
IONA Technologies PLC
December 1997

Wonderwall Administrator’s
Guide

Orbix is a Registered Trademark of IONA Technologies PLC.

Wonderwall is a Trademark of IONA Technologies PLC.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no
warranty of any kind to this material including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or
for incidental or consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by
any means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC.
No third party patent liability is assumed with respect to the use of the information contained herein. While
every precaution has been taken in the preparation of this book, IONA Technologies PLC assumes no
responsibility for errors or omissions. This publication and features described herein are subject to change
without notice.

Copyright © 1991-1997 IONA Technologies PLC. All rights reserved.

The programs and information contained herein are licensed only pursuant to a license agreement that contains
use, reverse engineering, disclosure and other restrictions; accordingly, they are trade secrets of IONA
Technologies PLC, and are “Unpublished—all rights reserved under the applicable copyright laws”.

ORB, Object Request Broker, OMG IDL, CORBA are trademarks of Object Management Group, Inc.

All other products or services mentioned in this manual are covered by the trademarks, service marks, or
product names as designated by the companies who market those products.

IONA Technologies PLC
The IONA Building
8–10 Lr. Pembroke St.
Dublin 2
Ireland

Phone: +353-1-662 5255
Fax: +353-1-662 5244

IONA Technologies Inc.
60 Aberdeen Ave.
Cambridge, MA 02138
USA

Phone: +1-617-949-9000
Fax: +1-617-949-9001

IONA Technologies Pty. Ltd.
Ashton Chambers, Floor 3
189 St. George’s Terrace
Perth WA 6000
Australia

Phone: +61 9 288 4000
Fax: +61 9 288 4001

Support:
Training:
Orbix Sales:
IONA’s FTP site:
World Wide Web:

support@iona.com
training@iona.com
sales@iona.com
ftp.iona.com
http://www.iona.com/

Contents
Chapter 1
Getting Started 1

1.1 Introduction 2
1.2 Overview of IIOP 3
1.3 Grid Example 4
1.4 OrbixWeb Client 5
1.5 The Configuration File 6

1.5.1 Basic Configuration and Ports 7
1.5.2 Object Specifiers 8
1.5.3 Access Control List 9

1.6 Factory Objects 10
1.7 HTTP Server 11
1.8 Logging Output 13

Chapter 2
IORs and IIOP 15

2.1 IOR Format 15
2.2 Orbix/OrbixWeb Format 17
2.3 Representations of an IOR 18
2.4 Internet Inter-ORB Protocol (IIOP) 20
2.5 IIOP Message Formats 21

Chapter 3
Interoperability and Details 27

3.1 Object References 27
support@iona.com i

3.2 Proxification 28
3.3 Non-Orbix Client 30
3.4 Non-Orbix Server 31
3.5 Connection Establishment 31
3.6 Factory Objects and IORs 35
3.7 Implications for Developers 36

Chapter 4
Transformers 37

4.1 Transformer Architecture 37
4.2 Usage 40

4.2.1 IDL 40
4.2.2 Implementation 41
4.2.3 Configuration 42

Chapter 5
Using the Wonderwall with OrbixWeb 43

5.1 Using the Wonderwall with OrbixWeb as an Intranet Request-Router 43
5.2 Using the Wonderwall with OrbixWeb as a Firewall Proxy 44
5.3 OrbixWeb Configuration Parameters used to support the Wonderwall 44
5.4 Configuring OrbixWeb to use the Wonderwall 44
5.5 Configuring OrbixWeb to use HTTP Tunneling 45
5.6 Manually Configuring OrbixWeb to Test Tunneling 47

Appendix A
iiopproxy and iortool 49

Appendix B
Configuration 55

Index 63

ii support@iona.com

Chapter 1
Getting Started
RB
his
erous
se

 A

gle

in a
d.
d.

d

rity
 and
The Internet Inter-ORB Protocol (IIOP), introduced as part of the CORBA 2.0 General Inter-O
Protocol (GIOP), has paved the way for using distributed CORBA objects over the internet. T
opening up of the internet, however, brings its own problems and risks. It is a potentially dang
environment—there will always be a few users willing to exploit any security loopholes to cau
damage to your system. Some level of security is necessary to keep these intrusions at bay.
popular approach to internet security is to use a firewall to restrict access to hosts on your local
network. The basic model is to direct all traffic to and from the internal network through a sin
point which can monitor and control every transmitted message

There are firewalls currently available which restrict access to a local network in a variety of
ways—for example, access to certain hosts and certain commands can be limited. However
distributed object environment, such as CORBA, it is important that security be object oriente
Experience has shown that it is a bad policy to implement security which is too coarse-graine
Users presented with a choice between two levels of security, one which is too restrictive an
another which is too permissive, will inevitably choose the permissive level of security on
occasion—and consequently a breach appears in the network defences.

The Wonderwall was developed according to the firewall model in order to address the secu
issues arising from using CORBA over the internet. It provides a flexible approach to security
is object-oriented, allowing control of access to individual objects even down to the level of
individual operations on objects.
support@iona.com 1

Getting Started

t on a
he
ard.

t,

rsions.
s one

 (as is

ages
cting
 these

he

f your

e
e

locked
hich are
g of
 all of the
 and
1.1 Introduction
The usual approach to building a firewall involves restricting internet access to a single IP por
single host for each service. This host will be the only host which is physically connected to t
internet and the restriction to using a single well known IP port provides an additional safegu

A popular refinement of this model involves making the firewall host a dedicated, secure hos
known as a bastion host. The bastion host is dedicated exclusively to the role of gateway to the
internet and its configuration can be toughened to make it extra secure against unwanted incu
This approach has the clear advantage that much of the security effort can be focused on thi
machine. For example, many directories on the bastion host can be made read only to root without
inconveniencing anyone.

The firewall is usually implemented as a proxy server process which runs on the bastion host
done, for example, with HTTP and SMTP firewalls). Wonderwall follows this pattern and
implements an IIOP proxy server. The role of the server process is to listen to incoming mess
on the well-known IP port and to pass on these messages to the internal network, after subje
them to close scrutiny. When any potentially hostile or forbidden messages are encountered,
are blocked and not passed on to the internal network.

The Wonderwall has the following features which contribute to strengthening the security of t
internal network:

• Use of bastion host facilitated.

• All messages filtered.

• Filtering of messages based on Request header.

• Fine-grained control of security.

• Support for message encryption.

• Message logging.

• Messages blocked unless specifically allowed.

• Simplicity of proxy server.

The model on which the Wonderwall is built supports the use of a bastion host as the basis o
firewall. You have only to install the Wonderwall server on the bastion host and it will act as a
liaison between the outside world and your internal network. Alternatively, you can install
Wonderwall on a regular host if you prefer.

All messages arriving on the server’s well known port will be filtered. To be specific, the
Wonderwall is not just a facility to monitor initial connections to CORBA objects, it will continu
to monitor (and potentially block) all messages which pass between an external client and th
internal CORBA object.

A number of message types are defined for the IIOP protocol and any or all of these can be b
if necessary. The most important group of incoming messages are the Request messages w
used to invoke methods on CORBA objects. The Wonderwall provides comprehensive filterin
these messages based on the content of the Request message header. This header provides
information needed to provide effective filtering. For example, the identity of the target object

2 support@iona.com

Getting Started

internal

ted
w or
which

er the

ing a

nts)
ly

ch

urity
. The

m of
 C++
ility

 of the

n. In
the
RB

l, an
the intended operation name. Request messages can be checked rapidly and passed to the
network with little performance overhead.

Wonderwall provides the kind of fine-grained control of security which is needed for a distribu
object environment. It allows you to control access to individual objects and, moreover, to allo
deny access to specific methods defined on that object. There are a number of other criteria
can be checked as will be seen later.

Message encryption is an essential feature needed for the exchange of private messages ov
internet. Wonderwall supports the exchange of encrypted IIOP messages using the Orbix
transformer mechanism. This allows the programmer to encrypt a complete IIOP message us
custom encryption algorithm.

The logging facility of Wonderwall (which can be configured to focus on particular kinds of eve
is a powerful facility for tracing the history of suspicious message exchanges. It is also broad
useful as a debugging and monitoring facility.

Some general features of good security practice are observed in the Wonderwall. The approa
taken to filtering, for example, is that everything is forbidden unless it is expressly allowed.
Another principle is that a proxy server ought to behave simply and predictably. Too many sec
loopholes have arisen when a large, complex application is connected directly to the internet
Wonderwall server, by contrast, is a simple stand-alone process, which requires no special
privileges, forks no processes and interacts with the bastion host in a simple manner.

The rest of this chapter explains how to set up and configure the Wonderwall with the minimu
fuss. It takes, as an example, the case of an OrbixWeb client talking to an OrbixWeb or Orbix
server. The Wonderwall is also fully interoperable and the issues associated with interoperab
are discussed in Chapter 3.

Before learning how to use Wonderwall, it is necessary to have an elementary understanding
IIOP protocol itself.

1.2 Overview of IIOP
The IIOP protocol specifies the way in which CORBA messages are encoded for transmissio
particular, it specifies a universal format for the transmission of operation invocations across
internet. This makes it possible for clients of one ORB to send operation invocations to any O
across the internet, and also to correctly interpret any return values received.

When an IIOP client sends a message to a remote object, it requires an Interoperable Object
Reference (IOR) which stores the addressing information for that object. For the IIOP protoco
IOR will include the following information:

• The name of the host on which the object resides.

• The port it listens to.

• Its object key (a string of bytes identifying the object).
support@iona.com 3

Getting Started

 port
 use the
bjects.

end
expected

erwall
er:

ow
rface

nly the

er out

rrive

jects

 that

 the
When an IIOP client has the remote object’s IOR, it opens a TCP connection to the host and
named therein and can send and receive messages along this connection. If multiple objects
same host and port, the client can use the same connection to communicate with the other o

The IIOP model is based around two main message types: a Request and a Reply. Clients s
Requests, and servers send Replies. There’s also a set of message types used to handle un
error conditions or timeouts. See section 3.4 on page 24 for information on these.

In the same way that a filtering router can filter packets based on the packet header, the Wond
filters incoming Requests based on the following information gleaned from the message head

• The message type.

• The IP address of the client.

• The object key of the object being accessed.

• The name of the operation being invoked.

• The principal of the client’s invoker.

• Any IOP Service Contexts.

See section 2.2 on page 12 and Appendix A for more details of the filtering mechanism and h
it’s specified. The body of Request messages cannot be filtered without knowledge of the Inte
Definition Language (IDL) used to define the operations and parameters for each object, so o
message header parameters can be used in a filter.

In the present version of Wonderwall, any Reply messages which pass from the internal serv
to the client are not filtered.

The basic component of Wonderwall is the executable iiopproxy . This process is intended to run
on the bastion host listening for IIOP requests on a specified TCP port. Any requests which a
on this port from external hosts are filtered so that access can be restricted to certain CORBA
objects or operations behind the firewall.

You can control the filtering of packets by editing the configuration file iiopproxy.cf . This file
allows you to specify a flexible set of rules for either allowing or denying access to certain ob
or operations.

Once a given request has been allowed through the firewall, the process iiopproxy will forward it
to the proper location on the internal network. The iiopproxy does this by looking up its own
database of IORs which include all the externally accessible CORBA objects.

In this chapter, an example of a configuration file is given and the database of IORs set up so
the firewall can pass on requests to a couple of objects on the internal network.

1.3 Grid Example
The example of a simple grid interface is considered in order to illustrate the operation of the
Wonderwall. This tutorial example assumes that the client, Wonderwall, and server all run on

4 support@iona.com

Getting Started

 on

he

re is a

 the

re that
ect

same host. In a realistic situation these processes would run on three separate hosts. Details
setting up a real installation are given in your install guide.

The grid interface on which the example is based is as follows:

// IDL
// Definition of a 2-D grid.

interface grid {

// height of the grid
readonly attribute short height;

// width of the grid
readonly attribute short width;

// set the element [n,m] of the grid, to value:
void set(in short n, in short m, in long value);

// return element [n,m] of the grid:
long get(in short n, in short m);

};

This defines the interface for a two-dimensional grid of long integers whose size is given by t
height and width attributes. Two operations set() and get() can be invoked to respectively
modify or read a single element of the grid.

The details of implementing a grid object need not be considered here. It is assumed that the
server called grid which implements at least one grid object. Likewise it is assumed there is a
client that makes use of the object. Both server and client use the IIOP protocol.1 In this example
the grid client represents an external, possibly hostile, process which wishes to use objects in
server. The server itself is to be protected by the Wonderwall.

1.4 OrbixWeb Client
An OrbixWeb client can use the Orbix _bind() mechanism to connect to objects behind the
Wonderwall. It is assumed that the client has been compiled with the relevant options to ensu
it uses the IIOP protocol.2 For the client programmer, all that is needed to connect to a grid obj
behind the Wonderwall is something like the following:

// Java
package gridtest;

import IE.Iona.Orbix2._CORBA;

1. Orbix is shipped with a demo grid_iiop which provides an example implementation of the grid using
the IIOP protocol.
2. This is the default behaviour in OrbixWeb. See the OrbixWeb Programming Guide for more details.
support@iona.com 5

Getting Started

st
import IE.Iona.Orbix2.CORBA.SystemException;

public class Client {
...
public static void main(String args[]) {

_gridRef gRef = null;

try {
gRef = grid._bind(“grid1:GridSrv”,

”wwallHost”);
}
catch (SystemException se) {

System.out.println(se.toString());
}
...

