transitions when at least one of the
edges obtained by the originally urgent transition is enabled. This is the third
transformation step.

Let e = ({q, ), v, 7,0,(¢,&)) be a non-urgent outgoing transition from a state
in (T7. We map e in some transitions €' = ({(¢, ), A 0,7,0,(q,a')) of the new
automaton where 6 is the constraint that will become false when at least one of the
outgoing urgent transitions of the state (g, @) in ¢7) becomes true. The disjunc-
tion of the upper opening (Definition 4.8) of all urgent edges constraints (without
redundancies) outgoing from a state in (7, describes a right-infinite time interval
to the beginning of which an urgent transition must be taken. The negation of this
disjunction must be added to all the constraints of non-urgent edges of 7, outgoing
from the same state.

The negation of a complex formula can introduce disjunction of constraints. We
denote by DNFT an operation that, given a constraint which contains negations, push
the negation operator inside, using the logical axioms for =, A, V, until it is applied
to atomic constraints. Then it transforms the negations of these constraints to the
correspondent positive ones ( z = ¢ will be translated into z < ¢V ¢ < x). Finally,
it transforms the formula in disjunctive normal form. It returns the set containing
all the conjunctive components of the formula.

Definition 4.10 Let (T} = (Q", %, E", Uy, B", R", X") be the (-consistent version of
a timed automaton with urgent transitions in region form T, . The quiet version
of it, TI“ s the timed automaton (Q",%,€ = U, UE',B" R", X") where &' is
constructed as follows:

(<Q7 a>7 YA,y U {x(q',a'>}7 g, <q,7 a,>) €& uf ((qa a>7 Y, 7,0, <q,7 CY’>) €&, and ¢ €
DNF*(=(V,, O (min(yy))) for all ((g, @), v, Yu, 0w, (¢", @) € Uj.

Example 4.11 Figure 4.6 shows the automaton T'9%“¢ which is the 1-consistent
and quieted version of the automaton T) of Figure 4.4. Note that the constraint
1 < x on one of the edges for b has been modified to 1 < x Ax < 1 by the last
transformation. Thus, being always false has been removed. In figure, the clock
Trime state 1S OMitted because it is useless in this case.

Theorem 4.5 Let T, be a timed automaton with urgent transitions, T, the corre-
sponding timed automata in region form and T its quiet version. Then L(T,) =

L (Tquiet) .

Proof. Starting from the result of Proposition 4.4, the proof proceeds analogously
to the one of Proposition 4.4 itself. B
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O<x<1, l<x<=2,
x=1Db,{x}

Figure 4.6: Automaton 7duet

As a last remark of this section we want to discuss the size of the output of the
transformation. Indeed, it turns out that our notion of urgent actions is a succinct
way to express urgency. To see this consider that one could just design his/her
automaton as the quiet version we obtain by the transformation. That is to say,
one can think about states as pairs (g, @) and use suitable constraints to express
urgency as we do by the algorithm.

However, it is clear that the quiet automaton has a larger size than the automaton
with urgent transitions. As a first approximation the size of the quiet version of the
automaton is at least the size of the region automaton (see Section 2.2.1). Here we
consider the size of a timed automaton as the sum of the number of states and the
number of clock constraints on the edges. The size of the quiet version is greater
than that because we add constraints (and edges) to induce the behavior specified
by the formal semantics.

4.3 Specification using urgent transitions

In the previous section we defined a new feature for the timed automata specification
formalism. After that we showed how to compile a timed automaton with urgent
transition into a standard timed automaton.

Indeed, a specification formalism needs a way to define systems as a composition
of components. For timed automata this mechanism is the parallel composition (see
Section 1.4.2). The parallel composition of timed automata with urgent transitions
is defined in the same way, but observing the following remarks:

e the urgency of a transition of a component with a synchronization action o
extends to the transition obtained using one of the rules in part 1 of Defini-
tion 1.12,

e the urgency of a transition of a component extends to the transition obtained
by the rules in parts 2 and 3 of Definition 1.12.

It is easy to see that the transformation defined in the previous section is not a
congruence with respect to parallel composition. In other words if we have two timed
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automata, T,, and T, with urgent transition the automaton T, || 7., when defined,
is not equivalent, in general, to 77" || T/“" (the standard parallel composition of
the quiet version of them).

O<y<=1,
y>0, Y

u
C,
@ o) o
G) (b)

Figure 4.7: Automaton A} and its quiet version A'?ue!

Example 4.12 Consider the automaton Al of Figure 4.7(a), the automaton T} of
Figure 4.4 and the parallel composition T} || AL. The action c, having the constraint
y > 0 and being urgent, surely preempts the action b at the beginning of every run.
The parallel composition of the quiet version of T, (Figure 4.6) and of the quiet
version of AL (Figure 4.7(b)) has a different behavior: in the automaton T4 ||
Alawiet the qction b can be performed at the beginning of a run before the urgent
action c. This is because the transformation of T into T 9 does not consider the
urgency of the action ¢ belonging to the component Al9wet,

Thus, the interpretation of the non-urgent outgoing transitions in a state of an
automaton with respect to the urgency of a transition depends on the context in
which the automaton is considered. If it is viewed as a component instead of a stand-
alone system, the enabling of those transitions should change taking into account
other component’s urgent transitions that could interleave with them. This aspect
turns out explicitly in the example of the following section.

4.4 An example

As an example of specification of a system with urgent actions we use a part of a
multicast protocol for mobile computing presented in [ABDS00]. There the protocol
is specified by the Calculus of Communicating Systems (CCS) [Mil80], and the
Concurrency Workbench tool [CS96] is used to state some required properties.

Let us start with an informal description of the protocol, quoted from [ABDS00]:

“...We consider a system composed of mobile hosts and stationary hosts.

Communication occurs solely via message-passing. Some stationary hosts (gate-
ways) are connected to a wired network that provides reliable and FIFO-ordered
communication and to a wireless link, that covers a spatially limited cell nearby
the gateway. Mobile hosts may move and communicate through wireless links. A
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gateway may broadcast messages to all mobile hosts in its cell. A mobile host may
only exchange messages with the gateway of the cell where it happens to be located.

We shall associate a different meaning with the terms “receiving” and “deliver-
ing” a message. A host C receives a message msg when msg arrives at its protocol
layer. Upon receiving msg, the protocol may discard msg or pass msg up to one of
its applications. In the latter case, C' is said to deliver msg.

The protocol works as follows. A dedicated stationary host acts as the coordi-
nator, denoted as SC. A mobile host generates a multicast by sending a message to
a gateway, which forward it to SC. SC constructs a message containing an increas-
ing sequence number, then transmits the resulting message to gateways through a
FIFO-multicast. Gateways broadcast this message to mobile hosts in the respective
cells.

Due to its movement across cells, any mobile host m could receive duplicates or
could miss multicasts. By maintaining a history of the received sequence numbers, m
discards duplicates in the former case and sends to the stationary hosts a proper nack
message in the latter (e.g., upon receiving an out-of-order message). Upon receiving
a nack, the stationary host will relay to m a copy of the missing multicasts.”

The protocol was designed to guarantee several properties, in particular: ”Each
mobile host m delivers each multicast under reasonable assumptions, as follows:
m stops delivering messages if: (i) m starts entering and leaving cells so quickly
that its messages never arrive to any stationary host or messages from gateways are
systematically lost; and (ii) this pattern of movements persists forever.