}
};

The _bind() call will contact the Wonderwall proxy and establish an IIOP connection. The fir
argument to _bind() is of the form “ marker : server ” , where marker is a string identifying the
object within a particular server .3 The second argument “ host ” specifies the host where the
Wonderwall proxy is running. The advantage of using _bind() is that the client does not need to
have an Interoperable Object Reference (IOR) for grid1 before making the connection.

If you are using a non-OrbixWeb client or if, for some reason, you do not wish to use _bind() ,
then you will have to understand the concepts underlying IORs and the process of proxification of
IORs. See section 3.2 for details.

1.5 The Confi guration File
The first stage in setting up the firewall is to create the configuration file iiopproxy.cf . An
example configuration file for the grid example is the following:

##
A sample Wonderwall configuration file.
port 1570
orbixd-iiop-port 1571 # Use the Orbix IIOP port.
domain your.domain.com
log requests replies
http-port 0
http-files /
##
Database of Objects.
object grid_1 bind(“grid1:GridSrv”,”gridHost”) interface grid
object grid_2 bind(“grid2:GridSrv”,”gridHost”) interface grid

3. The identifiers marker and server are Orbix specific concepts.

6 support@iona.com

Getting Started

t
e
n for

umber

allow-unlisted-objects on

##
On to the access control list!
Disallow any IOP Service Contexts, at least until we need
them... who knows what could be put in here?
#
deny servicecontexts *
Allow general access to grid_1,
except for the "set" operation.
#
allow object grid_1 op _get_height
allow object grid_1 op _get_width
allow object grid_1 op get
Allow access to grid_2 from our link to a semi-trusted
network, but log any "set" operations.
#
allow object grid_2 ipaddr 10.23.67.1 op _get_height
allow object grid_2 ipaddr 10.23.67.1 op _get_width
allow object grid_2 ipaddr 10.23.67.1 op get
allow object grid_2 ipaddr 10.23.67.1 op set log
File ends here -- if the message hasn't matched a rule
until now, it'll be denied automatically.
##

The file iiopproxy.cf is read in by the firewall server iiopproxy when it starts up. Subsequen
changes made to iiopproxy.cf will affect new clients (but any existing client sessions will not b
affected by the changes). This file is at the heart of Wonderwall’s operation. A brief explanatio
each line of the above example is given here (full explanations of these fields are given in
Appendix A).

1.5.1 Basic Configuration and Ports

Lines beginning with a ‘#’ character are comments, and trailing comments on a line are also
allowed.

The first specification, of the form port 1570 , specifies that Wonderwall listens for requests on
TCP port 1570.

The next port specified is orbixd-iiop-port 1571 . This refers to the port where the Orbix
daemon listens for IIOP messages on the internal network. It is essential to specify this port n
if you are going to be using the Orbix daemon. The Wonderwall needs to know which port the
Orbix daemon is listening on, in order to interact with it.

The entry domain your.domain.com gives the DNS domain name of the host where
Wonderwall is running. The next entry log requests replies tells Wonderwall to log all IIOP
request and reply messages.
support@iona.com 7

Getting Started

e

ough
cts.

ion
d
e

3).

 of

e
o
rbix
e

is
The entries http-port and http-files are used to configure the HTTP server capability of th
Wonderwall. They are discussed in detail in section 1.7.

1.5.2 Object Specifiers

The next section of the configuration lists all of the objects which might be made available thr
Wonderwall. The Wonderwall proxy uses this list to construct an internal table of known obje
The general form of these entries is:

object tag [wild wildcardflags] object-specifier

This entry declares a tag which is used to refer to the specified object throughout the configurat
file. The optional wild field is used to refer to categories of objects, rather than a single object, an
is discussed in Appendix B.2. The object-specifier can be specified in a number of ways (se
Appendix A).

At present the Wonderwall supports four different forms of object-specifier:

• An object-specifier beginning with the keyword “bind” is used to specify the object
using a pseudo-bind syntax (which closely resembles the syntax of _bind() as used
by a regular OrbixWeb client).

• An object-specifier that begins with the characters “IOR:” introduces an IOR coded
as a standard CORBA stringified object reference.

• An object-specifier that begins with the characters “RXR:” introduces an IOR
encoded using the readable-hex-representation (explained in detail in section 2.

• An object-specifier that begins with a “/” is assumed to be the absolute pathname
a file where the IOR is stored (either in “IOR:” or “RXR:” format).

All of these forms of object-specifier are explained in detail in section 2.3 and section B.2. Th
simplest specifier to use is the bind format. This format requires that the Wonderwall is able t
contact an Orbix or OrbixWeb daemon in order to locate the server. If you are using a non-O
server, you will have to read Chapter 3 on interoperability and use one of the three alternativ
object-specifiers.

Assuming you are using an Orbix or OrbixWeb server, it is possible to use the bind format as
given in the above configuration file, for example:

object grid_1 bind(“grid1:GridSrv”,”gridHost”) interface grid

The pseudo bind function has a similar format to _bind in the OrbixWeb client. This example
specifies an object with marker grid1 , held by the server named GridSrv , found on host
gridHost . The trailing fields interface grid (which must be present) specify that the object
of type grid .4

The last entry of this section, allow-unlisted-objects on , gives you a powerful mechanism
for extending the list of known objects. When it is set to on (the default setting) then any time a

4. It is assumed that the server GridSrv has been registered with the Orbix daemon in the usual way.

8 support@iona.com

Getting Started

d the

 an
nnect

les

enies

ices.

s
in
ill be

client attempts to access an unlisted object, the Wonderwall will automatically update and ad
object reference to its table of known objects. This considerably relieves the burden of
administration required for a minimal configuration of the Wonderwall. Note that, just because
object gets automatically listed in this way, does not mean that the client has permission to co
to the object. That is determined by the Access Control List.

In some high security networks, the administrator may prefer to switch this option to off .

1.5.3 Access Control List

The last section of the configuration file is the Access Control List. This consists of a list of ru
which begin with either one of the keywords allow or deny . Whenever a request arrives at the
Wonderwall server, these rules are checked in sequence until a rule is found which definitely d
access or definitely allows access to the target object.

The first rule given here is deny servicecontexts * . A service context is a mechanism which
allows extra information to be added to an IIOP request (or reply) for use by the CORBA serv
In keeping with the firewall philosophy of “anything not expressly permitted is denied” it is
considered safer to forbid all requests with a service context attached. Note that the core
specification of CORBA does not make use of service contexts.

The next few rules have a form similar to the following:

allow object grid_1 op _get_height

This states that the request is allowed if it is to be invoked on object grid_1 and the operation
name is _get_height . Note that the operation name _get_height derives from the attribute
name height . For every attribute, such as height , there are associated with it two operation
identifiers _get_height and _set_height . If the attribute is declared readonly , there will be
just one operation _get_height .

The rules applying to the object grid_2 are specified in a slightly different way, for example:

allow object grid_2 ipaddr 10.23.67.1 op _get_height

This stipulates that if the request is to invoke on object grid_2 and the IP address of the invoking
host is 10.23.67.1 and the operation is _get_height , then the request is allowed.

The last line of the Access Control List is the following:

allow object grid_2 ipaddr 10.23.67.1 op set log

This specifies that the operation set is allowed on object grid_2 when the host has an IP addres
10.23.67.1. In addition, the final keyword log specifies that all such requests should be logged (
this example the logging is superfluous since all incoming and outgoing requests and replies w
logged anyway).

It is important to understand how Wonderwall parses the Access Control List. It starts at the
beginning of the list, reading each rule in sequence, until it finds a rule which unambiguously
support@iona.com 9

Getting Started

proach

The

s or
jects.
 a

x

bject
ether
ly

jects.
esents
ould

ay

used
e
allows or denies a request. Wonderwall then stops and does not read any more rules. This ap
makes it easy to predict how Wonderwall will interpret the Access Control List.

A non-intuitive side effect of this algorithm is that it is permissible to have contradictory rules.
resolution of any conflict is simple: The first rule takes precedence.

1.6 Factor y Objects
One of the interesting features of CORBA is that it allows you to pass back and forth object
references inside Request or Reply messages, where they might appear either as parameter
return values. This provides a powerful mechanism for clients to obtain references to new ob
The term Factory Interface is applied to any interface which can create a new object and return
reference to this object. Individual instances of a Factory Interface are known as Factory Objects.

Consider the following example of a Factory Interface:

// IDL
typedef string MarkerString;

interface GridFactory {
// Make an object of type ‘grid’
// and return the object’s marker.
MarkerString makeGrid();

};

This particular interface is an Orbix specific example of a Factory (because it returns an Orbi
marker instead of an Interoperable Object Reference). The marker gives an OrbixWeb client
enough information to find the object using the pseudo _bind() mechanism.

The existence of Factory Objects poses special problems for the Wonderwall administrator. O
level security is based on the idea that a finite number of objects are listed and it is known wh
they may safely be accessed from outside. A Wonderwall administrator must consider, not on
whether the Factory Object is safe, but also whether objects created by the Factory can be
considered safe. This also applies to the related idea of Finder Objects, which do not actually create
new objects, but could return object references not listed in the Wonderwall configuration.

Notwithstanding, there are compelling reasons for making use of both Factory and Finder ob
For example, if you wished to access a database through the firewall, and this database repr
its records in the form of CORBA objects: The number of objects is likely to be huge and it w
not be practical to list them in the Wonderwall configuration file. A finder object is a practical w
of providing access to the records.

Assume that there is a given Factory Object, such as GridFactory above, which needs to be
through the firewall. This implies that Wonderwall must provide a means of accessing both th
Factory Object and objects created by that Factory.

10 support@iona.com

Getting Started

s

r.

s

tag.

jects,

some
r this
Wonderwall provides the following form of entry in the configuration file for specifying Factorie5:

server tag object-specifier

The server keyword is used to define a tag which refers to all of the objects on a particular serve
The object given by the object-specifier refers to an object which can be used to make the
initial connection to the server. Usually this will be the factory object. For example, the
GridFactory object can be listed as follows:

server gridFactory \
bind(“:FactorySrv”,”gridHost”) interface GridFactory

The tag gridFactory can now be used to refer to all objects on the FactorySrv server,
irrespective of marker, or interface name. Therefore a line such as the following in the Acces
Control List can be used to give away access to all objects on that server:

allow object gridFactory

Note that because the object type of the tag gridFactory is wildcarded, it is legal to specify a rule
such as the following:

allow object gridFactory operation _get_height

The operation _get_height does not appear in the interface GridFactory , only in interface
grid . The appearance of interface GridFactory , in the above object specifier, is just a
placeholder. Any operation at all, from any interface, may be specified in a rule with a server

Note that the Wonderwall's support for factories is dependent on using Orbix or OrbixWeb ob
as it needs to understand the object key format. For more details on the object key format, see
“Orbix/OrbixWeb Object Key Format” on page 17.

1.7 HTTP Server
The Wonderwall proxy normally listens for all IIOP messages on a single dedicated port. It
monitors this port and redistributes IIOP Request messages to servers behind the firewall.

However, an IIOP port is not yet a standard feature of most firewalls. Until this port becomes
established in firewalls, it will be necessary to use HTTP tunnelling to smuggle IIOP messages
through the HTTP port.

This approach requires the complicity of the HTTP server, which is required to recognise that
HTTP messages may contain data which is meant to be interpreted as an IIOP message. Fo
reason, the Wonderwall proxy has had the full functionality of a HTTP server added to it.

5. This is equivalent to the following construction:
object tag wild marker ifmarker object-specifier
The server keyword is provided as a convenience for defining Factory objects (see Appendix B.2).
support@iona.com 11

Getting Started

P port

opy of
nce to

rt or by

tion
This functionality of the Wonderwall is illustrated in Figure 1.1. The process iiopproxy is
capable of listening on two ports: one of these is a dedicated IIOP port and the other is a HTT
(usually port 80).

When iiopproxy listens on the HTTP port, it functions as a full-function HTTP server. Any
normal HTTP requests that arrive will cause it to search a designated directory, and return a c
the requested Web page (if it can be found). However, this HTTP server also has the intellige
recognise when a tunnelled IIOP message arrives via HTTP. In that case, it extracts the IIOP
message and passes it on to the IIOP gateway.

It does not matter to the gateway whether an IIOP message arrives through the dedicated po
way of HTTP. The message is still subject to the same filtering mechanism regulated by the
configuration file, as described in section 1.5.

The configuration of the HTTP server only requires two parameters to be set in the configura
file:

http-port port
http-files directory

The http-port is used to set the port where the iiopproxy listens for HTTP requests. The
keyword http-files is used to specify the directory where files can be retrieved to service
ordinary HTTP requests.

Figure 1.1: Internal architecture of the Wonderwall proxy server.

HTTP Server

Message Filter

IIOP port HTTP port

Internal Network

12 support@iona.com

Getting Started

y
 by

t:
If you specify http-port 0 , then HTTP functionality is not enabled and iiopproxy will listen
only on the dedicated IIOP port for ordinary IIOP messages.

1.8 Logg ing Output
The log from the Wonderwall server iiopproxy is sent by default to the standard output. Usuall
the user will redirect this output to a log file. It is possible to specify what goes into the log file
editing the configuration file and Wonderwall gives you quite an amount of flexibility in this
respect. In this example configuration, the line log requests replies ensures that all IIOP
requests and replies passing in or out through Wonderwall will be logged. The log records
essentially all of the information available in the request or reply headers.

The logged output, when an IIOP message is forwarded, generally takes the following forma

forwarded: < client > -> < servername >: [Message v1. x : < size >
bytes: Request < request id >, op [ObjectKey "< object
key >"]::[< operation >] from "< principal >", respond?
<response expected >]

forwarded: < client > <- < servername >: [Message v1. x : < size >
bytes: Reply < request id >, reply status < reply status >]

Consider the sample log output generated by a client invoking on the grid via Wonderwall:

IIOP connection opened: [ultra:64023]
starting server for activated object "grid"
forwarded: [ultra:64023] -> [grid]: [Message v1.0, 82 bytes:

Request 0, op [ObjectKey
"RXR::%5cultra.dublin.iona.ie:grid:0::IR:grid_"]
::[_get_height] from "RXR:jmason", respond? y]

forwarded: [ultra:64023] <- [grid]: [Message v1.0, 14 bytes:
Reply 0, reply status NO_EXCEPTION]

forwarded: [ultra:64023] -> [grid]: [Message v1.0, 82 bytes:
Request 1, op [ObjectKey
"RXR::%5cultra.dublin.iona.ie:grid:0::IR:grid_"]
::[_get_width] from "RXR:jmason", respond? y]

forwarded: [ultra:64023] <- [grid]:[Message v1.0, 14 bytes:
Reply 1, reply status NO_EXCEPTION]

forwarded: [ultra:64023] -> [grid]:[Message v1.0, 84 bytes:
Request 2, op [ObjectKey
"RXR::%5cultra.dublin.iona.ie:grid:0::IR:grid_"]::[set]
from "RXR:jmason", respond? y]

forwarded: [ultra:64023] <- [grid]:[Message v1.0, 12 bytes:
Reply 2, reply status NO_EXCEPTION]

forwarded: [ultra:64023] -> [grid]:[Message v1.0, 78 bytes:
Request 3, op [ObjectKey
"RXR::%5cultra.dublin.iona.ie:grid:0::IR:grid_"]::[get]
support@iona.com 13

Getting Started

e
from "RXR:jmason", respond? y]
forwarded: [ultra:64023] <- [grid]:[Message v1.0, 16 bytes:

Reply 3, reply status NO_EXCEPTION]
IIOP connection closed: [ultra:64023]

The logging facility also allows the full request and reply bodies to be logged. The rules for th
Access Control List also let you dictate that requests or replies be logged only in specific
circumstances. For full details of the logging options see Appendix A.

14 support@iona.com

Chapter 2
IORs and IIOP
col.
se of

load
es a
ween
ted on

otely
rvers
h the

lish
oncept

ence
ssed in

nnect
Wonderwall provides firewall security for applications that communicate using the IIOP proto
An elementary understanding of the IIOP protocol is therefore indispensable for the proper u
Wonderwall and will help you to appreciate the issues which affect security.

In terms of security implications for the client side, IIOP is not another Java. It does not down
executables onto the client machine and it is quite benign. It provides a protocol which enabl
client to contact a remote server and call remote functions on this server. Data may pass bet
client and server, in the form of parameters, however nothing is sent by the server to be execu
the client side.

The server, on the other hand, is in need of some protection because it allows clients to rem
invoke operations which run on the server’s host. The Wonderwall provides protection for se
which might expose security loopholes and it also restricts access to certain operations whic
server does not wish to make available to remote clients.

The CORBA interoperability specification defines both the mechanism by which clients estab
communications with a server and the details of message formats and data coding. The key c
which CORBA uses to enable clients to connect to servers is the Interoperable Object Refer
(IOR) as discussed in the following section. The message formats and data coding are discu
section 2.4 on page 20.

2.1 IOR Format
In order to identify objects in a distributed object system CORBA uses the concept of an object
reference. Once an application has an object reference, it has all the information it needs to co
to the object and make remote invocations on the object’s methods.
support@iona.com 15

IORs and IIOP

 it can
ary

his
tly to
s

s of

e
e
erver.

view
e
e

 the

f a
 the

les.

e
is

The notion of an object reference is an abstract one. To the application CORBA programmer
be represented simply as a C++ pointer. Individual ORB vendors can have their own propriet
representation of an object reference.

However, as part of the infrastructure for an interoperability protocol, CORBA also specifies a
universal format for object references known as the Interoperable Object Reference (IOR). T
enables the information about an object reference to be either stored or communicated direc
clients in a form which is universally understood. All ORB vendors are required to support thi
form of object reference.

The information encoded in an IOR (as used in conjunction with the TCP/IP protocol) consist
the following pieces of information:

• The type of the object.

• The host where the object may be found.

• The port number of the server for that object.

• An object key (a string of bytes identifying the object).

The type of the object is equivalent to the name of the IDL interface which is used to define th
object. For example in section 2.1 on page 11 an IDL interface was defined for objects of typ
grid . The host and port together give us the connection information required to contact the s
Finally the object key is used by the server itself to locate the object.

Figure 2.1 outlines the format of an IOR in greater detail and is intended to give a schematic
of the information held in an IOR. The upper part of Figure 2.1 shows the overall format of th
IOR. It begins with the string type_id which gives the type of the object, equivalent to the nam
of the interface defining the object1. There follows a sequence of profiles, preceded by a
profile_count . In the Figure 2.1 are shown two profiles preceded by a profile_count of 2. A
profile contains essentially all the information which is needed to find an object. The facility to
specify more than one profile in an IOR is a useful feature which will allow future extensions to
use of IORs. For example, an IOR can specify a number of possible locations for an object. I
client does not succeed in connecting to the location specified in first profile, the client can try
next profile in the sequence instead. Wonderwall supports the use of IORs with multiple profi

In the lower part of Figure 2.1 are shown the details contained in a single profile. Note that th
connection information stored in a profile is specific to a particular underlying protocol. For th
reason the first field is a protocol_tag and, in this example, the tag value is zero to indicate a
TCP/IP transport protocol. This is followed by the Version fields which consists of a major and a
minor version number. The next two fields provide the host and IP port needed to establish
communication with the remote server. The object_key is a field which will be used by the

1. To be precise this field holds the RepositoryId for the type of object.

16 support@iona.com

IORs and IIOP

end but

ey is
tify an

of the

A
remote server to locate the object being accessed. There can also be additional fields at the
these are currently not used and are reserved for future expansions to the protocol.

It may seem surprising that the format of an object_key is not specified by CORBA. However
this fact does not affect interoperability nor make the IOR any less portable. The object_key is
used only by the server to identify the object referred to. The client needs to have a copy of the
object_key but does not need to interpret it in any way. As far as the client is concerned the k
just an opaque code (in fact a sequence of bytes) which it passes to a server in order to iden
object. The server, which originally assigned the object_key , then makes active use of the key to
find the object.

The outline of an IOR given here is only intended to be schematic although it does include all
essential information which is supplied in a typical IOR. The formal specification of an IOR is
given in terms of IDL data types. For the complete specification of an IOR refer to the CORB
interoperability specification.

2.2 Orbix/OrbixWeb Ob ject Ke y Format
Orbix and OrbixWeb object keys in IORs have the same format as Orbix-protocol object
references. They take the following the form:

:\host:serverName:marker:IR_host:IR_Server:interfaceMarker

Figure 2.1: The format of an Interoperable Object Reference and profile.

0 "host.com" 1571 "Fred" reserved

host port object_keyprotocol version

"IDL:Account:1.0" 2

type_id profile_count

profile profile
support@iona.com 17

IORs and IIOP

eated
 that it
n be

h is
RBA

the

e

at

it
These fields are as follows:

2.3 Representations of an IOR
A portable representation of an IOR is a basic requirement. Generally speaking, an IOR is cr
by the server which supports the corresponding object. The IOR is publicised in some way so
is available to prospective client processes. Once a client obtains a copy of the IOR it will the
able to connect to the object.

For convenience in publishing an IOR it must be possible to convert it to a string format whic
not subject to any conversions when communicated from place to place. For this reason, CO
specifies a standard string format for IORs. The following is an example of such a string:

IOR:000000000000000d49444c3a677269643a312e300000000000000001
000000000000004c0001000000000015756c7472612e6475626c696e2e69
6f6e612e696500000963000000283a5c756c7472612e6475626c696e2e69
6f6e612e69653a677269643a303a3a49523a67726964003a

host The host name of the target object.

serverName The name of the target object’s server as registered in
Implementation Repository and also as specified to
CORBA::BOA::impl_is_ready() ,
CORBA::BOA::object_is_ready() or set by
setServerName() . For a local object in a server, this
will be that server’s name (if that server’s name is
known), otherwise it will be the process’ identifier. Note
that the server name will be known if the server is
launched by Orbix; or if it is launched manually and th
server name is passed to impl_is_ready() or if the
server name has been set by
CORBA::ORB::setServerName() .

marker The object’s marker name. This can be chosen by the
application, or it will be a string of digits chosen by
Orbix.

IR_host The name of a host running an Interface Repository th
stores the target object’s IDL definition. Normally, this is
blank.

IR_server The string “IR” or “IFR”, depending on the version of
Orbix or OrbixWeb in use.

interfaceMarker The target object’s interface. If called on a proxy, this
may not be the object’s true (most derived) interface—
may be a base interface.

18 support@iona.com

IORs and IIOP

e

with
ce just

t way
738).

 not

nd
B and

unsafe:
It consists of the characters IOR: followed by a lot of hexadecimal numbers. Every byte of the
original IOR is translated into a two-digit hexadecimal number. This representation has the
advantage that it is simple and resistant to corruption.

Unfortunately, the standard string format has the disadvantage that it is difficult to interpret th
content of the IOR. A typical IOR is not really as opaque as this. To make IORs more
comprehensible, the Wonderwall can use its own format known as the Readable Hex
Representation RXR. The RXR format is a hybrid format which mixes plain ASCII characters
hexadecimal numbers. As an example, consider the RXR representation of the object referen
given:

RXR:_______%0dIDL:grid:1.0_______%01_______L_%01_____%15ultr
a.dublin.iona.ie__%09c___(:%5cultra.dublin.iona.ie:grid:0::I
R:grid_:

The RXR format is provided in order to provide readable logging messages and a convenien
to specify strings of octets. It incorporates concepts from the URL encoding for HTTP (RFC 1
RXR format strings are written as follows:

RXR:<version><string>

The 4-character upper-case string RXR: must be present at the start. The <version> specifier is
optional and can be omitted. If it is present, it takes the form %vX where the X character encodes a
format identification character ranging from 0 to 9, a to z, and A to Z. If this version specifier is
present, version 0 is assumed. This document describes RXR format version 0.

Each octet of the octet string is stored, in order, in the <string> specifier. Octets must be encoded
if they have no printable representation in the US-ASCII coded character set, if the use of the
corresponding character is unsafe, or if the corresponding character is reserved for some other
interpretation within this representation format.

The octets which must be encoded are as follows (the values are specified in hexadecimal, a
ranges are inclusive): any octet from 00 to 20, octets 22, 23, 25, 27 and 3B, octets between 5
60, and octets from 7B to FF. Here is an annotated list of ostensibly-printable octets deemed

OCTET VALUE SPECIAL USE

% used to signify octet-encoding

_ used to signify null-encoding

; may be used as a comment

' " (space) may be used as a string
delimiter

 ` [] | { } ~ \ ^ may be corrupted by gateways
or shells

Table 2.1: Characters considered special by the RXR format.
support@iona.com 19

IORs and IIOP

mes:

rt

o

 and
utlined
nd

nsfer

 a raw

rted.

sage is

ing, no
The encoding methods are as follows. For non-NUL (hex 00) octets, a ‘%’ (percent) character is
stored in the string, followed by the high-order nibble of the octet encoded in hexadecimal,
followed by the low-order nibble encoded in the same way. The character ‘_’(underscore) is used to
encode a NUL (hex 00) character. Here is an example of an RXR encoded IOR from OrbixNa

RXR:_______%20IDL:CosNaming/NamingContext:1.0
____%01_______W_%01_____%10192.122.221.136_a%eb_____7:%5cult
ra.dublin.iona.ie:NS:::IR:CosNaming%5fNamingContext_

2.4 Internet Inter-ORB Protocol (IIOP)
The IIOP protocol is just a special case of the General Inter-ORB Protocol (GIOP). The GIOP
specification provides a general framework for protocols to be built on top of specific transpo
layers. The IIOP protocol is the specialisation of GIOP which is built on top of TCP/IP.

Many aspects of IIOP discussed in this section apply equally well to any GIOP protocol but n
attempt will be made to distinguish the different elements of the specification here.

In general the IIOP specification has three main elements:

• Transport management requirements.

• Definition of CDR coding.

• IIOP message formats.

The transport management requirements give a high level view of the semantics of setting up
ending connections. The roles of client and server and the respective functions of each are o
at this level. The protocol described is connection oriented with well-defined roles for client a
server.