»

The explicit assumption in the formulation of the property is due to the fact that
CCS specifications cannot express constraints on the speed of mobile hosts. Thus,
using this specifications, the system can have “bad” behaviors, which must be ruled
out in the property formulation. This means that the verification of the property
is restricted to all the possible “good” behaviors. That is, the execution paths in
which the mobile host enters and leaves cells without getting any message, although
possible, are disregarded.

With timed automata with urgent transitions we can easily describe the behavior
of the components involved in the protocol together with important time parameters
such as the speed of a mobile agent, that is the minimal amount of time it can stay in
a cell or the frequency it exchanges messages with the stationary hosts. This allows
to state the property on the whole system behavior which, due to time parameters,
should not allow “bad” executions.

To make a simple example of this feature of timed automata with urgent tran-
sitions, we extract from the above presented protocol the part dealing with the
iterated request of a mobile host to broadcast a message until it effectively receives
it. For reasons of simplicity we assume only one mobile host, two stationary ones
and the coordinator, as shown in Figure 4.8. Of course, the mobile host, being
unique, cannot receive multicasts generated by other mobile hosts. We assume that
multicasts are generated directly by the gateways.
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The system is specified by the parallel composition of the automata specifying
each entity.

Figure 4.8: The scenario

The coordinator SC is defined in Figure 4.9. It accepts a request from a gateway
gj (req,,(z)) for broadcasting the 7 — th message. Then it tries to contact all the
gateways to signal that the + — th message must be sent to their cells. Note that the
coordinator tries to contact the stationary hosts sequentially, it passes to contact the
next one only if either the previous accepted the request (signaly (1)) or it does not
respond for twenty time units (faily,). Note that in the latter case the coordinator
proceeds in, at most, twenty one time units. It is important to remark that the
action of contacting the stationary hosts is urgent. That is, when enabled, it cannot
be skipped and it must be done within a given time interval. One could observe
that the automaton always have the urgent transition enabled when it enters state
2 (and 3) and so the faily, () (faily, (7)) transition can never be taken. But, as
observed in Section 4.3, this automaton has to be understood as a component of a
whole system. This means that the semantics of urgency is defined in terms of the
whole system where the action signal (i) (and signal/ (7)) is a synchronization
action and can be executed only if the partner (the gateway) can execute it. This
depends on the state in which it currently is. Thus, in some runs of the whole
system, it could happen that the action faily, (i) (faily, (7)) is taken depending on
the relative speed of the components and on the interleaving of non-synchronization
actions. Note that without urgent transitions we cannot impose the priority and the
urgency of the action signal, (i) (signal, (i)) with respect to the action faily, (i)
(faily, (7)) in state 2 (3) because the standard semantics of timed automata would
execute them non-deterministically.

A gateway g, is defined in Figure 4.10. It passes the requests for broadcasting
the 7 — th message from the mobile host (reqmg (i)) to the coordinator (req (i)),
and broadcasts the message msg, (¢) on its cell upon request of the coordinator
(signal, (i)). Note that the action of sending the message is urgent, it can be
skipped only if the mobile host do not respond within ten time units. The same
remarks on urgency on parallel composition given above applies here.
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rqul(i), {x} 0<x<=20, signal g 1(i), {x}

u

0<x<21, failgl(i), {x}

fquz(i ) {x}

20<x<21, fail , (i)

0<x<=20, signal gz(i)

Figure 4.9: The coordinator SC

i

0<x<=4, req (i) signal 910)' {x

0<x<=10, msy g (i)

reqmg] M, {3

10<x<11, nomsg

9

4< x<5, regfail

Figure 4.10: The gateway g;

Finally, the mobile host m is defined in Figure 4.11. It tries every four units
of time to contact the gateway for requesting to broadcast the ¢ — th message for
a duration of one time unit. When the ¢ — th message is received and delivered a
message counter is increased. Note that, due to parallel composition, both actions
are urgent, so they must be done if enabled. Moreover, the mobile host can move
from a cell to another; however its speed cannot allow to stay in a cell less than fifty
time units. This action is not urgent, that is a host can stay in a cell also if the
action of moving is enabled.

Our notion of urgency expresses both a priority among actions and a time con-
straint on their execution. Both these concepts are useful in specifying real systems.
In the scenario of Figure 4.8, the mobile host, when staying within a cell, must first
of all try to communicate with the gateway and, if possible, it must do it immedi-
ately. If we remove the urgency annotation from the previous automata, the mobile
host could never communicate while waiting for the time of moving.

With this specification, the correctness property of the protocol can be simply
restated as: “Each mobile host m delivers each multicast”.

Because we do not yet have a tool implementing our notion of urgency, we have
used the features of UPPAAL [BLL196] to verify the protocol. In particular we used
its notions of urgent channels to simulate our notion of urgency. These features are
not sufficient to express the notion that we have introduced in this chapter and thus
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3<x<4, reqm Qf)’ {x} 3<x<4, reqm gS)‘ {x}
u u
y>50, move, {y}
msg gg) deliver(i) i:=i+1, {x} msggz(i) deliver(i) i:=i+1, {x}

Figure 4.11: The mobile host m

the system that we have tested is an approximation of the one shown in this section.
See Section 4.7 for the details.

4.5 Notes on Implementation

In this section we address two problems that arise in the effective use of timed
automata with urgent transitions and the defined transformation. The first is the
progress model used by the automata and the second is the state explosion due to
the region automaton construction.

We have used, to introduce urgent transitions, the model of timed Biichi au-
tomata (Chapter 1). In Section 2.3 we have discussed the problem in the implemen-
tation of this model and we have introduced timed safety automata (Section 2.3.1)
as implementable timed automata. It is easy to see that the definition of timed
automata with urgent transitions and the transformation that we have developed
is the same if the model of timed safety automata is used. The only difference is
in the construction of the region form of the automaton in which every state (s, a)
has the invariant condition of the state s in the original automaton. The proof of
correctness is the same.

The problem of state explosion in verification using timed automata is a serious
aspect that has been attacked from the beginning of the presentation of the model.
The main source of this explosion is the region construction that we have recalled
in Section 2.2.1. The number of regions is exponential in the number of clocks and
in the magnitude of the largest integer constant used in the clock constraints. The
main tool to contain this complexity is the use of clock zones instead of clock regions.
This aspect has been treated in Section 2.2.3.

For the sake of simplicity and clarity of exposition we have used, in our transfor-
mation of Section 4.2, the region form of a timed automaton (Definition 4.4). Such
a device is very useful to define and, for its properties, also to prove the correct-
ness of the transformation. However, it suffers of the problem of state explosion.
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With regard to this, we state that it is possible to define a transformation that
uses clock zones instead of clock regions. Such a transformation starts with the
definition of the zone form of a timed automaton. This automaton is the analo-
gous of the region form of the timed automaton if the zone automaton construction
[ACH™92, Alu99, Yov96] is used instead of the region automaton construction. The
second and the third step of the transformation remain unchanged.

4.6 Related works

The notion of urgency and/or priority for timed formalisms has been studied in
the past. In [BL92| the urgency of actions has been investigated in the process
algebra field with the concept of discrete time. Different notions of priority have
been introduced for timed automata in [FPY02] and for timed process algebras in
[BALO02, BL9T].

A closer approach to ours can be found in [BS97, BST98, BS00]. There the states
of a timed automaton are associated with time progress conditions (I'PC). TPC
are state conditions which specify that the time can progress at a state by d only if
all the intermediate times ¢’, 0 < ¢’ < 0, satisfy it.