The second element of the specification is the Common Data Representation (CDR). This tra
syntax specifies a coding for all IDL types: including basic types, structured types, object
references (in the form of IORs) and pseudo-object types such as TypeCodes . The CDR coding
translates IDL types into a series of bytes to make up an octet stream (the CORBA name for
memory buffer). A feature of CDR is its ability to deal with the different kinds of byte ordering
required by different hardware types: both big-endian and little-endian byte ordering is suppo
The convention adopted is that the sender of a message sends data using its native byte ordering
(and sets a flag in the message header to indicate the ordering used). The receiver of a mes
obliged to detect the byte ordering used and carry out any conversion, if it is required. The
advantage of this convention is that when both sender and receiver use the same byte order
conversion is required resulting in considerable gain in efficiency.

20 support@iona.com

IORs and IIOP

ss
status.

eration

e

nection
d their

e type.

body.

has the
2.5 IIOP Message Formats
The IIOP protocol defines seven types of message format. The messages allow clients to pa
invocations to servers and receive replies which can be either normal or indicate some error
Some additional messages are available to help manage the connection.

The two most important message formats are the Request and Reply message formats. An op
which has been declared in the IDL interface for an object will be invoked by a client using a
Request message. The client will usually wait for a Reply message from the server (unless th
operation has been declared to be oneway) which will normally contain a return value, or possibly
an error condition.

The other five messages are called CancelRequest, LocateRequest, LocateReply, CloseCon
and MessageError. They are all concerned with managing some aspect of the connection an
role is discussed in more detail below.

The IIOP messages fit into one of three formats:

• A GIOP message header only.

• A GIOP message header followed by a message header specific to the messag

• A GIOP message header followed by a specific message header and message

Note that in all cases a message will begin with a GIOP header. The GIOP message header
form illustrated in Figure 2.2. The fields in the header can be described as follows:

• The four characters “GIOP” which serve to identify the protocol.

• The GIOP version number (major and minor) used to create the message.

• A flag byte which is currently only used to indicate the byte ordering.

• An integer used to indicate the message type.

• The message size (excluding the GIOP header itself).
support@iona.com 21

IORs and IIOP

ation

s only
e

e
f the
quest

r in an

quest

ng
ices
This summarises all of the information which is sent in the GIOP header. For a formal specific
of the exact header format you can consult the CORBA specification.

The purpose and usage of the different IIOP message formats is explained now. This guide i
intended to explain them sufficiently to use Wonderwall effectively. For complete details of th
message formats you should consult the CORBA specification.

Request Messa ge

A Request message allows a client application to invoke an operation on a remote server. Th
message contains all the information which is needed for the invocation including the identity o
object, the operation name and any parameters associated with the operation. Note that a Re
message is designed specifically to invoke operations which have been declared in an IDL
interface. The message format is thus designed to support all of the syntax which can appea
IDL operation definition.

The message consists of a Request header followed by a Request body. An outline of the Re
header is shown in Figure 2.3. It consists of the following fields:

• The service contexts allow service specific context information to be passed alo
with a Request. These are intended for use in conjunction with the CORBA serv

Figure 2.2: The format of a GIOP message and message header.

GIOP header Message header Message body

GIOP message
size

message_type
flags

minor
major

22 support@iona.com

IORs and IIOP

o
the

s

ular
n the
 that
to carry extra information along with the Request.2 However, the service contexts are
not needed in the core specification of CORBA.

• The request_id is used to uniquely identify a Request emanating from a client s
that the client can later match a received Reply with its corresponding Request (
corresponding Reply will be tagged with the same request_id).

• The response_expected flag is used to indicate whether or not the Request is
oneway or not. A normal Request has response_expected set equal to TRUE.

• The next field is an array of three bytes reserved for future use.

• The object_key is used at the server end to identify the object which is being
invoked.

• The operation field is simply a string giving the name of the operation being
invoked.

• The requesting_principal identifies the user making the request. In other word
it is simply the user name of the person running the client.

This is all of the information available in the Request header. The Request header is of partic
importance to the operation of Wonderwall. The Wonderwall carries out its filtering based upo
contents of the Request header. For example, if you look ahead to Appendix A you can verify
all of the rules for filtering requests are based on the contents of this header.

2. This field is used by the Transaction Service, for example.

Figure 2.3: The format of a Request message header.

GIOP header

object_key

reserved

response_expected

request_id

requesting_principal

operation

service_contexts
support@iona.com 23

IORs and IIOP

tially of a

tion

ed for

imply

 Reply
l intent
etion

ve
est

 a

n

rn,

The Request also has an associated Request body. The body of the Request consists essen
list of the operation parameters followed by any context strings for the operation.3 It is possible
for the body of the Request to be empty—for example if the Request was made for an opera
which took no parameters and omitted a context clause.

Since the filtering done by Wonderwall is based entirely on the Request header there is no ne
it to parse, or alter in any way, the Request body. This fact simplifies the filtering process
significantly and ensures that the filtering and forwarding of request messages can be done s
and efficiently.

Reply Message

A Reply message is normally sent by a server in response to a client Request message. The
message consists of a GIOP header followed by a Reply header and a Reply body. The usua
of a Reply message is to pass back a return value for an operation and to indicate the compl
status for the operation.

The Reply header does not pass as much information as in a Request header and it consists
basically of the following three fields:

• The service_context which is similar to the service context described in
connection with a Request message.

• The request_id which is used to match this Reply to the client Request which ga
rise to it. In other words, all Replies are paired off with their corresponding Requ
and the request_id is a unique (per client) identifier used to match Request and
Reply.

• The reply_status is used to indicate whether this is a normal Reply or if some
error condition occurred in the server.

In fact the reply_status is used to toggle between a number of different Reply types so that
Reply message is almost like four messages rolled into one. The possible values for
reply_status are the following:

3. These context strings have nothing to do with service contexts. They are effectively middleware
environment parameters and they will only be passed if a context clause appears at the end of an operatio
definition in IDL.

NO_EXCEPTION This is the normal Reply type. The body contains any retu
out or inout parameters which have been declared in the
IDL for the operation.

24 support@iona.com

IORs and IIOP

nger
r

ote
nnection

e. There

bject
ase
 new

d in
ls

he
n

t a

s
The LOCATION_FORWARD Reply is routinely used by the Orbix daemon to dynamically
allocate a port to a server process which has been automatically forked by the daemon.

CancelRe quest Messa ge

A CancelRequest message is sent by the client to the server to indicate that the client is no lo
interested in receiving a Reply to a particular message (however it is not an error if the serve
should send the Reply anyway).

LocateRe quest Messa ge

A LocateRequest message can be sent from client to server to probe for the location of a rem
object. It may be advantageous to send this message before sending a large Request on a co
which has just been opened.

LocateRe ply Message

A LocateReply message is sent from server to client in response to a LocateRequest messag
are three kinds of LocateReply message which the server can send:

• The UNKNOWN_OBJECT response indicates that the server does not hold the
object and neither does it know where to find it.

• The OBJECT_HERE response indicates that the server holds the object and
communication can proceed as normal.

• The OBJECT_FORWARD response indicates that the server does not hold the o
but it does know of a forwarding location for the object. In this case, and in this c
only, the LocateReply message has a body. This LocateReply body contains the
IOR.

USER_EXCEPTION This status indicates that a user exception has been raise
the server. The body of this Reply type contains the detai
of the user exception.

SYSTEM_EXCEPTION This status indicates that a system exception occurred. T
body of the Reply will indicate the kind of system exceptio
raised.

LOCATION_FORWARD This is a special kind of Reply which a server can use to le
client know that it does not hold the object to which the
Request refers. The body of a LOCATION_FORWARD reply
contains a new IOR for the object. The client can use the
new IOR to resend the Request to the new location (this i
done transparently as part of the IIOP protocol).
support@iona.com 25

IORs and IIOP

 to

IOP
ed in
CloseConnection Messa ge

A CloseConnection Message is sent by the server to the client to tell the client that it intends
close the connection.

MessageError Messa ge

A MessageError message can be sent by either the client or the server. It is used within the I
protocol to indicate that the last message received was either corrupted or incorrectly formatt
some way. It consists only of a GIOP header with the message type set to MessageError.

26 support@iona.com

Chapter 3
Interoperability and Details
rent
rence

mon

uired
sing the
 an
ation

it
cate
 to a
ined

blic in

n

3.1 Object References
The IIOP protocol was introduced to facilitate interoperability between ORBs supplied by diffe
vendors. For the most part, the use of this protocol is transparent to the user—the main diffe
you notice is that your ORB is able to talk to many different ORBs, as a result of sharing a com
protocol.

However there is one aspect of IIOP of which the user should be aware. The information req
to make an initial connection to an ORB must be passed around by some means other than u
IIOP protocol. A connection is established between client and remote server with the help of
Interoperable Object Reference (IOR), which details the location of the object and the inform
needed to connect to the server.

There are two main formats of IOR: Firstly, an encoded form of IOR which is used to transm
IORs inside an IIOP message. Secondly, a stringified form of IOR which is used to communi
an IOR by any convenient means (see section 2.3).The second form of IOR is typically given
client to allow it to bootstrap the initial connection to a server. Subsequent IORs may be obta
from the server via the IIOP protocol itself.

Normally the server, which holds the object, creates an IOR for the object and makes this pu
some way. There are four main ways in which an IOR can become known to a client:

• The server can create a stringified IOR and write this IOR to a file in a well-know
location which is accessible to the client.

• The server can register the IOR with the CORBA Naming Service. The Naming
Service, as detailed in the CORBA specification, is basically a database that
support@iona.com 27

Interoperability and Details

p

hich

 to

bject.

ing

is is

ed port.
ort 25,
pening
associates names with object references. (A client requires just a single bootstra
reference to the Naming Server in order to access all of the IORs stored there).

• An IOR can be sent inside an IIOP message. This applies to any IDL operation w
features an interface name as a parameter or return type.

• The Orbix-specific bind mechanism (used for an Orbix or OrbixWeb client talking
an Orbix or OrbixWeb server). The client initially makes contact with the Orbix
daemon and the daemon helps the client to determine the IOR of the required o
In this case, the client does not need an IOR to get started—bind provides an
alternative bootstrap mechanism.

Of these four methods, the first two provide the most general interoperable way of bootstrapp
initial connections.

The operation of Wonderwall is based on the use of two IORs for each object: The real IOR and the
proxified IOR. The real IOR is used by servers operating behind the firewall. Whereas, the
proxified version of the IOR is publicised and made generally available outside the firewall. Th
explained in the following sections.

3.2 Proxification
A general convention on the internet is that frequently used servers are assigned to a dedicat
For example, most HTTP servers operate on port 80, most internet mail servers operate on p
and so on. Whenever you contact a remote host, you can connect to a particular service by o
a socket on its well known port. The Wonderwall fits this convention by providing a single
dedicated port for IIOP messages.

Figure 3.1: Apparent location of object, in Wonderwall proxy server.

C Obj

host = W
port = W

key = Obj

W

28 support@iona.com

Interoperability and Details

er of
P
cesses

is
st.
m

e

y to
rly

ss

wall
 (the

. The

s it
A port number is embedded directly into every IOR and may have any value. If a large numb
CORBA servers are active on a given host then a large number of ports may be in use for IIO
communications. This makes sense, from the perspective of CORBA, since each of these pro
is a dedicated server, carrying out a specific sort of task.

However the use of multiple IIOP ports poses difficulties from the perspective of a firewall. It
undesirable, from a security point of view, to allow the use of multiple ports on the bastion ho
Firewall practice is based on collating all messages of a single protocol type, and passing the
through a single port.

The Wonderwall does use a single IIOP port on the bastion host. Any IORs which are used
remotely should point at the Wonderwall host and port. The IORs generated by servers on th
internal network, however, feature a range of hosts and ports, depending on where they were
generated. These IORs are good for use on the internal network since they allow direct IIOP
connections to be established behind the firewall. However, we do not want to give them awa
users on the internet, because they facilitate direct connections to internal hosts, and a prope
constructed firewall would make them unusable across the internet anyway.

It is necessary to modify the real IORs before making them available on the internet, a proce
referred to here as the proxification of the IOR. The principle of proxification is illustrated by
figures (Figure 3.1 and Figure 3.2) above.

When a client is communicating with Obj, it has the illusion that the object lives on the Wonder
server. The IOR which is used to contact this object must have the host and port of server W
Wonderwall proxy server) embedded, along with the object_key for Obj.

In reality, the object lives behind the firewall and is located on server S in the internal network
real IOR for this object has the host and port of server S embedded in it, along with the
object_key for Obj. The Wonderwall acts as a proxy for this server, forwarding any message
receives from the client (subject to filtering by the Access Control List).

Figure 3.2: Actual location of object, in server S.

C W TextObj

S

host = S
port = S

key = Obj
support@iona.com 29

Interoperability and Details

d port.

by

have
oxified
e is
ethods
n may
e

rate a
The only difference between the real and the public IOR is the value of the embedded host an
The host and port embedded in the real IOR must be changed. The resulting IOR is a proxified IOR.

Proxification can be carried out using the utility iortool which comes with Wonderwall. First the
real IOR for Obj on server S is written to a file, say real.ref , in stringified form1. Then the real
IOR is proxified with the following command:

% iortool -ior -proxy \
-host wonderwall_host -port wonderwall_port \
real.ref > proxy.ref

This takes the IOR stored in file real.ref (which may be either in IOR or RXR format) and
replaces the current host and port embedded in the IOR by wonderwall_host and
wonderwall_port instead. The result of this proxification process is written to the file
proxy.ref in IOR format. Note that IOR format is the portable string representation, as defined
CORBA.

3.3 Non-Orbix Client
If you are using a non-Orbix client to connect to a server via the Wonderwall then you will not
the option of using the bind mechanism. The interoperable approach is based on the use of pr
object references, as described in the previous section. First of all a proxified object referenc
obtained as described above and then this proxified reference is publicised using one of the m
discussed in section 3.1. If the client has access to this IOR in string format, then a connectio
be established to the server using code similar to the following. The example assumes that th
remote object is of type grid :

// C++
main () {

...
char *proxifiedIOR;
CORBA::Object_var objVar;
...
// Read the proxified IOR into a string buffer pointed
// to by ‘proxifiedIOR’.
...
// Convert the string to an object reference.
objVar = CORBA::Orbix.string_to_object(proxifiedIOR);
...
// Assume that this is the proxified IOR for a
// ‘grid’ object. Perform a ‘_narrow()’
grid_var myGridVar = grid::_narrow(objVar);
...

1. See section 3.2 and consult your ORB programming guide for instruction on how to gene
stringified version of the real IOR.

30 support@iona.com

Interoperability and Details

inder
lp.

nd
mpts
to

 you

r

in

ase.

le to
f steps,

of
}

At the end of these few lines of code, a reference myGridVar has been obtained to the desired grid
object. Note that error handling has been omitted from this example for clarity, but in a real
example it is imperative to enclose the calls in a try/catch clause.

It is generally more difficult for a client to get a reference to its first object, whether it be via a
stringified object reference, as above, or via the Name Server. If this first object is a kind of F
or Factory object, then subsequent object references can be obtained more easily with its he

3.4 Non-Orbix Server
For non-Orbix servers, the main restriction is that they are not able to respond to the Orbix bi
mechanism. This affects the Wonderwall proxy, because it is the Wonderwall proxy which atte
to make direct connections with servers behind the firewall. The Wonderwall will not be able
specify objects using the bind syntax in its configuration file.

You will not be able to include a line such as:

object grid_1 bind(“grid1:GridSrv”,”gridHost”) interface grid

in your configuration file, when you want to make an object known to the Wonderwall. Instead,
will have to carry out the following steps:

• Obtain a copy of the real IOR for the object in CORBA string format (consult you
ORB programming guide for instructions on how to do this). This IOR is needed
anyway if you want to generate a Proxified IOR for a non-Orbix client.

• Copy this string to a file in a convenient location, for example you could place it
the file /etc/iors/grid1.ref .

• Make this object known to Wonderwall by putting the following line in the
configuration file:

object grid_1 /etc/iors/grid.ref

There are a few alternatives you can use for the object-specifier field (see Appendix B.2).
However, the approach outlined here is probably the most convenient for the interoperable c

3.5 Connection Establishment
This section explains some of the steps involved in establishing a connection through the
Wonderwall. By involving the daemon in the process of connection establishment, it is possib
have servers launched automatically. This means that the server is contacted in a sequence o
beginning with an initial connection to the daemon. It is for this reason that the configuration
keyword orbixd-iiop-port must be set equal to the value of the daemon port—knowledge
this port is needed to facilitate communication with the daemon process.
support@iona.com 31

Interoperability and Details

he
the
ps
A Normal IIOP Connection

Client C gets the IOR for server object S2. For example a Java applet could get this as from an
applet tag. This contains the connection details of the activation agent, for example, the Orbix
daemon on the server’s host.

(1a,b) Client C opens a TCP/IP connection to host D, port D.

(1c) C sends the request message to D. D responds with a LOCATION_FORWARD
Reply message containing the real location of S.

(1d) C opens a TCP/IP connection to host S, port S.

(1e) C sends the request message to S.

This example assumes the use of a non-persistent server. Persistent servers do not require t
presence of an activation agent (for Orbix, this is the Orbix daemon). In that case the IOR in
first step would contain the connection details of S rather than D and the second and third ste
would not be necessary.

2. An OrbixWeb client can use the bind mechanism as an alternative.

Figure 3.3: Establishing a normal connection.

host= D
port= D
object key= S

(1a)

Client (C)

Server (S)

(1b)

Request

(1e)

Orbix Daemon (D)

(1d)

Request

(1c) Locate_Forward

32 support@iona.com

Interoperability and Details

e

s the

ge to

key

equest

 until

 details
An IIOP Connection Throu gh The Wonderwall

Wonderwall W gets the IOR for server object S. This is copied into the configuration file by th
system administrator.

(2a,b) Client C gets the proxified IOR for server object S using the same methods a
previous example.

(2c) C opens a TCP/IP connection to host W, port W and sends the request messa
W.

(2d) W reads the request, finds the IOR in its configuration that matches the object
used in the request, and opens a connection to host D, port D. An activation request is
sent to the daemon, causing the server S to start up. D responds to the activation r
with the connection details for S.

(2e) W opens a connection to S using the details from D.

(2f) W forwards the request message to S, forwards any replies back to C and so on
the connection closes.

Again, this assumes the use of non-persistent servers. Persistent servers use the connection
of S rather than D, and the fourth step is skipped.

Figure 3.4: Establishing a connection through Wonderwall.

host= W
port= W
object key= S

(2b)

Server (S)

(2c)
Client (C)

WonderWall (W)

(2e)

host= S
port= S
object key= S

(2a)

host= S
port= S
object key= S

host= D
port= D
object key= S

Request

Request

(2f)

Orbix Daemon (D)

Activation
(2d)

Locate_Forward
support@iona.com 33

Interoperability and Details

 applies

ed to

 to W.

ation

 to C.

equest
ver

s
A More Com plicated Exam ple - The Use of Ob ject Factories

Factory objects are server objects which create objects to handle requests. This diagram also
to servers which return IORs so that clients can bind to objects.

Wildcard flags are used to indicate that an IOR in the Wonderwall configuration file can be us
match in an approximate manner. Different wildcard flags may be required to support other
situations.

To avoid cluttering the diagram the server-activation stage has been omitted.

(3a) Client C gets the proxified IOR for server object as in the previous examples.

(3b) C opens a TCP/IP connection to host W, port W and sends a Request message

(3c) W reads the Request and examines the object key. Since no IOR in its configur
exactly matches the object key, it runs through its list of wildcard IORs. It finds the IOR
that approximately matches, opens a connection to host S, port S and forwards the
Request.

(3d) S creates the object S2 and sends an IOR for it back to W which forwards it on

(3e) C makes a second request and this time it invokes on object S2. W reads the R
and examines the object key. Since S2 uses the same host, port, interface and ser
name, the wildcard IOR used in (3c) matches this Request as well. A connection is
opened to host S, port S (the addressing information in this IOR) and the Request i
passed to object S2.

Figure 3.5: Establishing a connection to a new object through Wonderwall.

host= W
port= W
object key= S

(3a)

Server (S)

(3b)
Client (C)

WonderWall (W)
(3c)

Request

Request

(3e)

Created Object (S2)

Request 2

Request 2

host= S
port= S
object key= S

host= S
port= S
object key= S

host= S
port= S
object key= S

wildcard= marker

(3d)IOR for S2

34 support@iona.com

Interoperability and Details

nted

rate

 on the
al

r of

ints at
 to

eturns
rate

al
This initial version of the Wonderwall requires that objects created by the factory are represe
by proxified IORs. OrbixWeb has an API call to ensure this.

Note that objects S and S2 might not share the same connection details. In that case, a sepa
wildcard IOR would be necessary listing the known details of S2.

3.6 Factor y Objects and IORs
In the general case, Factory objects have a method which is used to create a CORBA object
server and then return an interoperable object reference to this object. For example, a gener
version of a GridFactory could be defined as follows:

// IDL
interface GridFactory {

// Make an object of type ‘grid’
// and return an IOR.
grid makeGrid();

};

The single operation makeGrid() returns an object reference to an object of type grid .

This type of interface introduces a complication for the firewall. Typically, the default behaviou
an operation such as makeGrid() is to generate an object reference which points directly at the
object on the server itself. But this object reference is not useful on the internet because it po
a server on the internal network, behind the firewall. The operation of the firewall is designed
prevent direct access to such internal servers.

The solution is to change the default behaviour of the server, so that any object references it r
refer to the Wonderwall host and port instead. In other words, the Factory object should gene
proxified object references instead of real object references. You will need to consult the
programming manual for your ORB to find out how to do this.

In addition to implementing the GridFactory interface, you will need to add to the Wonderwall
configuration file, to allow external access to objects generated by the Factory object. A typic
approach is the following:

• Generate a real IOR for the GridFactory object and store it in a convenient
location, for example /etc/iors/GridFactory_real.ref .

• Declare a tag in the Wonderwall configuration which refers to all of the objects on
the same server as GridFactory :

server GridFactory /etc/iors/GridFactory_real.ref

• Use this tag in a rule to allow access to all objects in the GridFactory server:

allow object GridFactory

This configuration allows any proxified object references, generated by GridFactory , to be used
by the external network, irrespective of marker or interface type. The use of the server keyword,
support@iona.com 35

Interoperability and Details

of

 is
sed on

wall’s

 of the

lls
ple, the
er on
nger
not be

all.
ically

 the

ent
ehind
nd
ay.
to generate a tag, allows you to regulate permissions, a server at a time. Currently, this form
wildcarding is supported only for Orbix and OrbixWeb.

3.7 Implications for Developers
From a developer’s perspective, the use of Wonderwall has minimal impact. Once the server
ready to be made available to the internet, the IOR and the list of required operations are pas
to the firewall administrator who will assess the security of the server and update the Wonder
configuration file. Alternatively, an Orbix or OrbixWeb server allows you to use the bind form of
an object-specifier in the configuration file (as explained in Appendix B.2).

On the client side, in general, it is merely necessary to ensure that the client receives a copy
proxified IOR so that it can establish an initial connection. In the special case of an OrbixWeb
client, the procedure is simplified so that an OrbixWeb client will transparently connect to the
server via the Wonderwall, if a direct connection is blocked by a firewall.

Callbacks

A firewall unfriendly feature of the IIOP protocol is its use of dynamic port assignment. Firewa
are based around the idea of ports, protocols and services mapping to one another. For exam
SMTP protocol for internet mail runs on port 25, therefore a connection from a client to a serv
port 25 is used for sending mail. Since IIOP dynamically creates and assigns ports, this no lo
applies so the usual paradigm of opening up a single port to support a particular protocol can
assumed.

This is of particular relevance for callbacks. The callback mechanism in the current IIOP
specification is unlikely to work successfully unless the client’s site is not protected by a firew
This is because it relies on the server opening a TCP connection to the client using a dynam
assigned port. If the client’s site is protected by a firewall, this connection will be blocked. The
typical scenario of opening a well-known port does not apply here.

One possibility would be to extend the existing IIOP specification to allow the callback to use
same connection as that used for the initial incoming invocation from the client. Until this is
standardised, however, the above model will be restricted to the usual WWW client-driven
paradigm. In CORBA terminology this means that invocations can only be issued from the cli
site to the backend service behind the firewall. Objects resident in a client application/applet b
a firewall cannot act as CORBA servers receiving requests from objects resident in the backe
service. Note that although callbacks are not supported, the Requests can of course be two w

36 support@iona.com

Chapter 4
Transformers
ion
bix
: For
ay

ilter

s to
the
olicy
by
n

in
 S
g client
e
Several internal layers of Orbix separate a simple remote invocation, as seen by the applicat
level programmer, from the final construction and transmission of a message via TCP/IP. Or
offers the user a chance to customise its behaviour by providing hooks at a number of levels
example, when an Orbix operation is called on the client side it can be intercepted straight aw
using a Smart Proxy to customise its behaviour. Orbix provides another hook in the form of F
objects which can inspect (and modify) a Request object. Finally, after the full contents of a
Request have been marshalled into a raw buffer, Orbix provides access to the buffer via the
mechanism known as a Transformer.

Transformers are useful for a number of purposes. One of the main uses for a Transformer i
allow encryption of the message prior to transmission via the TCP/IP protocol. This provides
user with an added level of security which is desirable in many situations. If your site has a p
of encrypting all messages prior to transmission, then you will find that the support provided
Wonderwall for transformers allows you to insert a firewall with no disruption to the encryptio
process.

4.1 Transformer Architecture
An outline of a typical Transformer setup, in the absence of a Wonderwall firewall, is shown
Figure 4.1. The shaded blocks shown at the edge of the client process C and server process
represent the transformers at either end of the connection. The heavily shaded line connectin
and server is used to represent the transmission of an encrypted IIOP message. Note that th
support@iona.com 37

Transformers

all
 while
mer.
s

l
Transformers in this figure are not implemented as CORBA objects. We will refer to these
Transformers as integral Transformers since they are built in to the client or server process.

Consider the problem of interposing a firewall proxy between this client and server. The firew
cannot deal directly with encrypted messages, nor can it properly monitor and filter messages
they are in encrypted form. In Figure 4.1, decryption is done by the server’s integral Transfor
Logically, however, the point at which decryption should occur is just before the packet passe
through the Wonderwall.

Wonderwall offers two alternative solutions which enable you to insert the firewall even when
encryption is being used. Both of these solutions are based on the definition of external
Transformers which Wonderwall uses to encrypt and decrypt messages. In contrast to integra
Transformers, these Transformers are implemented as CORBA objects.