TPC are computed from deadlines. Deadlines are clock constraints associated
to transitions in addition to the usual constraints (which, in this setting, are called
guards). The defined class of timed automata is called Timed Automata with Dead-
lines (T AD).

Given a state ¢, its T PC' is intuitively computed as follows. Consider the set
I = {i | t; is a transition outgoing from ¢} of indexes of transitions from ¢. The
TPC of q, ¢4, is obtained as the negation of the disjunction of the deadlines, d;, of
all the transitions from ¢, ¢, = =\/,.; d;. In a state of a run, (¢,v), the time can

progress by ¢, (¢, v) i>(q, v+9),if VY <ov+4d ¢,

Given a transition in a TAD, with guard ¢ and deadline d, we can find in
[BST98] the following remark.

“The relative position of d with respect to 1 determines the urgency of the action.
For a given 1, the corresponding d may take two extreme wvalues: first, d = 1,
meaning that the action is eager and, second, d = false, meaning that the action
s lazy. A particularly interesting case is the one of a delayable action where d is
the falling edge of a right-closed guard v (cannot be disabled without enforcing its
execution,).

The condition d = 1 guarantees that if time cannot progress at some state,
then at least one action is enabled from this state. Restriction to right-open T PC
guarantees that deadlines can be reached by continuous time trajectories and permits
to avoid deadlock situations in the case of eager transitions. For instance, consider
the case where d = ¢ = x > 2, implying the TPC x < 2, which is not right-open.
Then, if x is initially 2, time cannot progress by any delay 1, according to above
definition. The guard v is not satisfied either, thus, the system is deadlocked.”
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This limitation is very intuitive: if the eager transition has a left-open guard, the
time at which it can be fired is undefined. Using our concept of urgent transition
we avoid this problem because the transition can be fired in the interval in which x
isin [2,2+¢). On the other hand, if a transition with a left-closed guard, say x > 2,
needs to be fired “as soon as possible”, then we can approximate this behavior using
a constant ¢ small as needed.

With regard to the problem of right-closed T'PC'’s it is also interesting to note that
the introduction of urgent transitions in the tools of verification of timed automata is
a difficult task. By now, the latest version of UPPAAL? has introduced the concept
of “urgent channels”® which model transitions that must be fired as soon as possible.
But their use is very restricting as we show in the following section.

4.7 Analysis with UPPAAL

We have tried to use the features of the tool UPPAAL to model the part of the
multicast protocol introduced in Section 4.4. The system that we present in this
Section is an approximation of the one modeled by timed automata with urgent
transitions because the notion of urgency supported by UPPAAL is weaker than the
one we have proposed.

In UPPAAL there exists the possibility to declare a synchronization channel
between two timed processes as “urgent”. This kind of urgent channel cannot be
constrained by clock constraints. Only conditions on the value of variables can
be put as guards of the urgent channel. Whenever two timed processes connected
by the urgent channel are allowed to perform the synchronization, this must occur
without letting any time elapses.

Note that variables in UPPAAL can change their values only when a non-time
transition occurs and an assignment is performed. Thus, when the parallel com-
position of some timed processes in UPPAAL enters a new state after a non-time
transition, the boolean value of a guards on variables is known and it remains un-
changed until another non-time transition is performed.

In this way, the main problem with urgent transitions, i.e. the fact that they can
become enabled in a state as a real-time elapses and at a certain point they possibly
become disabled is avoided and the implementation of urgent channels in UPPAAL
is simple.

Our notion of urgency and that one of UPPAAL coincide only when the urgent
transition has a clock constraint equivalent to ¢rue or when it is known that it is
always enabled when its source state is entered and its clock constraint is an upper
bound of the values of the clocks.

In any case, however, the concept of the interval (bounded by ¢) in which an
enabled urgent transition must be taken cannot be modeled in any way with the

2UPPAAL Version 3.4.0 downloadable at http://www.uppaal.com
3See the documentation at http://www.uppaal.com
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current features of UPPAAL.

Figure 4.12 shows the timed process Coordinator. The picture has been taken
by UPPAAL and the graphical conventions are slightly different from the ones used
throughout this thesis. In particular, the double-circled states are initial states
and, as outlined in Section 2.4.2, states has invariants and only synchronizations
transitions (channels) have labels. In this example all synchronization channels are
urgent. State c0 acts as the state 0 of the coordinator in Figure 4.9. It simply
accepts a request of broadcasting message 1 or 2 from Gateway 1 or 2 through the
urgent channels regg j i where j is the number of the gateway and 7 is the number
of the message.

For brevity we have modeled only the delivering of 2 messages, but it is clear
that we can model the system for any fixed number n of messages. This also is
true for the number of gateways and mobile units. In state ¢l (or equivalently
8 for message 2) of the Coordinator there is the first simulation of the behavior
of the automaton in Figure 4.9. The urgent transition labeled signal (i) and
having the clock constraint 0 < x < 20 is simulated by the state invariant x < 20
in the state ¢l and by two outgoing transitions. Omne is on the urgent channel
signalll and the other, with constraint x > 20, correspond to the faily (1) of
the original coordinator. If Gateway 1 is enabled to perform the synchronization
while the control is in ¢l the transition is taken immediately and state ¢2 is reached.
In this state we simulate the interval with length ¢ = 1, associated to the urgent
transition, by the invariant y < 1. If the Gateway 1 is not enabled to perform the
synchronization on channel signal 11 for all the time that the coordinator is in
state c1, then there is a failure. In every case state ¢4, which corresponds to state 3
of the original automaton, is reached. The other paths on the automaton uses the
same technique changing the message number or the gateway number.

The gateways are represented in Figures 4.13 and 4.14. Consider Gateway 1.
State g0 corresponds to the initial state 1 of the original gateway of Figure 4.10.
If the gateway receive a message from the coordinator (signal 1) then it goes on
state g4 or g8 depending on the number of the message. In every case, it tries to
send message ¢ to the mobile unit trough the urgent channels msg 1 ¢ using the same
technique that we have seen above to simulate our notion of urgency.

If the gateway receives a request from the mobile unit for a message (reqmg 1)
then it tries to transmit the request to the coordinator through the urgent channel
regg 17 using the same technique. The other behaviors are similar.

Finally, the mobile unit is showed in Figure 4.15. The original one was the au-
tomaton in Figure 4.11. In this case, the urgent transition from the initial state,
labeled reqm, (i), cannot be simulated as in the other cases because its clock con-
straint is 3 < z < 4. This means that when the state is entered the constraint of
the urgent transition could not yet be true and it can become true after the elapsing
of some time. We cannot simulate the behavior of urgent transitions in this case
and. We approximate enabling the urgent transition immediately when the state is
entered. Thus, in state m0 there are two urgent synchronizations in parallel and the



4.7. ANALYSIS WITH UPPAAL 107

cl signalg11!

x<=20

reggl2? x:=0

x<=20

signalg21!
y:=0

x>=20

x=0 O

x<21

Figure 4.12: The timed process Coordinator

possibility for the mobile unit to move on the other cell after 50 time units. States

m0 corresponds to state 1 of the original automaton. In state m0 the message 1 is

requested and the automaton attempts to receive it back from the gateway. State

m2 is symmetric to m0 and records the fact that the mobile unit has moved to the

cell of Gateway 2. States m7 and m8 attempt to request and receive back message

2. State m12 is the state in which the mobile unit has received all the two messages.
The correctness property can be expressed by the formula

VYO ml12

i.e. for all paths, eventually the state m12 of the mobile unit is reached. The truth
of this formula with respect to the given system has been verified by UPPAAL. It is
important to remark that, as we said in Section 4.4, if we increase enough the speed
of the mobile the property is not satisfied any more. With the times used in this
specific example the property becomes false if we put the constraint w > 1 instead
of w > 50 on the transitions that represent the moving of the mobile unit among
cells.
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Figure 4.13: The timed process Gateway1
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Figure 4.14: The timed process Gateway2
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Figure 4.15: The timed process Mobile
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The diagnostic trace given by UPPAAL corresponds to the situation that is ruled
out in the original formulation of the correctness property, that is to say, the mobile
unit starts an infinite cycle in which enters and leaves cells without receiving any
message. Thus, the speed of the mobile unit is a crucial parameter for determining
the truth of the property.



Chapter 5

A Notion of Timed
non-Interference

Abstract

In this chapter we contribute to the framework of the verification of real-
time systems introducing in it a new idea that has been fruitful in the area
of untimed concurrent systems. The new definition is based on existing mod-
els and on existing verification techniques. The non-interference property of
concurrent systems is a security property concerning the flow of information
among different levels of security of a system. It has been used as a basis to
define several security properties of multi-level security systems and of sev-
eral security properties of communication protocols. We introduce a notion
of timed non-interference for real-time systems specified by timed automata.
The notion is presented using an automata-based approach and then it is
characterized also by operations and equivalence between timed languages.
The first formulation of the timed non-interference is undecidable. It is ap-
plied to an example of a time-critical system modeling a simplified control of
an airplane. The presented notion can also be used to verify the strength of
a system against attacks depending on the frequency of certain actions. In
particular, we give an alternative formulation of timed non-interference which
is decidable and can be checked using existing verification tools. We show an
application example of this decidable notion by defining a variant of the clas-
sical Fischer’s mutual exclusion protocol and by analyzing its strength against
attacks. The tool UPPAAL is used to perform the automatic verification.

The initial notion of timed non-interference was originally presented in
[BDSTO01] and then the contribution has been published as [BDST02]. The
decidable variant of timed non-interference was presented in [BT02] and the
full paper has been published as [BT03].

Non-interference is a security property for multilevel security systems. This
property has been formulated within different formalisms. In Section 5.1 we recall
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the general idea. In the framework of real-time systems the notion has not been
defined although there can be several fields of applications. As an example, a class
of possible attacks to network components is based on use of the time. Time can
be used to gather information, as in [DKL98, Koc96, Sch00], where the execution
time is used to reveal a secret key. Time can be also used in direct attacks. If the
frequency of the intrusion is high enough, the attacked system cannot work properly.

We define a timed notion of non-interference using timed automata and timed
languages in Section 5.2. It is suitable to detect interference due to the frequency
of certain actions.

The first formulation suffers of a negative result of undecidability due to the
fact that the equivalence between timed automata is used in its definition. For this
reason in Section 5.4 we define a decidable notion of timed non-interference that is
derived from the first one.

To show a possible application of the decidable timed non-interference we present,
in Sections 5.5 and 5.6, an analysis of the strength of a variant of the well-known
Fischer’s mutual exclusion protocol against an attack which depends on time. We
show that we can individuate a certain frequency for the actions of the attacker
under which the protocol is not breakable.

Finally, in Section 5.7 we model the example system with the tool UPPAAL and
we perform the non-interference verification automatically.

5.1 The Idea of non-Interference from Concur-
rent Systems

The non-interference property of concurrent systems is a security property, intro-
duced in [GM82], concerning the flow of information among different levels of secu-
rity of the system. Suppose, for simplicity, that the security levels are two: high and
low. Thus, the behaviors of the system are divided into two classes: the high-level
behaviors executed by high-level users and the low-level behaviors executed by low-
level users. Moreover, the system can be observed by users at different levels. In
particular high-level behaviors should not be visible to low-level users. The system
respects the non-interference property if the low-level behaviors are not affected by
the high-level ones. In other words, if a system P acts in an environment where
low-level and high-level users are present and are doing all that they can do, P is
secure, i.e. non-interfering, if the observations that P offers to the low-level users
when high-level behaviors are present and hidden are equal, in some suitable sense,
to the ones that P offers when no high-level behavior is present.

The initial idea of non-interference was presented for a deterministic system
represented by an automaton [GM82]. Since this first seminal paper, the idea has
been fruitful in the framework of security, especially in the 90’s.

It has been applied, for instance, to non-deterministic systems described by a
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CCS-like ([Mil80]) process algebra, the Secure Process Algebra (SPA) of [FG96b,
FG97, FG96a]. Different notions of non-interference are defined on this model and
a classification defining an hierarchy between them based on the set of systems that
each notion set as secure is given in [FG96b]. Other analyses based on process
algebra can be found in [RS01, RWW96].

Other fields of application are analysis of security protocols and definition of
security properties typical of this setting[FGG97], probabilistic systems [SS00] and
information flows in a timed process algebra with a discrete time domain [FGMO0].

Different notions of non-interference proposed in the literature have been com-
pared and summarized in [FG96b, McL.94]. An overview of some important questions
concerning non-interference definitions, in a CSP setting, can be found in [RSO01].

Usually, in a process algebra setting, the definition of non-interference proceeds
as follows. The actions/events of a system are divided into high level and low level
ones. Then, a restriction operator is defined on processes that forbid them to execute
high-level actions. Moreover an hiding operator is defined that allows the execution
of high-level actions but that make them not visible on the traces of the system
which are the observable semantic objects. In this way, a process is said to be non-
interfering if and only if the process resulting from the application of the restriction
operator is equivalent, with respect to some suitable equivalence on traces or on
the structure of the processes (i.e. bisimulation), to the process resulting from the
application of the hiding operator.

This is equivalent to say that the view of the system of a low-level user, i.e.
a user that observe only low-level actions, does not allow any deduction on the
activity and even the presence of high-level users. This implies that covert channels
do not exist in the system. Covert channels are communication flows from high-
level users to low-level users through which secret information can be leaked using
non-conventional ways, e.g. side effects of some legal operations.

The non-interference property of a system can be interpreted also in the following
way. We can think of high-level activity as a dangerous activity for the system, e.g.
the malicious actions of an intruder that wants to crash the system or some unusual
legal operations that potentially make the system fail satisfying a requirement.

In this view, if the system is not interfering then we know that it is secure in
the sense that an intruder cannot crash the system with its attacks or that the
requirements are satisfied even in critical situations.

We mostly use the latter interpretation in the examples of analysis that we
present in this chapter. However, obviously the timed non-interference that we
define can also be applied using the other interpretation.

5.2 A Timed Notion of Non-Interference

In this section a notion of timed non-interference for real-time systems specified by
timed automata is introduced. The notion is presented using an automata-based
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approach and then it is characterized also by operations and equivalence between
timed languages. The definition is applied to an example of a time-critical system
modeling a simplified control of an airplane.

To define our notion of non-interference, we partition the alphabet of the timed
automaton representing a real-time system in two classes: high-level actions and low-
level actions. Our notion of timed non-interference depends on a natural number
n representing a minimum delay between high-level actions such that the low-level
behaviors are not affected by the high-level ones. This means that this notion
is suitable to detect interference due to high frequency of high-level actions. An
intuitive example of this interference is the following. Consider a timed automaton
T that models a speed-dependent real-time system like an airplane control system.
It has to control a lot of basic events and has to respond with basic actions in order
to maintain, say, the flight stability. These actions/events may be considered low-
level actions and are always activated. When the pilot decides, for example, to turn
right, he uses the cloche and this may correspond to an occurrence of a high-level
action. Thus, the system receives high-level events (in this case cloche movements
signals) separated by certain delays; it must respond to them and must continue to
catch and manage basic events. When this happens we say that high-level actions
delays magnitude does not affect the basic behavior of the system. Intuitively if the
cloche movements signals are sent to the automaton with a too much high frequency,
it could reach a state in which it is no longer able to manage basic events.