Figure 4.1: Encrypted link using integral transformer

Figure 4.2: Encrypted link using Wonderwall.

C TextObj

S

C W TextObj

Tc

S

38 support@iona.com

Transformers

the

xternal,
o the
s
r S.
ed.

then

in
ll

n both
t the
the

nd
he
f the
The first solution is shown schematically in Figure 4.2. This model may be appropriate when
main perceived risk to security is the external network. A single client Transformer TC is
implemented to handle encrypted messages arriving from remote clients. When an encrypted
Request message arrives from the client, the Wonderwall first sends the message out to the e
client Transformer TC. The transformer returns a decrypted message, indicated by a thin line, t
Wonderwall. The Wonderwall proxy is then able to monitor and filter this Request message a
normal and, if allowed by the Access Control List, the Request will be forwarded to the Serve
When the server responds to the client with a Reply message, the reverse procedure is follow
The unencrypted message is sent from server to Wonderwall, which might log the message,
passed to the client Transformer TC for encryption, then relayed by Wonderwall back to the client
in encrypted form. In this case, the messages which circulate on the internal network are left
unencrypted form. The Wonderwall provides a single point of decryption and encryption for a
messages entering and leaving the internal network.

The second solution is shown in Figure 4.3. In this model, encypted messages are circulated o
the internal and external networks. The advantage of deploying Wonderwall in this way is tha
firewall can be inserted where an encrypted link already exists. No disruption is caused, and
server needs no modification. This requires the use of two external Transformers: the first
Transformer is the client Transformer TC which exchanges encrypted messages with the client, a
the second Transformer is the server Transformer TS which exchanges encrypted messages with t
server. Sandwiched between these two Transformers is the monitoring and filtering portion o
Wonderwall performing all its operations on unencrypted messages.

Figure 4.3: Wonderwall inserted into encrypted link.

C W TextObj

Tc Ts

S

support@iona.com 39

Transformers

y are
bjects

The
ed.

t

 sent
rds,

rt
rwall
e of a
4.2 Usage
The external Transformers, which the Wonderwall uses, are defined as CORBA objects. The
not built in to the Wonderwall server process. You are free to implement these Transformer o
(both client and server Transformer) in whatever way you like. Wonderwall defines an IDL
interface for the Transformer objects which you must use when writing your implementation.
Wonderwall can be configured so that it automatically calls your Transformer objects as need
This is explained in the following sections.

4.2.1 IDL

The external Transformers used by Wonderwall, both client TC and server TS, are instances of the
CORBA interface IT_WonderwallReqTransformer . The IDL interface is as follows:

// IDL
//
// Wonderwall client/server Transformer interface:

typedef sequence<octet> iiopMessage;

interface IT_WonderwallReqTransformer {

exception TransformFailedException {
string reason;

};

void transform (inout iiopMessage data,
in string host,
in boolean sending)

raises (TransformFailedException);
};

The interface features a single operation transform() which is called whenever Wonderwall
needs a message to be transformed. The first argument iiopMessage is the message to be
transformed. An iiopMessage is declared to be of type sequence<octet> which is the data type
that CORBA typically uses for buffers of bytes. It is perfectly permissible to pass back a
transformed buffer which is a different size to the one received from the Wonderwall. The nex
argument is the host which sent the Request (or is about to receive the Reply). The argument
sending is used to indicate whether encryption or decryption is required. When a message is
out of Wonderwall, this flag is true, and encryption is required. When a message is sent inwa
this flag is false, and decryption is required.

There is a single exception TransformFailedException which can be raised by the user to abo
the message. The user can decide under what circumstances the exception is raised. Wonde
will react to this error by sending a MessageError error message back to the client, in the cas

40 support@iona.com

Transformers

f a

the
plete

 the

turn a

le of
client Transformer, or by sending a MessageError error message to the server, in the case o
server Transformer.

4.2.2 Implementation

The implementation of both client and server Transformers is flexible. Apart from keeping to
rule that you should encrypt and decrypt messages when Wonderwall expects, you have com
freedom in implementing the Transformers. The Transformers can be implemented in any
convenient language for which a CORBA mapping exists. They may be implemented in a
standalone server, or built into some existing server on the internal network.

As an example, we outline here the skeleton of a client Transformer which is implemented in
Java programming language with the help of OrbixWeb:

// IDL
package wwallXformerBoth;

import IE.Iona.Orbix2.CORBA.* ;
import java.util.Random;

public class Transformer extends IT_reqTransformer
{

public boolean transform (_sequence_Octet data,
String host,
boolean is_send)

{
if (is_send) {

//
// Implement an algorithm to encrypt ‘data’
//
...

}
else {

//
// Implement an algorithm to decrypt ‘data’
//
...

}
return true ;

}
}

Note that the encryption algorithm is allowed to change the size of the sequence buffer and re
transformed sequence of a different length. If you wish to do this you will have to remember
reallocate the size of the sequence buffer before completing the transformation. A full examp
an OrbixWeb client Transformer is available in the demos directory of your Wonderwall
support@iona.com 41

Transformers

er is

rmer
t two

ented

erwall

the
distribution. The demo is based on the architecture of Figure 4.2, where the client Transform
implemented in server S.

4.2.3 Configuration

Configuring the Wonderwall to use either a client Transformer, or a client and server Transfo
is quite straightforward. Once a client and server Transformer have been implemented, inser
lines like the following into the configuration file (typically called iipproxy.cf):

###
Configure client and server Transformers...
#
client-transformer \

bind (":myServer","internalHostA") \
interface IT_WonderwallReqTransformer

server-transformer \
bind (":myServer","internalHostA") \
interface IT_WonderwallReqTransformer

This setup is appropriate when both a client and server Transformer object have been implem
in server myServer , on host internalHostA . If you do not wish to use the Orbix bind
mechanism, you can substitute any form of object-specifier (as described in Appendix B.2).

Note that since the encrypted Requests will be sent from the Transformer servers to the Wond
in unencrypted form, care should be taken that these connections cannot be intercepted. For
example, the Transformer server could be run on the Wonderwall machine itself. As long as
firewall protects the Transformer, this is safe.

42 support@iona.com

Chapter 5
Using the Wonderwall with OrbixWeb
is
sses
rewall
sier
d in
 is

u
ts

e on
ues,

main
led.
OrbixWeb, IONA’s CORBA-on-Java product, contains built-in support for the Wonderwall. Th
allows you to use the Wonderwall either as a simple intranet request-routing server which pa
IIOP messages from your applet, via the web server, to the target server, or as a full-blown fi
proxy which can filter, control and log your IIOP traffic. This makes the Wonderwall much ea
to use and administer, as IORs no longer need to be proxified to be used with OrbixWeb, an
low-security configurations the need to list server objects in the Wonderwall configuration file
removed.

OrbixWeb 3 has built-in support for the Wonderwall. However, if you use OrbixWeb 2.0.1, yo
should contact support@iona.com in order to receive an up-to-date patch for it which suppor
the Wonderwall.

5.1 Usin g the Wonderwall with OrbixWeb as an Intranet
Request-Router

If you simply wish to provide a way for your OrbixWeb applets to contact servers which resid
hosts other than the one your web server is running on, and you don’t care about security iss
then the Wonderwall will provide this capability as an intranet request-router for IIOP. The file
intranet.cf is used in this configuration, so the Wonderwall command line is as follows:

iiopproxy -config intranet.cf

This mode of operation requires no configuration, apart from setting your daemon port and do
name – any server can be connected to using the Wonderwall, and any operation can be cal
support@iona.com 43

Using the Wonderwall with OrbixWeb

e the

ration
s

s

 that

, in

ges.

ng,
f the
 using
5.2 Usin g the Wonderwall with OrbixWeb as a Firewall
Prox y

To run the Wonderwall in a traditional secure mode, as detailed elsewhere in this manual, us
file secure.cf . The Wonderwall command is as follows:

iiopproxy -config secure.cf

This mode of operation requires that the target objects and operations be listed in the configu
file. For more details, see Appendix B, which provides a guide to using the Wonderwall acces
control lists and object specifiers.

5.3 OrbixWeb Confi guration Parameters used to support
the Wonderwall

OrbixWeb now has automatic support for the Wonderwall built-in to its client-side. This allow
OrbixWeb to transparently attempt to connect to any IIOP servers via the Wonderwall if a
connection attempt fails using the default direct socket connection mechanism. It also means
the Wonderwall can be used to

• provide HTTP tunneling for OrbixWeb-powered Java applets.

• provide automatic intranet routing capability for OrbixWeb-powered java applets
order to avoid browser security restrictions.

• use OrbixWeb applications and applets with the Wonderwall, with no code chan

5.4 Confi gurin g OrbixWeb to use the Wonderwall
In order for OrbixWeb to use the Wonderwall, it must be configured with the Wonderwall’s
location. The following configuration parameters are used for this purpose:

OrbixWeb.IT_IIOP_PROXY_HOST
OrbixWeb.IT_IIOP_PROXY_PORT

IT_IIOP_PROXY_HOST should contain the name of the host on which the Wonderwall is runni
and IIOP_PROXY_PORT should contain its IIOP port. These parameters may be set using any o
supported configuration mechanisms – see the release notes of the OrbixWeb version you’re
for details. For example, here’s a fragment of a HTML file which uses applet parameters:

<applet code=GridApplet.class height=300 width=400>
 <param name=”OrbixWeb.IT_IIOP_PROXY_HOST”
value=”wwall.iona.com”>
 <param name=”OrbixWeb.IT_IIOP_PROXY_PORT” value=”1570”>
</applet>

44 support@iona.com

Using the Wonderwall with OrbixWeb

sage

e.

irect

tever

-CGI-
va,

n
meter.
eb
e

nd/or
s well
).

chine
ear in

debase
5.5 Confi gurin g OrbixWeb to use HTTP Tunnelin g
“HTTP tunneling” is a mechanism for traversing client-side firewalls. Each IIOP Request mes
is encoded in HTTP base-64 encoding, and a HTTP form query is sent to the Wonderwall,
containing the IIOP message as query data. The IIOP Reply is then sent as a HTTP respons

Using HTTP tunneling allows your applets to be used behind a client’s firewall, even when a d
connection (or even a DNS lookup of the Wonderwall’s hostname) is impossible.

In order to use HTTP tunneling, you must use the new ORB.init() API call to initialize
OrbixWeb, whether you’re using OrbixWeb 2.0.1 or 3.0. Again, see the release notes for wha
version you’re using for details on how to use this.

This is necessary as it allows OrbixWeb to retrieve the codebase from which the applet was loaded.
The codebase is then used to find the Wonderwall’s interface for HTTP tunneling – a pseudo
script called “/cgi-bin/tunnel” . For more information on what the codebase is used for in Ja
look at http://www.javasoft.com/ .

The Wonderwall should be used as the web server which provides the applet’s classes, as a
untrusted Java applet is only permitted to connect to the server named in the codebase para
However, it is permissible to provide your main web site’s HTML and images from another w
server, such as Apache, IIS or Netscape, and simply refer to the Wonderwall web server in th
applet tag, as follows:

[in the file http://www.iona.com/demo.html]

<applet code=GridApplet.class
codebase=http://wwall.iona.com/GridApplet/classes
height=300 width=400>
</applet>

With this setup, your HTML, images, and so on are loaded from the main web site
(www.iona.com), but your applet code is loaded from wwall.iona.com , and as a result the applet
can open connections to that host. For greater efficiency, it’s advisable to make a ZIP, JAR a
CAB file containing the classes used by your applet, and store them on the Wonderwall site a
(in fact, regardless of whether you’re using the Wonderwall, this is generally a very good idea

It is also feasible to provide a Wonderwall set up to support HTTP tunneling on the same ma
as the real HTTP server, by using a different port number from the default port 80; however, b
mind that some sites may only support HTTP traffic on port 80, the standard port, so this may
restrict your applets’ potential audience slightly.

You should ensure that the applet’s classes are available in the directory you named in the co
URL – in the example above, this would be GridApplet/classes . This directory path is relative
to the directory named in the Wonderwall configuration file’s http-files parameter.
support@iona.com 45

Using the Wonderwall with OrbixWeb

P

ng,

TP
when
ome

st

CP

his

ag,

ite

s to
uld be
p by
If you want an application to use HTTP tunneling, or would prefer to override an applet’s HTT
tunneling setup 1, three more configurable parameters are provided:

OrbixWeb.IT_HTTP_TUNNEL_HOST
OrbixWeb.IT_HTTP_TUNNEL_PORT
OrbixWeb.IT_HTTP_TUNNEL_PROTO

IT_HTTP_TUNNEL_HOST should contain the name of the host on which the Wonderwall is runni
IT_HTTP_TUNNEL_PORT should contain its HTTP port, and IT_HTTP_TUNNEL_PROTO should
contain the protocol used – currently the only protocol value supported for HTTP tunneling is
“http”.

We have observed an issue relating to the use of HTTP tunneling in OrbixWeb 2.0.1. The
OrbixWeb runtime classes attempts to retrieve a file from the web server in order to test if HT
tunneling can be used; normally, the runtime can differentiate between the exception thrown
the connection fails and the exception thrown when the target file does not exist. However, s
implementations of the HTTP support classes (java.net.URLConnection) in the different web
browsers throw the same exception for “file not found” as for “connection failed” – and hence
OrbixWeb treats this as an unusable connection.