The new notion presented here is based on high-level actions delays magnitude
and on trace equivalence of timed automata. Given a natural number n, we say that
high-level actions do not interfere with the system, considering a minimum delay n,
if the system behavior in absence of high-level actions is equivalent to the system
behavior, observed on low-level actions, when high-level actions can occur, but the
delay between any two of them s greater than or equal to m. Thus, if the system
does not fire high-level events/actions separated by less than n time units and the
property holds, there is no way for low-level users to detect any high-level activity
or, in the other interpretation, high-level activity cannot interfere with the low-level
one that is considered the only “desired” one. The main improvement with respect
to the untimed notion of non-interference is that time is observable and the property
can express security requirements of real-time systems, for instance the ones that
follow:

e the time delay between high-level actions cannot be used to construct timed
covert, channels.

e the frequency of high-level actions does not affect the low level behaviors that
are considered the correct ones.
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5.2.1 n-non-interference

Let T be a timed automaton over an alphabet Y. We remark that all the definitions
and results that we give in this chapter can be applied to timed automata and also
to timed automata with € transitions. However we give them for timed automata.
We suppose that ¥ is partitioned into two disjoint sets of actions H and L: H is
the set of high-level actions, while L is the set of low-level ones.

To observe the behavior of an automaton 7" in absence of high-level actions, we
can compose 1" in parallel with an automaton, from now on called Inhiby, that does
not allow the execution of high-level actions.

The automaton Inhibg is shown in Figure 5.1. In the parallel composition T ||
Inhibg all actions are synchronization actions. Thus, the component 7" cannot have
a transition labeled by 0 € H because his partner in synchronization, Inhiby, never
performs high-level actions (its constraints on high level actions are false). Thus
only low-level actions are executed.

We have that £(T' || Inhiby) contains all basic behaviors of T', i.e. all timed
words obtained by runs in which high-level actions do not occur.

Consider the automaton Interf; in Figure 5.2. This automaton allows the exe-
cution of high-level actions only when they are separated by at least n time units.
To see this, consider its behavior from the initial state i. There, it can perform
low-level actions without restrictions. If never high-level actions occur in the run,
then it stays forever in iy cycling on low-level actions. If a high-level action occurs
the automaton changes its state to 7; and reset a clock called xjnerr. Note that this
clock is reset by all high-level actions. This means that, in state i1, Tipterr always
records the time elapsed from the previous high-level action occurred. In state #;
low-level actions are allowed again with no restrictions, but any high-level action
can be executed only if at least n time units have elapsed from the previous one.
This is expressed by the constraint Tjyers > n.

Given an automaton 7', the parallel composition T || Interf; can be used to
observe the set of all behaviors of 7" such that high-level actions occur at times
separated by an interval whose length is greater than, or equal to n. Of course, we
are assuming that 7" does not reset the clock xjytert-

Before giving the definition of n-non-interference, we need the following oper-
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Figure 5.2: The structure of Interf’;

ation, which, if applied to an automaton 7', returns an timed automaton with €
transitions having the same behaviors of T', but where high-level actions are non-
observable.

Definition 5.1 (hiding of high-level actions) Let T be a timed automaton over
an alphabet ¥ = (H,L). We denote by T|H] the automaton obtained by T by
replacing each edge (q,,v,0,q") of T with o € H, with the edge (q,v,7,¢€,q).

Now we can define formally the intuitive notion of timed non-interference out-
lined above. Recall the definition of trace equivalence between timed automata that
we have done in Definition 1.16.

Definition 5.2 (n-non-interference) Let T be a timed automaton over an alpha-
bet ¥ = (H,L), and let n € N. High-level actions do not interfere in T with a
minimum delay n (equivalently we say that T is n-non-interfering), if and only if

(T || Intert?;)[H] ~ T || Inhiby

5.2.2 Characterization with Timed Languages

In this section we characterize the notion of timed non-interference, defined in the
previous section, using timed languages. We define three operations on timed lan-
guages and then we relate them to the corresponding operations on automata. This
provides a more formal justification of the definition of n-non-interference of the
previous section. As a matter of fact, it was given following some remarks on the
behaviors of the automata Inhiby and Interf’, when composed with the automa-
ton T representing the system. The proofs of the following propositions are rather
simple. We only give the proof of Proposition 5.2. The other ones are similar.
First, consider the restriction of a timed language to low-level actions.

Definition 5.3 (restriction to low-level actions) Let I be a set of timed words
over an alphabet ¥ = (H,L) (i.e. a timed language on ). I|j, is the subset of I
such that all elements are timed words on actions in L only:

I, ={@Hel|VieN oel)
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Proposition 5.1 Let T be a timed automaton over an alphabet ¥ = (H, L). Then

The restriction to high level actions separated by at least n time units is defined
as follows.

Definition 5.4 (n-delay restriction) Let I be a set of timed words over an al-
phabet X = (H, L). Let n be a natural number. I} is the subset of I containing all
timed words in I such that the delay between any two actions in H s at least n:

I?I:{(E,f) €I|VZ,]€N (Z%]/\UZ,UJGH)Z>|tZ—t]| ZTL}

Proposition 5.2 Let T = (Q,X = (H,L),E, B, R, X) be a timed automaton. Then
L(T)Y = L(T || Interf?).

Proof.  Let w be a timed word in £(7)%. This means that w € £(T') and it
satisfies the condition expressed in Definition 5.4. Since w is accepted by T, there

exists a run r = (qo, ) l—°>(q1,1/1) Dy .. of T whose action sequence equals w
(actually, there exist infinitely many runs having this property; we take just one of
them). Let g € (inf(r) N R) be a repeated state of T" that is entered infinitely many
times along r according to the Biichi acceptance condition.

We want to construct, from r, a run of 7' || Interf}, whose action sequence
equals w. There are two cases. The first one is when a high level action is

never executed along r. In this case the run is just ' = ((qo,%0,0), 70 U {Tintersr =
l1

0}) i>((q1, ig,ma), VY) — ... ((gi, 10, my;), v}) Ly .. where v} are the clock valua-
tions v; of r extended with the valuation for the clock Xjyerr of Interfy. Along r
(and also ') this clock is never reset and Interf’; stays forever in state iy which is
a repeated state. Thus, along the run so constructed, the state (gq,1io,2) is taken
infinitely many times satisfying the acceptance condition of the parallel composi-
tion (see Definition 1.12); moreover 7’ has the same label sequence of r and thus the
corresponding accepted timed word is w.