If you observe OrbixWeb failing to use HTTP tunneling when it should be, this problem is mo
likely occurring. The workaround is to create a file in the root directory of the Wonderwall’s http-

files 2 directory hierarchy, named robots.txt 3 – insert the following line in the file (it needs to
be non-empty due to another bug in one of the browsers):

User-Agent: *

This workaround is no longer necessary with OrbixWeb 3.0.

The Wonderwall supports HTTP 1.1 and HTTP 1.0’s Keep-Alive extension. This means that T
connections between the client and the Wonderwall (or between a HTTP proxy and the
Wonderwall) will be “kept alive”, i.e. more than one HTTP request can be sent across them. T
greatly increases the efficiency of HTTP.

1. Note that OrbixWeb 2.0.1 will use the applet’s CODEBASE URL from the HTML applet t
and will not allow you to override it with these parameters.
2. http-files is a configuration file parameter which specifies the directory the web server
serves documents from; for example, http-files /var/web means that a request for
/robots.txt is served from the file /var/web/robots.txt .
3. The file /robots.txt is used by web-crawler robots to find control information about the s
in question. In the case of HTTP tunneling, it is used because an access to this URL is of no
importance to the site administrators, and rather than worrying people unduly about accesse
strange URLs, we decided an access to a moderately strange, but well-documented, URL wo
preferable. The robot commands provided act as a no-op, by the way, so any robots who dro
your site will be entirely unaffected.

46 support@iona.com

Using the Wonderwall with OrbixWeb

s are
5.6 Manuall y Confi gurin g OrbixWeb to Test Tunnelin g
In order to test HTTP tunneling or IIOP via the Wonderwall, two more configurable parameter
provided; these are

OrbixWeb.IT_IIOP_PROXY_PREFERRED
OrbixWeb.IT_HTTP_TUNNEL_PREFERRED

If either of these are set to true , then that connection mechanism will be tried first, before the
direct connection is attempted.
support@iona.com 47

Using the Wonderwall with OrbixWeb

48 support@iona.com

Appendix A
iiopproxy and iortool
.

IOP

ntax
The Wonderwall is shipped with just two binary files, iiopproxy and iortool . The iiopproxy
implements the firewall itself, while iortool is a useful utility for manipulating object references
Both of these commands each have a number of options as detailed below.

A.1 The iiopprox y process
The command iiopproxy is usually run as a daemon process to monitor both the dedicated I
port and the HTTP port on the bastion host. It is the key component of the Wonderwall and
combines the functionality of IIOP gateway with a full HTTP server. The iiopproxy will
generally be launched automatically using the inetd(8) on Unix (see the install notes) and
remains permanently active, monitoring the designated ports, until it is explicitly killed. The sy
of iiopproxy is as follows:

iiopproxy [options]
support@iona.com 49

tics

so

ot

e

u
 ID
The options may consist of one or more of the following switches:

Typically, when testing the Wonderwall the iiopproxy can be run from the command line as in
the following example:

% iiopproxy -debug 2 -config iiopproxy.cf >& iiop.log

-config file Specify the pathname of the Wonderwall configuration file
(see Appendix B). When iiopproxy is run as a daemon
process this should be an absolute pathname.

-debug n The debug level can be set to three values 0, 1 or 2. The
value 0 means no diagnostics, 1 means minimal diagnos
and 2 means full diagnostics. The default is 1.

-fg Debugging option meaning don't fork when a new
connection arrives. This is of limited usefulness unless
you're debugging, and may cause trouble.

-help Give usage information on these command switches.

-httpport port Specify the port to listen on for HTTP requests (this can al
be specified in the Wonderwall configuration file—but the
value specified by -httpport takes precedence).

-inetd Specify that the iiopproxy is running from inetd(8) as a
daemon process. This causes the inetd process to listen to
the ports on behalf of the Wonderwall. When this flag is n
specified, the Wonderwall listens on these ports itself.
Wonderwall uses the current user ID as an identification
when binding to servers. Hence the servers must be
registered using putit , and chmodit 'ed so that the user
running the Wonderwall has invoke and launch rights to th
servers.

-log logfile Send the log output into the named file, rather than to
stderr , the standard error file descriptor.

-port port Specify the dedicated IIOP port for the Wonderwall (this
can also be specified in the Wonderwall configuration file—
but the value specified by -port takes precedence).

-user username Run as a specified user. If the Wonderwall needs to use a
privileged port (one under 1024), it is safer to run as a
normal, unprivileged user once the port is acquired, so yo
should use this switch. Wonderwall uses the current user
as an identification when binding to servers. See the -inetd

switch.

-v Print version information for iiopproxy .

50 support@iona.com

 form
is

. It
 The

tored
new
 are as

d.

ay

t
where the configuration file is called iiopproxy.cf and the output is logged to the file
iiop.log . When running iiopproxy from inetd(8) you would typically use a command line
like the following:

iiopproxy -inetd -config /etc/iiopproxy.cf

The Wonderwall sends its output to the system log by default.

See the install guide for recommendations on how to set up the iiopproxy to run as a daemon
process from inetd(8) .

A.2 The iortool Utilit y
The Wonderwall requires a certain amount of manipulation and use of IORs. In particular, the
administrator of the Wonderwall needs to maintain a database of objects both in their original
(for use behind the firewall) and in their proxified form (for use by remote clients). To make th
task easier, the Wonderwall product is shipped with a utility iortool to help you read and edit
IORs.

The iortool utility is a general purpose tool which allows you to view, edit or even create IORs
may be used with IORs generated by any ORB but some of its features are specific to Orbix.
syntax of the iortool utility is:

iortool {-ior | -rxr | -view} iorfile
iortool {-ior | -rxr | -view} \

[-proxy [-host host] [-port port]] iorfile
iortool {-ior | -rxr | -view} -manual

There are three basic forms of iortool usage. The first form is used to view the IOR which is s
in iorfile. The second form is used to edit the IOR in iorfile. The third form is used to create a
IOR where the user is prompted for input at each stage in the creation of the IOR. The options
follows:

-host host Used, in conjunction with the -proxy option, to specify the
new proxy host which will be embedded in the IOR. If this
option is not specified, the host in the IOR is left unchange

-ior Specifies that the IOR should be printed in CORBA
standard stringified format.

-manual Used to create an IOR interactively. The iortool proceeds
to create a new IOR and the user is prompted along the w
to provide all of the information needed.

-port port Used, in conjunction with the -proxy option, to specify the
new proxy port number which will be embedded in the
IOR. If this option is not specified, the port in the IOR is lef
unchanged.
support@iona.com 51

r the

used

The first way of using the iortool utility is as a tool for translating IORs between different
formats. There are three output formats which may be selected using one of the flags -ior , -rxr or
-view . For example, given an IOR stored in the file /tmp/gridiiop.ref , it may be printed out
in the standard IIOP stringified format using the -ior flag:

% iortool -ior /tmp/gridiiop.ref
IOR:000000000000000d49444c3a677269643a312e300000000000000001
000000000000004c0001000000000015756c7472612e6475626c696e2e69
6f6e612e696500000963000000283a5c756c7472612e6475626c696e2e69
6f6e612e69653a677269643a303a3a49523a67

The -rxr option writes out the IOR in readable hex format RXR (see section 3.2 on page 21 fo
details of this format). Note that the RXR format is specific to the Wonderwall. An example of
RXR format is obtained as follows:

% iortool -rxr /tmp/gridiiop.ref

RXR:_______%0dIDL:grid:1.0_______%01_______L_%01_____%15ultra.dub
lin.iona.ie__%09c___(:%5cultra.dublin.iona.ie:grid:0::IR:grid_

The -view option writes the IOR in human readable format. Note that this option can only be
to parse Orbix IORs. For example:

% iortool -view /tmp/gridiiop.ref
[IOR: type "IDL:grid:1.0": [IIOP1.0 host=ultra.dublin.iona.ie port=2403 \
[ObjectKey "RXR::%5cultra.dublin.iona.ie:grid:0::IR:grid_:"]]]

The second way of using an IOR is to edit an existing IOR. This is done via the option -proxy (in
addition to the output format specifier which is one of -ior , -rxr or -view) which is used in
conjunction with the option -host and -port . For example:

% iortool -x -h host.iona.com -p 1570 -i /tmp/gridiiop.ref

IOR:000000000000000d49444c3a677269643a312e30000000000000000100000
00000000048000100000000001270726f7879686f73742e696f6e612e696500062
2000000283a5c756c7472612e6475626c696e2e696f6e612e69653a677269643a3
03a3a49523a6772696400

-proxy Used to specify that the iortool is being used to edit the
IOR in iorfile . This option is intended to be followed by
one or both of -h host or -p port . It allows the user to
easily create a proxified IOR from the given iorfile . By
specifying both the proxy host (using -h host) and the
proxy port (using -p port)

-rxr Specifies that the IOR should be printed in (Wonderwall
specific) readable hex representation RXR.

-view Specifies that the IOR should be printed in a human
readable format. This option only works when applied to
IORs generated by Orbix.

52 support@iona.com

e host

ter

R, as

The new IOR will have the specified host and port number embedded in it. These become th
and port which the client will attempt to connect to when it uses the new IOR.

Finally the -manual option can be used to create an IOR from scratch. For example, if you en
the command

% iortool -manual -ior

you will be prompted to enter each of the requisite fields of an IOR (as specified by the IIOP
standard) and the resulting IOR will be written to the standard output as an IIOP stringified IO
specified by the -ior option. Note that this is not the standard way of producing IORs, and it is
recommended that novice users avoid this option altogether.
support@iona.com 53

54 support@iona.com

Appendix B
Configuration
or

 can
are

r
, you
The heart of the Wonderwall’s configuration is its configuration file iiopproxy.cf . This is read
when the Wonderwall is started. It will also be read again if the file changes during the
Wonderwall’s operation (although only for new clients that connect after the file is read, not f
existing client sessions).

The file takes the format of a standard UNIX configuration file. It is read line-by-line, with
anything between a ‘#’ (number sign) and the end of line is ignored as a comment, and entries
be continued onto the next line using the ‘\’ (backslash) character. The configuration entries
case-sensitive. A sample configuration file can be found in section 2.2 on page 12.

It is convenient to divide the contents of the configuration file into three parts:

• Basic Settings.

• List of IORs.

• Access Control List.

This appendix provides a complete description of the configuration settings.

B.1 Basic Settin gs
activated-port-range lo hi

The TCP/IP port range (inclusive) that an internal server can use. The default lowe
range is 1024, and the default upper bound is 65535. If you wish to tighten security
may want to restrict the port range to whatever is used in the internal hosts’ Orbix.cfg
files, in the IT_DAEMON_SERVER_BASE parameter.
support@iona.com 55

on-

and ,.

ere.

n. If
ind
d

ing
 the

not
ent in

ion,
allow-binary-principals boolean

If the value of boolean is on, then principals (usernames attached to incoming IIOP
requests) are sanitized by the Wonderwall for server activation purposes, and any n
username characters cause the principal to be replaced with the string iiopproxy . Non-
username characters are alphanumeric characters, plus the characters _, -, +, =, .

domain dns-domain

The DNS domain name used for the Wonderwall’s hostname should be specified h

hostname hostname

Specifies the hostname (or IP address) of the machine the Wonderwall is running o
this is specified on a machine with multiple IP interfaces, then the Wonderwall will b
to the interface with that hostname. If it is left unset, the hostname will be determine
automatically.

http-files directory

Sets the directory under which the Wonderwall proxy searches for files when behav
as a HTTP server. The files are fetched in response to HTTP requests incoming on
port specified by http-port .

http-idiosyncrasy user-agent idiosyncrasy [...]

Unfortunately, the HTTP support built into the various browser's Java runtimes are
always bug-free; as a result, the Wonderwall may need to be informed of bugs pres
certain versions.

The user-agent string indicates the value used by the Java runtime to identify that
particular browser, and is usually (but not always) in the format BrowserName/vers
for example, JDK/1.1 . You can use simple glob-style pattern matching can be used
here, so JDK/* matches all versions of the JDK.

The idiosyncrasy parameters use the following keywords:

KEYWORD DESCRIPTION

none No idiosyncrasies; full HTTP 1.0 or
HTTP 1.1 compliance.

newline-after-
post

Expect to see a redundant newline
after every HTTP post operation.
Most JDK 1.0.2-derived Java
runtimes do this.

no-keepalive Inhibit the use of HTTP Keep-Alive
even if the browser says it supports it.

Table 5.1:

56 support@iona.com

rrive
t.

TP
et to

rrive
e

the

In the
ent
run.)
http-keepalive-timeout timeout

Specifies how long, in seconds, the Wonderwall should wait for a new message to a
from a HTTP 1.1 connection before closing it down, requiring the client to reconnec
The default value is 600 seconds.

http-port httpport

Sets the port number which the Wonderwall uses to receive HTTP requests and HT
tunnelled IIOP messages. Typically, this port is set to the standard value 80. If it is s
0, the HTTP server capability of Wonderwall is disabled.

iiop-idle-timeout timeout

Specifies how long, in seconds, the Wonderwall should wait for a new message to a
from a client connection before closing it down, requiring the client to reconnect. Th
default value is 3 hours.

log [requests] [replies] [request-bodies] [reply-bodies]

Specify what additional messages should be sent to the syslog.

log-facility facility

Specifies the name of the syslog(3) facility which the Wonderwall should log its
output to. The facility parameter should be set to the name of the facility without the
leading LOG_ prefix, in lowercase; for example, to cause the Wonderwall to log using
LOG_DAEMON facility, use log-facility daemon .

orbixd-iiop-port port

If you are using the Wonderwall with Orbix or OrbixWeb servers on the internal
network, and you wish to use the bind form of object-specifier in the Wonderwall
configuration file, then it is necessary to specify this port. The port is set to the port
which the Orbix daemon uses, on the internal network, to receive IIOP messages. (
default configuration, this port is 1571. It may also be set explicitly via the environm
variable IT_IIOP_PORT, in the environment in which the Orbix daemon process is

FLAG INFORMATION LOGGED

requests Headers of messages sent by client.

replies Headers of messages sent by server.

request-bodies Contents of all request messages.

reply-bodies Contents of all reply messages.

Table 5.2:
support@iona.com 57

e

older

ns
n.

d
 an

at the
ss

r
all
port port-number

This allows you to specify which port-number the Wonderwall will listen on. This
value can also be specified using the -port command-line parameter when starting th
proxy.

pseudo-orbixd boolean

This option only needs to be set if the Wonderwall receives messages from certain
versions of OrbixWeb clients. It specifies whether the Wonderwall should emulate
specific aspects of an Orbix daemon (orbixd) in order to allow clients to connect to
Wonderwall-protected servers using bind() . The value of boolean can be set to either
on or off . The default setting is off .

server-open-timeout timeout

Specifies how long, in seconds, the Wonderwall should retry connecting to a server
which has been activated by its orbixd . The default value is 15 seconds.

strict-host-matching boolean

If the value of boolean is on then hostnames will be matched using string compariso
(this is the default). If it is off , hostnames will be matched using DNS name resolutio

B.2 List of IORs
allow-unlisted-objects boolean

If the value of boolean is on , it allows the Wonderwall to dynamically update, and ad
to, its internal table of known objects. For example, if a client attempts to connect to
unknown IOR (not registered using one of object , server or persistent-object)
the Wonderwall will automatically add this IOR to its internal list of known objects,
assuming boolean is on. The default value of boolean is off .

Note that, just because an IOR is automatically added to this list, does not mean th
client is necessarily granted access. All messages must still be filtered by the Acce
Control List, in the usual way.

object tag [wild wildcardflags] object-specifier

This entry is used to define a tag which is used throughout the configuration file to refe
to an object or group of objects. An entry is made in a runtime table which records
objects known to Wonderwall.

58 support@iona.com

ntax

il in

rom
 of
e for

r is

ere

r
y the
old
At present the Wonderwall supports four different forms of object-specifier :

• An object-specifier beginning with the keyword “bind” is used to specify
the object using a pseudo-bind syntax (which closely resembles the sy
of _bind() as used by a regular OrbixWeb client—see section 1.5.2).

• An object-specifier that begins with the characters “IOR:” introduces an
IOR coded as a standard CORBA stringified object reference (see
section 2.3).

• An object-specifier that begins with the characters “RXR:” introduces an
IOR encoded using the readable-hex-representation (explained in deta
section 2.3).

• An object-specifier that begins with a “/” is assumed to be the absolute
pathname of a file where the IOR is stored (either in “IOR:” or “RXR:”
format).

If the wild parameter is specified, any attempts to match this object with a request f
the internet will ignore that aspect of the object key. Since this requires examination
the object key, it is not interoperable and depends on support in the Wonderwall cod
the server ORB vendor’s object key format. Currently, Orbix and OrbixWeb are
supported. The supported parameters for wild are as follows:

Note that the object entry is suitable for listing an IOR whether the respective serve
activated or persistent. When an object is listed as an object entry, Wonderwall will use
the facilities provided by the IIOP protocol to check, first of all, the host and port wh
the server is currently located. The Wonderwall will use this new host and port
information to forward messages to the server.

This ensures that Wonderwall functions correctly with activated servers. In Orbix, fo
example, such servers are started automatically and have host and port assigned b
Orbix daemon process. When Wonderwall contacts the daemon via IIOP, it will be t
the current host and port of the particular server.

WILDCARD FLAG EFFECT

host Ignore the hostname used in the object
key.

server Ignore the server name used in the
object key.

marker Ignore the object marker used in the
object key.

ifmarker Ignore the interface marker used in
the object key.

Table 5.3:
support@iona.com 59

,

e of
h

icular
ul for

ress
e
e.

ng

d.

the ‘\’
persistent-object symbol [wild wildcardflags] ior

The persistent-object entry can only be used when the object is in a persistent
server. It is almost identical to the object entry. The only difference is that, in this case
Wonderwall assumes the listed ior specifies a direct connection to the server. A
precautionary message, to determine the actual host and port, is not sent in advanc
the real request. The advantage is a gain in efficiency when used in conjunction wit
persistent servers.

server tag object-specifier

Exactly equivalent to the entry:

object tag wild marker ifmarker object-specifier

It generates a tag which can be used to refer to all of the objects common to a part
server (hence the name). It is provided as a standalone keyword because it is usef
tagging Factory objects (see section 1.6).

client-transformer object-specifier

Specifies the object which implements an external client transformer for the
Wonderwall. A client transformer will not be used unless this line is present in the
configuration file (see section 4.2.3).

server-transformer object-specifier

Specifies the object which implements an external server transformer for the
Wonderwall. A server transformer will not be used unless this line is present in the
configuration file (see section 4.2.3).

use-ipaddr-in-iors boolean

Specifies whether IORs created by the Wonderwall should contain the host's IP add
or its hostname. If the hostname the Wonderwall is running on will not be resolvabl
using DNS to hosts outside the Wonderwall's domain, then this should be set to tru

B.3 Access Control List
The most important part of the configuration is the Access Control List (ACL). This specifies
which operations can be accessed on which objects, along with extra conditions and flags.

The ACL is read from the first rule encountered to the last, and is processed by the ACL testi
code in that order. This means that you can specify broad filters first, to remove potentially
dangerous or unknown features such as Service Contexts, and then go on to allow specific
operations on objects after that.

There is no limit to the number of rules in the ACL. If no rules match the message, it is blocke

Each line is treated as one rule. Longer rules can be continued onto consecutive lines using
(backslash) character.

60 support@iona.com

etails

s.
allow [keyword [parameter]] [keyword [parameter]] ...

This entry will allow any request which matches the given rule. Each specified keyword
on the line must match for the rule to match (sometimes a keyword also has an
associated parameter). If a keyword is not specified on a rule line, that aspect of the
message is ignored for purposes of the ACL match.

deny [keyword [parameter]] [keyword [parameter]] ...

This entry will deny any request which matches the given rule. Each specified keyword
on the line must match for the rule to match (sometimes a keyword also has an
associated parameter). If a keyword is not specified on a rule line, that aspect of the
message is ignored for purposes of the ACL match.

Keywords Used in Rules

The following keywords may only appear as parameters to the allow or deny rules:

... ipaddr ipaddress [/ mask]

Match if the client IP address equals the given ipaddress . The optional mask
parameter specifies a bit-wise mask. Only these bits will be used to compare the IP
addresses. Some common masks are:
255.255.255.255 all bits - default,
255.255.255.0 class C bits,
255.255.0.0 class B bits,
255.0.0.0 class A bits.
Note that this option should not be relied upon to provide security since the client IP
address can be faked.

... log

If this keyword appears in a rule which successfully matches, the message header d
will be written to the system log. If you had log requests set in your configuration
file this would be redundant since the header would be logged anyway.

... msgtype type

Match on message types. The type can be one of the following: Request , Reply ,
CancelRequest , LocateRequest , LocateReply , CloseConnection or
MessageError . See section 3.4 on page 24 for more details on IIOP message type

... object symbol

Match if the object being accessed is identified by symbol (this rule only applies to
incoming Requests). The symbol must have already been declared in an earlier object
or persistent-object entry.

... object-host hostname

Match if the object being accessed is located on the host identified by hostname .
support@iona.com 61

x-

e or

ific
he
at

 a
to

 by

ule,

d as a
... op operation

Match if the operation in a Request is the same as the operation string operation (this
rule only applies to incoming requests).

... principal p

Match if the principal sending a request message is the same as the readable-he
representation byte string p (see section 3.2 on page 21 for more information on this
format). Note that principals are very easy to forge so this parameter does not provide
any security.

... servicecontexts sclist

Match if the an incoming request uses one or more IOP Service Contexts and if on
more of the Service Context IDs used is listed in the sclist parameter. IOP Service
Contexts are a mechanism which, according to the IIOP spec, allows “service-spec
context information” to be passed along with requests and replies. In keeping with t
firewall philosophy of “anything not expressly permitted is denied”, it is suggested th
these are filtered out until a future stage when they become necessary1 at which point
each can be enabled on a specific basis.

The format of the sclist parameter is as follows: Each Context ID is represented as
positive integer (these integer IDs are assigned by the Object Management Group
uniquely denote a particular type of Service Context). Multiple Context IDs can be
listed, separated by ‘,’ (comma) characters. A range of Context Ids can be matched
listing the start ID, a ‘-’ (dash) character, and the end ID. The string all is used to match
one or more Context Ids, and the string max is used to denote the upper bound of the
Context ID range. Here are some examples:
deny servicecontexts 1-3,5,7,9-20
deny servicecontexts 0-5,7-max # all except 6
deny servicecontexts all # one or more Service Contexts
Note that if a rule allowing specific service contexts is followed by a wildcard deny r
the effect is non-intuitive. A request containing both permitted and denied service
contexts would be forwarded, as it would hit the allow rule first. Caution is advised
here.

... unlisted-object

Match if the object being accessed is an unlisted object, that is, it has been specifie
target by the client-side ORB.

1. A service contexts is used, for example, by the CORBA Transaction Service.

62 support@iona.com

Index
A
access control list 7, 55
activated servers 32, 55
allow

rule 7, 61

B
bastion hosts 2

C
callbacks 36
CancelRequest messages 25
CDR 20
CloseConnection messages 25, 31

D
daemon 32
deny

rule 7, 61

F
filtering 2
firewalls 1

G
GIOP 1
grid

interface 4

I
IIOP 1, 3, 15, 20

messages 21
iiopproxy 4
iiopproxy.cf 4, 6, 55
IOR 3, 15, 18

editing 52
representations 18

iortool 51
ipaddr

keyword 9, 61

L
LocateReply messages 25
LocateRequest messages 25

LOCATION_FORWARD 25
LOCATION_FORWARD messages 32
log

keyword 9, 61
output 13
rule 7, 57

M
MessageError messages 25
messages 21

filtering 2
formats 21

msgtype
keyword 61

N
NO_EXCEPTION 24

O
object

keyword 9, 61, 62
rule 7, 58

object factories 34
object keys 3, 16, 22
OBJECT_FORWARD 25
OBJECT_HERE 25
op

keyword 9, 62

P
persistent-object

rule 60
port

rule 7, 57
principal

keyword 62
principals 3
profile_count 16
profiles 16
protocol_tag 16
proxified IOR 31
proxy servers 2
pseudo-orbixd

rule 58
support@iona.com 63

Index
R
Reply messages 3, 24, 31
reply_status 24
reponse_expected 22
Request messages 2, 3, 22, 31
request_id 22, 24
requesting_principal 22
RXR format 19, 52

S
security 1
service contexts 3, 7, 22, 24
servicecontexts

keyword 62
SYSTEM_EXCEPTION 25

T
type_id 16

U
UNKNOWN_OBJECT 25
USER_EXCEPTION 25

V
Version 16

W
wildcards 34, 58

64 support@iona.com

	Chapter 1 Getting Started
	1.1 Introduction
	1.2 Overview of IIOP
	1.3 Grid Example
	1.4 OrbixWeb Client
	1.5 The Configuration File
	1.5.1 Basic Configuration and Ports
	1.5.2 Object Specifiers
	1.5.3 Access Control List

	1.6 Factory Objects
	1.7 HTTP Server
	1.8 Logging Output

	Chapter 2 IORs and IIOP
	2.1 IOR Format
	2.2 Orbix/OrbixWeb Object Key Format
	2.3 Representations of an IOR
	2.4 Internet Inter-ORB Protocol (IIOP)
	2.5 IIOP Message Formats

	Chapter 3 Interoperability and Details
	3.1 Object References
	3.2 Proxification
	3.3 Non-Orbix Client
	3.4 Non-Orbix Server
	3.5 Connection Establishment
	3.6 Factory Objects and IORs
	3.7 Implications for Developers

	Chapter 4 Transformers
	4.1 Transformer Architecture
	4.2 Usage
	4.2.1 IDL
	4.2.2 Implementation
	4.2.3 Configuration

	Chapter 5 Using the Wonderwall with OrbixWeb
	5.1 Using the Wonderwall with OrbixWeb as an Intra...
	5.2 Using the Wonderwall with OrbixWeb as a Firewa...
	5.3 OrbixWeb Configuration Parameters used to supp...
	5.4 Configuring OrbixWeb to use the Wonderwall
	5.5 Configuring OrbixWeb to use HTTP Tunneling
	5.6 Manually Configuring OrbixWeb to Test Tunnelin...

	Appendix A iiopproxy and iortool
	Appendix B Configuration