The second case is when at least one high-level action h is executed along 7.
Suppose this happens at step k. Consider the prefix of a run ' = ((qo, i, 0), o U

l . l . ly=h .
{ﬂﬁinterf = 0}) —°>((q1,10,m1),1/{‘) —1>"'((Qk,20,mk),7/7§) k—>(((1k+1,l1,mk+1),l/k+1 U

{Zintert = 0}) where vf are again the extensions of v; of r to handle the clock
Tintert- 1f all X labels following [, in r are low-level actions, we can extend 7’ as
in the first case and we have that the state (q,i;,2) occurs infinitely many times

in 7/, and thus 7’ is a run of T || Intert’;. If, on the other hand, other high-level

. . . Ihy1 lj
actions occur in r, i.e. r = - (Qot1, Vkr1, ) — - (5, V5, my) —=(qj41, Vjg1) -+

with I; € H and for each [;,k < i < j, [; € LUR?®, we can extend 7’ as follows:

. l . lj .
r=... ((qk+17217mk+1)71/;§+1) ﬂ} .. ((qj,zl,mj),l/; )—J>((Qj+1,l1,mj+1),l/;+1) .

Since r satisfies the condition of Definition 5.4, we have that at least n time
units have elapsed between the occurrence of [, and that of [;. Now, since v}, =
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V41 U {Zinterr = 0} and Zjngerr is not reset by low-level actions, then the value held
by Zintert In v is greater than, or equal to, n, and this means that r' is a prefix of a
run of 7" [| Interf’;. Since v, = 11 U{Zintert = 0}, the same argumentation can be
used to show that the next high-level action of r (if any) can be executed in 7/, and
so on. Thus, w € L(T || Interf’;). The converse can be easily proved by a similar
argument. Wl

The hiding of high-level actions is expressed as follows.
Definition 5.5 (hiding of high-level actions) Let I be a set of timed words over

an alphabet ¥ = (H, L). I[H] contains the timed words (o,t) of I in which the pairs
(04,t;) with o; € H are discarded:

I[H] = { o

Proposition 5.3 Let T be a timed automaton over an alphabet > = (H, L). Then
L(T)[H] = L(T[H]).

w=(o,t) € I and W' is the projection of w
on the pairs {(o,t) |0 € L} }

The following proposition states that the above characterization correctly ex-
presses n-non-interference.

Theorem 5.4 Let T be a timed automaton over an alphabet ¥ = (H, L), andn € N.
T is n-non-interfering iff L(T)}[H]= L(T)|L
Proof. Follows from Definition 5.2 and the three propositions above.

The following proposition shows that the frequency of high-level actions, that
becomes higher as n decreases, is a crucial parameter on determining the n-non-
interference property.

Proposition 5.5 Let T be a timed automaton and n € N. If T is n-non-interfering
then T' is also (n + 1)-non-interfering.

Proof. It is simple to see that the condition of n-non-interference depends on the
frequency of the occurrence of high-level actions. More precisely, it can be missed
only if such a frequency is too high. Thus, if the condition holds for a certain n it will
hold for every n’ > n because the n’-non-interference requires the same equivalence
allowing at most a lower frequency of high-level actions than the n-non-interference,
which is verified by hypothesis. B
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Figure 5.3: Automaton 7T': a simplified airplane control

5.2.3 An example

In this section we consider a simple control 7" of an airplane (Figure 5.3) and study
its non-interference properties. The system periodically executes, at predefined in-
stants, a set of operations to control flight stability. The control operations begin
with action begin_ctrl and end with action end_ctrl. State sI is an abstraction for
the control operations, which require 2 time units to be completed. One time unit
before entering each control cycle the system can catch an input action from the
pilot; in this simple case we consider only a single input action cloche modeling
cloche movements. When cloche occurs, the system handles it and then continues to
manage control actions. Let begin_ctrl and end_ctrl be low-level actions and cloche
and reset be the high-level actions.

At first consider the behavior of T" when the high-level action cloche is disabled
(i.e. the moves of T' || Inhiby); this consists in a simple cycle between states s0 and
s1 where transitions are separated by exactly 2 time units.

Thus £(7T || Inhiby) contains a single timed word

(begin_ctrl, 2)(end_ctrl,4) - - - (begin_ctrl, 2 + 4i)(end_ctrl, 4(i + 1)) - - - (5.1)

Consider now the general behavior of the system, i.e. all actions are enabled
with no restrictions. When cloche occurs, the system moves to state s2. When the
system is in s2 it is handling the cloche action. This operation normally requires one
time unit, after which the system returns to the initial state. However, while being
in s2, the system can catch other cloche actions and in this case it moves to state
s3. If the handling of them requires too much time (z0 becomes greater than 2),
it is necessary to postpone the beginning of the successive control cycle (i.e. action
reset is executed).
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Thus, the cloche actions can interfere with the basic system behavior if they are
too close to each other. To see this formally with our approach to non-interference
consider a natural number n and the automaton 7" || Interf’;. If n = 0 high-level ac-
tions can occur without restrictions on their relative delays and consequently the re-
set action could be executed. Thus, the system does not satisfy our non-interference
definition. If, instead, n > 1, then only one cloche action can occur between two
successive control cycles and it is managed without affecting the basic behavior.
Thus, for each n > 1, (T || Interf’;)[H] generates the single timed word (5.1) which
in turn is the unique timed word generated by 7' || Inhiby. From Definition 5.2 we
conclude that high-level actions do not interfere in 7" with a minimum delay n > 1
(T is n-non-interfering for n > 1). On the other hand, if n = 0 there is interference.

5.3 Toward Decidability

In order that the theory presented so far can become useful in practice, we must
check the trace equivalence of timed automata. This implies checking inclusion in
both directions of the respective recognized languages. We have seen in Section 2.2.2
that for timed automata the language inclusion problem is undecidable. However,
the language inclusion problem can be solved if the system can be modeled using
deterministic Muller automata (Section 1.4.3) or event-clock automata [AFH97]. To
make the method effective also in the general case, two directions can be followed.
On one side weaker notions of non-interference which are checkable on general timed
automata can be defined. On the other side, sufficient conditions on the structure of
the automaton 7' representing the system, which allow us to decide the equivalence
check required by our timed non-interference definition can be searched for.

We find that the former direction is more promising and, since the objective of
decidability is more appeal if we get also effectiveness of the verification tasks, our
simplification of the timed non-interference naturally follows the direction toward
timed safety automata (Section 2.3.1).

We know that time safety automata has state-base semantics while timed au-
tomata, as usual in the automata-theoretic approach, has a trace-based semantics,
i.e. timed words. A natural direction to simplify the n-non-interference is the def-
inition of a state-based notion. We know, from Section 2.2.2, that the reachability
of states is decidable. Moreover, all tools for the verifications of timed (safety) au-
tomata implement algorithms to perform reachability analysis, which is the most
studied from the point of view of efficiency. This is because a lot of real-time re-
quirements can be reduced to a reachability test (see Section 2.4.2).
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5.4 A Decidable Timed non-Interference

We consider an equivalence between timed automata which is decidable and it is
used to define a decidable notion of timed non-interference derived from n-non-
interference. The equivalence focuses the reachable states of the system. The decid-
ability of the new notion relies on the decidability of the reachability test for timed
(safety) automata. The definition is as follows.

Definition 5.6 (n-state-non-interference)

Let T = (Q,%,&, B, R, X) be a timed automaton with an alphabet ¥ = HU L, where
HNL =10, and let n be a natural number. T is n-state-non-interfering iff the set of
reachable states of T || Inhiby, projected on the states Q of T, is equal to the set of
reachable states of (T || Interf;,)[H| , projected on the states Q of T.

Let R(T) be the set of reachable states of T' || Inhibg, projected on the states
() of T. Since this automaton can not perform high level actions, R(T') contains
those states of 1" that can be accessed without the aid of any high level activity.
The notion of n-state-non-interference then requires that R(7") does not change
when a controlled high-level activity is allowed. This control imposes that any two
subsequent high level actions are separated by at least n time units.

Note that we have defined the n-state-non-interference using timed automata.
It is straightforward to adapt this definition to the model of timed safety automata.

The following proposition shows that the two notions of non-interference take
different aspects of systems into account.

Proposition 5.6 Let T be a timed automaton.
1. T is n-non-interfering & T is n-state-non-interfering.

2. T is n-state-non-interfering # T is n-non-interfering.

Proof. @ We will present two counter examples. Figure 5.4 shows an automaton
which is n-non-interfering for all n € N. This is because the high level transition
labeled with h from state 0 to state 2 is followed, possibly without delay, by a
transition labeled with the low level action [ from state 2 to state 1. Thus, when
the automaton 7" || Inhiby is considered, the action h can not be performed and the
accepted timed words are of the form (I, #)(l,#;) - - - in which it is only required that
t; < ti11. When the automaton (7" || Interf’;)[H] is considered, the action h can be
performed, but is not observable. Thus the accepted timed words are of the same
form of those of T' || Inhiby because there are not clock constraints. On the other
hand, the system T of Figure 5.4 is not n-state-non-interfering for any n € N. This
is because the state 2 is reachable in (T || Interf’;)[H] for all n € N and it is not
reachable in T' || Inhiby.

Figure 5.5 shows the counterexample for the converse. In this case it is clear that
the automaton is n-state-non-interfering. On the other hand, all the accepted timed
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Figure 5.4: A system that is n-non-interfering, but not n-state-non-interfering
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Figure 5.5: A system that is n-state-non-interfering, but not n-non-interfering

words of 7' || Inhiby begin with (ly, %) -, but the automaton (7' || Interf’,)[H]
accepts a timed word beginning with (I1,%p)---. B

5.5 The Fischer’s Protocol for Mutual Exclusion

In this section we show the utility of n-state-non-interference analysis to state the
robustness, with respect to external attacks, of a classical timing-based mutual ex-
clusion protocol. The protocol was suggested by Michael Fischer and reported in
[Lam87]. The significance of the protocol is due to its speed, that makes it suitable
for multiprocessor computers or time-critical embedded systems.

Suppose that two processes, P; and P,, are running in parallel, competing for a
critical section, and assume that atomic reads and writes are permitted to a shared
variable z. Assume also that every access to the shared memory containing x takes
acc units of time. Fach process executes the following algorithm, where the code
both of the critical section and the one outside the protocol is assumed not to modify
x.

repeat
await x=0;
X:=1i;
delay b
until x=i;
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y=b, (x<>)p )

y>0, outCS, {y} y=0,inCS, {}
.

Figure 5.6: Automaton P,

Critical Section;
x:=0

Each process P; is allowed to be in its critical section iff x = i. The statement
await x=0 waits until the value of x becomes 0. The statement delay b delays a
process for b time units, as measured by the process clock. Here we assume that the
local clocks of the two processes proceed at the same rate. Each statement takes
an amount of time to be executed, in particular we assume that the assignment
statement takes at most a time units. Recall that an access to the shared memory
containing x is atomic, and the processes P, and P, can compete for accessing it,
thus the time of each assignment, a, may depend on the resolution of conflicts.

The Fisher’s protocol ensures mutual exclusion iff a < b.

Each process can be represented by a timed automaton like the one in Figure 5.6,
a slightly different representation of the one given in [AJ98, ACH'95].

State 0 corresponds to the local computation of the process. z is not a clock
variable: it represents the shared variable of the protocol. y is a clock variable that
is used to count time as specified in the protocol specification. The process can
start the protocol for accessing the critical section only if the value of z is equal
to 0. This is represented by the (x = 0)p, action: a synchronization action with
the Serializer (see Figure 5.7). At this point (state 1) it can assign  (in a time
shorter than b') and it waits b time units for testing it, and, depending on its value,
for entering the critical region (state critical). On exiting the critical section, the
process sets the value of x to 0.

It is important to note that P, and P, must not synchronize on actions, but only

! Actually the assignment has to occur within a time units and a has to be less than b. Here,
for simplicity, we use b in both cases.



124 CHAPTER 5. A NOTION OF TIMED NON-INTERFERENCE

*x=1),

Figure 5.7: The Serializer

on the value of variable x. Thus the same action executed by a process is considered
different if executed by another process; for instance (x:=0)p,, executed by P, is
different from (x:=0)p,, executed by P,.

The automaton of Figure 5.6 does not consider the time, acc, for accessing the
shared memory. Thus, when P; and P, are combined in parallel they can both start
an access to x, and the time interval between these accesses could be shorter then
acc. This is in contrast with the assumption that accesses to x are atomic.

To force the accesses to be atomic and to control the value of the variable z,
we add, to the system composed by the two processes, the Serializer of Figure
5.7 which synchronizes with PP, and P, on every action which performs an access to
x. The clock y is used to ensure that every access on the variable x (test and/or
assignment) is performed after at least acc time units since the last one. This assures
atomicity. Note that the states of the automaton of Figure 5.7 are associated with
the three possible values of variable . The actions (r <> i)p, and (z = i)p,
correspond to the test of x # ¢ or x = i respectively. They can be taken by the
process P; only if the test is true, according to the information on the value of x
held in the current state of the Serializer.

Let us analyze the behavior of the two processes, P, and P,. The automaton
(P, || P, || Serializer), obtained by the synchronized product of the components,
can reach any possible state (sq, s, 5)? (where s; and sy are states of P, and P, and

2For readability here and in the following we ignore the counters in the states introduced by
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s is a state of the Serializer) but the states (critical, critical, s), because of the
correctness of the mutual exclusion protocol.

Let us assume now that there is a upper bound, ucs, on the time needed to
execute the critical section after the variable x is checked. This assumption is
reasonable when the operations in the critical section are fast and simple, for example
the ones for updating a counter. If ucs < a+0b, the previous protocol can be modified
in order to decrease the delay in accessing the critical section when a conflict is
present. The idea is that, because ucs < a + b, after executing successfully the
protocol and before entering the critical section, a process can signal to the other
that the protocol can be executed again. This is safe because the time for executing
the critical section is less than or equal to the time taken by the protocol itself.
Actually ucs includes the time for assigning the value 0 to x.

The new protocol is now the following.

repeat
await x=0;
X:=1;
delay b

until x=i;

x:=0

Critical Section;

Let us represent process P/ executing the new protocol by the timed automaton
of Figure 5.8.

y=b, (x<>)p.{}

{}

y=0, inCS, {} true, (x:=0)P Ay}

Figure 5.8: Automaton P/

the parallel composition operator of timed automata and retain only the states of the components.
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{}

(X:=2) 4

Figure 5.9: The Intruder

5.6 An n-state-non-Interference Analysis

Suppose the existence of an Intruder which is able to read and write the shared
variable x. Such an Intruder can be either a malicious host connected to the
network, or simply another component of the system accessing the shared memory
for other purposes. The possible behaviors of the Intruder are described by the
timed automaton in Figure 5.93. Note that to implement atomic accesses to x the
Serializer must be extended for taking account also of the actions of the Intruder.
The modified Serializer is denoted by Serializer’.

Consider now the automaton T'= (P] | P, || Serializer’ || Intruder)

In order to apply Definition 5.6 we consider the writing actions of the Intruder
as the high-level actions, thus H = {(x := 0)att, (X := 1)att, (¥ := 2)att }. We use L
to denote all other actions of the system.

Note that we have added an edge labeled with L without constraints and reset to
the state of the Intruder (Figure 5.9). This is a technical trick needed because the
parallel composition operator requires that every run is such that every component
has its Biichi acceptance condition satisfied. Indeed, when composing the whole
system with Inhiby for the non-interference analysis, the parallel composition would
accept the empty language if the edge is not added.

We want to show that T is n-state-non-interfering, for some n. This corresponds
to show that the set of reachable states of the system (P || Py || Serializer’ ||
Intruder || Interf};)[H], projected on the states of P| || P; || Serializer’ ||
Intruder, is equal to the set of reachable states of the system in which all the
actions of the Intruder are forbidden. We know, by the previous analysis of the
system without the Intruder, that the states (critical, critical,s) (where s is any
state of the Serializer) are not reachable. Thus, in this example, the condi-
tion of Definition 5.6 reduces to verify that the states (critical, critical, s,0) of

3 Actually only writing actions are critical, thus we restrict the system to them.
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P/ x=0 x:=1 x=1 :;nii crash
P x=0 x:=2 x=2 ;niS crash
Intr| | | || | fxe=t] fxe=2] | | | |

Figure 5.10: An attack to the protocol

(P{ || Py || Serializer’ || Intruder || Interf};)[H]| (projected on the states of
(P || P} || Serializer' || Intruder)) are still unreachable.

Remark that the original Fischer protocol was very weak from this point. If the
Intruder set the variable x to 0 when a process is in its critical region, the other
process is enabled to enter the critical region too.

First let us show that if the value of n is lower enough the system can be n-state-
interfering, as showed in Figure 5.10, where acc = 1, b = 6, ucs = 6 and n = 2.
Each depicted interval corresponds to acc time units no matter its graphical length.

Observing the attack to the protocol reported in Figure 5.10 we get some hints to
obtain a general result. If ucs < a+band a < b (these are the conditions needed by
the protocol for its correctness in absence of attacks), we can conclude the following.

Proposition 5.7 For all n > b the system P| || Py || Serializer’ || Intruder is
n-state-non-interfering.

Proof. Note that, in order to break the protocol, the Intruder, when present,
has to perform two successive assignments to = (i.e. two subsequent high level actions
in our formulation) in a limited time interval. To see this, suppose that both P| and
Pj start a session of the protocol and they have reached their states 2. Suppose, at
this point, that x = 2. This means that the first process that started the session was
P|. The normal behavior at this point would be that P/, seeing x = 2, returns to its
idle state (state 1). But suppose that, here, the attacker sets x := 1 after P, entered
its state 2 and reset its clock y (yp;). Now, the session proceeds and Pj, when its
clock y equals b, enter its state 3 because the attacker has set z to 1. For now on P/
proceeds without any further control toward the critical section. Let us return to
Pj. Tt was waiting b time units before testing the value of x and deciding whether
enter the critical section or not. Now the Intruder has to set = := 2 before P; test
the value (when yp; equals b) because currently z equals 1. The Intruder, to break
the protocol, should be allowed to do such an assignment. Surely it is not allowed if
n > b because the clock x_interf (the clock of Interf’; constraining the occurrence
of high level actions) was reset after clock yp; was reset. Thus x_interf is less then
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yp;- To do the assignment (an high level action) x_interf must be greater than
or equal to n and to break the protocol the assignment has to be done before yp
equals b. That is, it must hold x_interf < yp; < b and x_interf > n. This is not
possible if n. > b.

The previous argumentation does not assume anything about the value of b.
Thus, if n > b, the set of reachable states of the system when the Intruder acts
with the constraints expressed by Interf’; is equal to the set of reachable states of
the system when the Intruder does not perform any action.

Concluding, by n-state-non-interference analysis, we are able to obtain an upper-
bound on the frequency of attacks to the protocol under which it is not affected by
the attack. Note that n-state-non-interference does not guarantee that the Intruder
could not interfere in another manner, for instance causing a deadlock or forbidding
a process to reach the critical section all of the times. These other attacks do not
strongly depend on the frequency of the action of the Intruder and should be
addressed using different methods.

5.7 Analysis with UPPAAL

In this section we model the system P; || P, || Serializer’ || Intruder using timed
safety automata as they are specified in UPPAAL. Using this tool we automatically
perform the verification of the previous section and we get evidence also of the
Proposition 5.7. In Figures 5.11 and 5.12 are shown the processes P; and P,. Note
that we use the original formulation of the Fisher’s protocol in this analysis.

Recall from Section 2.4.2 that integer variables can be defined in timed processes
of UPPAAL and their values can be tested in guards of the transitions and can be
assigned when a transition is performed. We use a global variable = that can be
have values in the set {0, 1,2}. This simplifies the Serializer’ which is modeled
as in Figure 5.13.

The Intruder is modeled in Figure 5.14. Note that it is not required any more
in this setting that it perform also low-level actions.

In the following there are the constant and variable declarations for the system.

const acc 1; /* Access time to x */

const b 6; /* Parameter of the Fisher’s Protocol */
const n 5; /* Speed of the Intruder */

const ucs 6; /* Maximal Time spent in Critical Section */
int[0,2] x:=0; /* Share Variable x*/

chan ac, bc, cc; /* Synchronization Channels */

The following symmetric properties are satisfied by this system:

VO(Py.critical — —Ps.critical)
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trying

waiting

y<=b

critical
y <= ucs

Figure 5.11: Process P, modeled in UPPAAL
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trying
y<=b

waiting

y<=b

y::b,x::

critical
y <= ucs

Figure 5.12: Process P, modeled in UPPAAL
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y >=acc ac! y:=0

>= acc
y >=acc y

bc!

y:=0

Figure 5.13: Process Serializer modeled in UPPAAL

y>=n cc? y:=0,x:=0

y>=n

y:=0,x:=2

Figure 5.14: Process Intruder modeled in UPPAAL
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VO(P,.critical — —Pj.critical)

This means that the system is 5-state-non-interfering. If we increase the fre-
quency of the high-level actions of the Intruder setting n = 4, the properties are
not satisfied and the diagnostic trace given by UPPAAL is equal to the one spec-
ified in Figure 5.10 of the previous section, but some differences on the times. Of
course the system is still n-state-interfering if n is decreased further (n < 4) and it
is n-state-non-interfering for all n > 4.



Conclusions

We remark that Chapters 1 and 2 are an important contribution of this thesis, as
well as introductory parts. We have given a detailed and modular introduction of
the timed automata model trying to individuate a synthesis for the different variants
of this formalism that have been introduced in the literature. The main theoretical
results for the verifications using timed automata have been recalled trying to explain
clearly the fundamental steps. The implementable timed automata, called timed
safety automata, are defined staying as close as possible to the definition of timed
transition tables. Moreover, the semantic models of timed safety automata are used
to specify the semantics of the timed temporal logic TCTL.

The extensions introduced in Chapters 3 and 4 give a contribution in the area
of specification using timed automata and Chapter 5 contributes in the area of
verification.

Future work in these topics can be individuated mostly in the implementation
area. We have outlined how to define the constructions of Chapters 3 and 4 also
for timed safety automata and a tool realizing this task could be an interesting
application. This is true especially for the construction of urgency where the zone
automaton should be used instead of the region automaton.

Chapter 5 can be considered the starting point of an interesting research direc-
tion. We think that other notions of timed non-interference can be defined varying
both the equivalence that is used (for instance timed-abstract bisimulations could be
used instead of reachable-states equivalence) and the type of hiding and restriction
operators.
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